peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_cffi.py
# -*- coding: utf-8 -*- | |
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import contextlib | |
import ctypes | |
import gc | |
import pyarrow as pa | |
try: | |
from pyarrow.cffi import ffi | |
except ImportError: | |
ffi = None | |
import pytest | |
try: | |
import pandas as pd | |
import pandas.testing as tm | |
except ImportError: | |
pd = tm = None | |
needs_cffi = pytest.mark.skipif(ffi is None, | |
reason="test needs cffi package installed") | |
assert_schema_released = pytest.raises( | |
ValueError, match="Cannot import released ArrowSchema") | |
assert_array_released = pytest.raises( | |
ValueError, match="Cannot import released ArrowArray") | |
assert_stream_released = pytest.raises( | |
ValueError, match="Cannot import released ArrowArrayStream") | |
def PyCapsule_IsValid(capsule, name): | |
return ctypes.pythonapi.PyCapsule_IsValid(ctypes.py_object(capsule), name) == 1 | |
def registered_extension_type(ext_type): | |
pa.register_extension_type(ext_type) | |
try: | |
yield | |
finally: | |
pa.unregister_extension_type(ext_type.extension_name) | |
class ParamExtType(pa.ExtensionType): | |
def __init__(self, width): | |
self._width = width | |
super().__init__(pa.binary(width), | |
"pyarrow.tests.test_cffi.ParamExtType") | |
def width(self): | |
return self._width | |
def __arrow_ext_serialize__(self): | |
return str(self.width).encode() | |
def __arrow_ext_deserialize__(cls, storage_type, serialized): | |
width = int(serialized.decode()) | |
return cls(width) | |
def make_schema(): | |
return pa.schema([('ints', pa.list_(pa.int32()))], | |
metadata={b'key1': b'value1'}) | |
def make_extension_schema(): | |
return pa.schema([('ext', ParamExtType(3))], | |
metadata={b'key1': b'value1'}) | |
def make_extension_storage_schema(): | |
# Should be kept in sync with make_extension_schema | |
return pa.schema([('ext', ParamExtType(3).storage_type)], | |
metadata={b'key1': b'value1'}) | |
def make_batch(): | |
return pa.record_batch([[[1], [2, 42]]], make_schema()) | |
def make_extension_batch(): | |
schema = make_extension_schema() | |
ext_col = schema[0].type.wrap_array(pa.array([b"foo", b"bar"], | |
type=pa.binary(3))) | |
return pa.record_batch([ext_col], schema) | |
def make_batches(): | |
schema = make_schema() | |
return [ | |
pa.record_batch([[[1], [2, 42]]], schema), | |
pa.record_batch([[None, [], [5, 6]]], schema), | |
] | |
def make_serialized(schema, batches): | |
with pa.BufferOutputStream() as sink: | |
with pa.ipc.new_stream(sink, schema) as out: | |
for batch in batches: | |
out.write(batch) | |
return sink.getvalue() | |
def test_export_import_type(): | |
c_schema = ffi.new("struct ArrowSchema*") | |
ptr_schema = int(ffi.cast("uintptr_t", c_schema)) | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
typ = pa.list_(pa.int32()) | |
typ._export_to_c(ptr_schema) | |
assert pa.total_allocated_bytes() > old_allocated | |
# Delete and recreate C++ object from exported pointer | |
del typ | |
assert pa.total_allocated_bytes() > old_allocated | |
typ_new = pa.DataType._import_from_c(ptr_schema) | |
assert typ_new == pa.list_(pa.int32()) | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_schema_released: | |
pa.DataType._import_from_c(ptr_schema) | |
# Invalid format string | |
pa.int32()._export_to_c(ptr_schema) | |
bad_format = ffi.new("char[]", b"zzz") | |
c_schema.format = bad_format | |
with pytest.raises(ValueError, | |
match="Invalid or unsupported format string"): | |
pa.DataType._import_from_c(ptr_schema) | |
# Now released | |
with assert_schema_released: | |
pa.DataType._import_from_c(ptr_schema) | |
def test_export_import_field(): | |
c_schema = ffi.new("struct ArrowSchema*") | |
ptr_schema = int(ffi.cast("uintptr_t", c_schema)) | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
field = pa.field("test", pa.list_(pa.int32()), nullable=True) | |
field._export_to_c(ptr_schema) | |
assert pa.total_allocated_bytes() > old_allocated | |
# Delete and recreate C++ object from exported pointer | |
del field | |
assert pa.total_allocated_bytes() > old_allocated | |
field_new = pa.Field._import_from_c(ptr_schema) | |
assert field_new == pa.field("test", pa.list_(pa.int32()), nullable=True) | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_schema_released: | |
pa.Field._import_from_c(ptr_schema) | |
def check_export_import_array(array_type, exporter, importer): | |
c_schema = ffi.new("struct ArrowSchema*") | |
ptr_schema = int(ffi.cast("uintptr_t", c_schema)) | |
c_array = ffi.new(f"struct {array_type}*") | |
ptr_array = int(ffi.cast("uintptr_t", c_array)) | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
# Type is known up front | |
typ = pa.list_(pa.int32()) | |
arr = pa.array([[1], [2, 42]], type=typ) | |
py_value = arr.to_pylist() | |
exporter(arr, ptr_array) | |
assert pa.total_allocated_bytes() > old_allocated | |
# Delete recreate C++ object from exported pointer | |
del arr | |
arr_new = importer(ptr_array, typ) | |
assert arr_new.to_pylist() == py_value | |
assert arr_new.type == pa.list_(pa.int32()) | |
assert pa.total_allocated_bytes() > old_allocated | |
del arr_new, typ | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_array_released: | |
importer(ptr_array, pa.list_(pa.int32())) | |
# Type is exported and imported at the same time | |
arr = pa.array([[1], [2, 42]], type=pa.list_(pa.int32())) | |
py_value = arr.to_pylist() | |
exporter(arr, ptr_array, ptr_schema) | |
# Delete and recreate C++ objects from exported pointers | |
del arr | |
arr_new = importer(ptr_array, ptr_schema) | |
assert arr_new.to_pylist() == py_value | |
assert arr_new.type == pa.list_(pa.int32()) | |
assert pa.total_allocated_bytes() > old_allocated | |
del arr_new | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_schema_released: | |
importer(ptr_array, ptr_schema) | |
def test_export_import_array(): | |
check_export_import_array( | |
"ArrowArray", | |
pa.Array._export_to_c, | |
pa.Array._import_from_c, | |
) | |
def test_export_import_device_array(): | |
check_export_import_array( | |
"ArrowDeviceArray", | |
pa.Array._export_to_c_device, | |
pa.Array._import_from_c_device, | |
) | |
# verify exported struct | |
c_array = ffi.new("struct ArrowDeviceArray*") | |
ptr_array = int(ffi.cast("uintptr_t", c_array)) | |
arr = pa.array([[1], [2, 42]], type=pa.list_(pa.int32())) | |
arr._export_to_c_device(ptr_array) | |
assert c_array.device_type == 1 # ARROW_DEVICE_CPU 1 | |
assert c_array.device_id == -1 | |
assert c_array.array.length == 2 | |
def check_export_import_schema(schema_factory, expected_schema_factory=None): | |
if expected_schema_factory is None: | |
expected_schema_factory = schema_factory | |
c_schema = ffi.new("struct ArrowSchema*") | |
ptr_schema = int(ffi.cast("uintptr_t", c_schema)) | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
schema_factory()._export_to_c(ptr_schema) | |
assert pa.total_allocated_bytes() > old_allocated | |
# Delete and recreate C++ object from exported pointer | |
schema_new = pa.Schema._import_from_c(ptr_schema) | |
assert schema_new == expected_schema_factory() | |
assert pa.total_allocated_bytes() == old_allocated | |
del schema_new | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_schema_released: | |
pa.Schema._import_from_c(ptr_schema) | |
# Not a struct type | |
pa.int32()._export_to_c(ptr_schema) | |
with pytest.raises(ValueError, | |
match="ArrowSchema describes non-struct type"): | |
pa.Schema._import_from_c(ptr_schema) | |
# Now released | |
with assert_schema_released: | |
pa.Schema._import_from_c(ptr_schema) | |
def test_export_import_schema(): | |
check_export_import_schema(make_schema) | |
def test_export_import_schema_with_extension(): | |
# Extension type is unregistered => the storage type is imported | |
check_export_import_schema(make_extension_schema, | |
make_extension_storage_schema) | |
# Extension type is registered => the extension type is imported | |
with registered_extension_type(ParamExtType(1)): | |
check_export_import_schema(make_extension_schema) | |
def test_export_import_schema_float_pointer(): | |
# Previous versions of the R Arrow library used to pass pointer | |
# values as a double. | |
c_schema = ffi.new("struct ArrowSchema*") | |
ptr_schema = int(ffi.cast("uintptr_t", c_schema)) | |
match = "Passing a pointer value as a float is unsafe" | |
with pytest.warns(UserWarning, match=match): | |
make_schema()._export_to_c(float(ptr_schema)) | |
with pytest.warns(UserWarning, match=match): | |
schema_new = pa.Schema._import_from_c(float(ptr_schema)) | |
assert schema_new == make_schema() | |
def check_export_import_batch(array_type, exporter, importer, batch_factory): | |
c_schema = ffi.new("struct ArrowSchema*") | |
ptr_schema = int(ffi.cast("uintptr_t", c_schema)) | |
c_array = ffi.new(f"struct {array_type}*") | |
ptr_array = int(ffi.cast("uintptr_t", c_array)) | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
# Schema is known up front | |
batch = batch_factory() | |
schema = batch.schema | |
py_value = batch.to_pydict() | |
exporter(batch, ptr_array) | |
assert pa.total_allocated_bytes() > old_allocated | |
# Delete and recreate C++ object from exported pointer | |
del batch | |
batch_new = importer(ptr_array, schema) | |
assert batch_new.to_pydict() == py_value | |
assert batch_new.schema == schema | |
assert pa.total_allocated_bytes() > old_allocated | |
del batch_new, schema | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_array_released: | |
importer(ptr_array, make_schema()) | |
# Type is exported and imported at the same time | |
batch = batch_factory() | |
py_value = batch.to_pydict() | |
batch._export_to_c(ptr_array, ptr_schema) | |
# Delete and recreate C++ objects from exported pointers | |
del batch | |
batch_new = importer(ptr_array, ptr_schema) | |
assert batch_new.to_pydict() == py_value | |
assert batch_new.schema == batch_factory().schema | |
assert pa.total_allocated_bytes() > old_allocated | |
del batch_new | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_schema_released: | |
importer(ptr_array, ptr_schema) | |
# Not a struct type | |
pa.int32()._export_to_c(ptr_schema) | |
batch_factory()._export_to_c(ptr_array) | |
with pytest.raises(ValueError, | |
match="ArrowSchema describes non-struct type"): | |
importer(ptr_array, ptr_schema) | |
# Now released | |
with assert_schema_released: | |
importer(ptr_array, ptr_schema) | |
def test_export_import_batch(): | |
check_export_import_batch( | |
"ArrowArray", | |
pa.RecordBatch._export_to_c, | |
pa.RecordBatch._import_from_c, | |
make_batch, | |
) | |
def test_export_import_batch_with_extension(): | |
with registered_extension_type(ParamExtType(1)): | |
check_export_import_batch( | |
"ArrowArray", | |
pa.RecordBatch._export_to_c, | |
pa.RecordBatch._import_from_c, | |
make_extension_batch, | |
) | |
def test_export_import_device_batch(): | |
check_export_import_batch( | |
"ArrowDeviceArray", | |
pa.RecordBatch._export_to_c_device, | |
pa.RecordBatch._import_from_c_device, | |
make_batch, | |
) | |
# verify exported struct | |
c_array = ffi.new("struct ArrowDeviceArray*") | |
ptr_array = int(ffi.cast("uintptr_t", c_array)) | |
batch = make_batch() | |
batch._export_to_c_device(ptr_array) | |
assert c_array.device_type == 1 # ARROW_DEVICE_CPU 1 | |
assert c_array.device_id == -1 | |
assert c_array.array.length == 2 | |
def _export_import_batch_reader(ptr_stream, reader_factory): | |
# Prepare input | |
batches = make_batches() | |
schema = batches[0].schema | |
reader = reader_factory(schema, batches) | |
reader._export_to_c(ptr_stream) | |
# Delete and recreate C++ object from exported pointer | |
del reader, batches | |
reader_new = pa.RecordBatchReader._import_from_c(ptr_stream) | |
assert reader_new.schema == schema | |
got_batches = list(reader_new) | |
del reader_new | |
assert got_batches == make_batches() | |
# Test read_pandas() | |
if pd is not None: | |
batches = make_batches() | |
schema = batches[0].schema | |
expected_df = pa.Table.from_batches(batches).to_pandas() | |
reader = reader_factory(schema, batches) | |
reader._export_to_c(ptr_stream) | |
del reader, batches | |
reader_new = pa.RecordBatchReader._import_from_c(ptr_stream) | |
got_df = reader_new.read_pandas() | |
del reader_new | |
tm.assert_frame_equal(expected_df, got_df) | |
def make_ipc_stream_reader(schema, batches): | |
return pa.ipc.open_stream(make_serialized(schema, batches)) | |
def make_py_record_batch_reader(schema, batches): | |
return pa.RecordBatchReader.from_batches(schema, batches) | |
def test_export_import_batch_reader(reader_factory): | |
c_stream = ffi.new("struct ArrowArrayStream*") | |
ptr_stream = int(ffi.cast("uintptr_t", c_stream)) | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
_export_import_batch_reader(ptr_stream, reader_factory) | |
assert pa.total_allocated_bytes() == old_allocated | |
# Now released | |
with assert_stream_released: | |
pa.RecordBatchReader._import_from_c(ptr_stream) | |
def test_export_import_exception_reader(): | |
# See: https://github.com/apache/arrow/issues/37164 | |
c_stream = ffi.new("struct ArrowArrayStream*") | |
ptr_stream = int(ffi.cast("uintptr_t", c_stream)) | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
def gen(): | |
if True: | |
try: | |
raise ValueError('foo') | |
except ValueError as e: | |
raise NotImplementedError('bar') from e | |
else: | |
yield from make_batches() | |
original = pa.RecordBatchReader.from_batches(make_schema(), gen()) | |
original._export_to_c(ptr_stream) | |
reader = pa.RecordBatchReader._import_from_c(ptr_stream) | |
with pytest.raises(OSError) as exc_info: | |
reader.read_next_batch() | |
# inner *and* outer exception should be present | |
assert 'ValueError: foo' in str(exc_info.value) | |
assert 'NotImplementedError: bar' in str(exc_info.value) | |
# Stacktrace containing line of the raise statement | |
assert 'raise ValueError(\'foo\')' in str(exc_info.value) | |
assert pa.total_allocated_bytes() == old_allocated | |
def test_imported_batch_reader_error(): | |
c_stream = ffi.new("struct ArrowArrayStream*") | |
ptr_stream = int(ffi.cast("uintptr_t", c_stream)) | |
schema = pa.schema([('foo', pa.int32())]) | |
batches = [pa.record_batch([[1, 2, 3]], schema=schema), | |
pa.record_batch([[4, 5, 6]], schema=schema)] | |
buf = make_serialized(schema, batches) | |
# Open a corrupt/incomplete stream and export it | |
reader = pa.ipc.open_stream(buf[:-16]) | |
reader._export_to_c(ptr_stream) | |
del reader | |
reader_new = pa.RecordBatchReader._import_from_c(ptr_stream) | |
batch = reader_new.read_next_batch() | |
assert batch == batches[0] | |
with pytest.raises(OSError, | |
match="Expected to be able to read 16 bytes " | |
"for message body, got 8"): | |
reader_new.read_next_batch() | |
# Again, but call read_all() | |
reader = pa.ipc.open_stream(buf[:-16]) | |
reader._export_to_c(ptr_stream) | |
del reader | |
reader_new = pa.RecordBatchReader._import_from_c(ptr_stream) | |
with pytest.raises(OSError, | |
match="Expected to be able to read 16 bytes " | |
"for message body, got 8"): | |
reader_new.read_all() | |
def test_roundtrip_schema_capsule(obj): | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
capsule = obj.__arrow_c_schema__() | |
assert PyCapsule_IsValid(capsule, b"arrow_schema") == 1 | |
assert pa.total_allocated_bytes() > old_allocated | |
obj_out = type(obj)._import_from_c_capsule(capsule) | |
assert obj_out == obj | |
assert pa.total_allocated_bytes() == old_allocated | |
capsule = obj.__arrow_c_schema__() | |
assert pa.total_allocated_bytes() > old_allocated | |
del capsule | |
assert pa.total_allocated_bytes() == old_allocated | |
def test_roundtrip_array_capsule(arr, schema_accessor, bad_type, good_type): | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
import_array = type(arr)._import_from_c_capsule | |
schema_capsule, capsule = arr.__arrow_c_array__() | |
assert PyCapsule_IsValid(schema_capsule, b"arrow_schema") == 1 | |
assert PyCapsule_IsValid(capsule, b"arrow_array") == 1 | |
arr_out = import_array(schema_capsule, capsule) | |
assert arr_out.equals(arr) | |
assert pa.total_allocated_bytes() > old_allocated | |
del arr_out | |
assert pa.total_allocated_bytes() == old_allocated | |
capsule = arr.__arrow_c_array__() | |
assert pa.total_allocated_bytes() > old_allocated | |
del capsule | |
assert pa.total_allocated_bytes() == old_allocated | |
with pytest.raises(ValueError, | |
match=r"Could not cast.* string to requested .* int32"): | |
arr.__arrow_c_array__(bad_type.__arrow_c_schema__()) | |
schema_capsule, array_capsule = arr.__arrow_c_array__( | |
good_type.__arrow_c_schema__()) | |
arr_out = import_array(schema_capsule, array_capsule) | |
assert schema_accessor(arr_out) == good_type | |
# TODO: implement requested_schema for stream | |
def test_roundtrip_reader_capsule(constructor): | |
batches = make_batches() | |
schema = batches[0].schema | |
gc.collect() # Make sure no Arrow data dangles in a ref cycle | |
old_allocated = pa.total_allocated_bytes() | |
obj = constructor(schema, batches) | |
capsule = obj.__arrow_c_stream__() | |
assert PyCapsule_IsValid(capsule, b"arrow_array_stream") == 1 | |
imported_reader = pa.RecordBatchReader._import_from_c_capsule(capsule) | |
assert imported_reader.schema == schema | |
imported_batches = list(imported_reader) | |
assert len(imported_batches) == len(batches) | |
for batch, expected in zip(imported_batches, batches): | |
assert batch.equals(expected) | |
del obj, imported_reader, batch, expected, imported_batches | |
assert pa.total_allocated_bytes() == old_allocated | |
obj = constructor(schema, batches) | |
bad_schema = pa.schema({'ints': pa.int32()}) | |
with pytest.raises(pa.lib.ArrowTypeError, match="Field 0 cannot be cast"): | |
obj.__arrow_c_stream__(bad_schema.__arrow_c_schema__()) | |
# Can work with matching schema | |
matching_schema = pa.schema({'ints': pa.list_(pa.int32())}) | |
capsule = obj.__arrow_c_stream__(matching_schema.__arrow_c_schema__()) | |
imported_reader = pa.RecordBatchReader._import_from_c_capsule(capsule) | |
assert imported_reader.schema == matching_schema | |
for batch, expected in zip(imported_reader, batches): | |
assert batch.equals(expected) | |
def test_roundtrip_batch_reader_capsule_requested_schema(): | |
batch = make_batch() | |
requested_schema = pa.schema([('ints', pa.list_(pa.int64()))]) | |
requested_capsule = requested_schema.__arrow_c_schema__() | |
batch_as_requested = batch.cast(requested_schema) | |
capsule = batch.__arrow_c_stream__(requested_capsule) | |
assert PyCapsule_IsValid(capsule, b"arrow_array_stream") == 1 | |
imported_reader = pa.RecordBatchReader._import_from_c_capsule(capsule) | |
assert imported_reader.schema == requested_schema | |
assert imported_reader.read_next_batch().equals(batch_as_requested) | |
with pytest.raises(StopIteration): | |
imported_reader.read_next_batch() | |
def test_roundtrip_batch_reader_capsule(): | |
batch = make_batch() | |
capsule = batch.__arrow_c_stream__() | |
assert PyCapsule_IsValid(capsule, b"arrow_array_stream") == 1 | |
imported_reader = pa.RecordBatchReader._import_from_c_capsule(capsule) | |
assert imported_reader.schema == batch.schema | |
assert imported_reader.read_next_batch().equals(batch) | |
with pytest.raises(StopIteration): | |
imported_reader.read_next_batch() | |
def test_roundtrip_chunked_array_capsule(): | |
chunked = pa.chunked_array([pa.array(["a", "b", "c"])]) | |
capsule = chunked.__arrow_c_stream__() | |
assert PyCapsule_IsValid(capsule, b"arrow_array_stream") == 1 | |
imported_chunked = pa.ChunkedArray._import_from_c_capsule(capsule) | |
assert imported_chunked.type == chunked.type | |
assert imported_chunked == chunked | |
def test_roundtrip_chunked_array_capsule_requested_schema(): | |
chunked = pa.chunked_array([pa.array(["a", "b", "c"])]) | |
# Requesting the same type should work | |
requested_capsule = chunked.type.__arrow_c_schema__() | |
capsule = chunked.__arrow_c_stream__(requested_capsule) | |
imported_chunked = pa.ChunkedArray._import_from_c_capsule(capsule) | |
assert imported_chunked == chunked | |
# Casting to something else should error if not possible | |
requested_type = pa.binary() | |
requested_capsule = requested_type.__arrow_c_schema__() | |
capsule = chunked.__arrow_c_stream__(requested_capsule) | |
imported_chunked = pa.ChunkedArray._import_from_c_capsule(capsule) | |
assert imported_chunked == chunked.cast(pa.binary()) | |
requested_type = pa.int64() | |
requested_capsule = requested_type.__arrow_c_schema__() | |
with pytest.raises( | |
ValueError, match="Could not cast string to requested type int64" | |
): | |
chunked.__arrow_c_stream__(requested_capsule) | |