peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_cuda.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
""" | |
UNTESTED: | |
read_message | |
""" | |
import sys | |
import sysconfig | |
import pytest | |
import pyarrow as pa | |
import numpy as np | |
cuda = pytest.importorskip("pyarrow.cuda") | |
platform = sysconfig.get_platform() | |
# TODO: enable ppc64 when Arrow C++ supports IPC in ppc64 systems: | |
has_ipc_support = platform == 'linux-x86_64' # or 'ppc64' in platform | |
cuda_ipc = pytest.mark.skipif( | |
not has_ipc_support, | |
reason='CUDA IPC not supported in platform `%s`' % (platform)) | |
global_context = None # for flake8 | |
global_context1 = None # for flake8 | |
def setup_module(module): | |
module.global_context = cuda.Context(0) | |
module.global_context1 = cuda.Context(cuda.Context.get_num_devices() - 1) | |
def teardown_module(module): | |
del module.global_context | |
def test_Context(): | |
assert cuda.Context.get_num_devices() > 0 | |
assert global_context.device_number == 0 | |
assert global_context1.device_number == cuda.Context.get_num_devices() - 1 | |
with pytest.raises(ValueError, | |
match=("device_number argument must " | |
"be non-negative less than")): | |
cuda.Context(cuda.Context.get_num_devices()) | |
def test_manage_allocate_free_host(size): | |
buf = cuda.new_host_buffer(size) | |
arr = np.frombuffer(buf, dtype=np.uint8) | |
arr[size//4:3*size//4] = 1 | |
arr_cp = arr.copy() | |
arr2 = np.frombuffer(buf, dtype=np.uint8) | |
np.testing.assert_equal(arr2, arr_cp) | |
assert buf.size == size | |
def test_context_allocate_del(): | |
bytes_allocated = global_context.bytes_allocated | |
cudabuf = global_context.new_buffer(128) | |
assert global_context.bytes_allocated == bytes_allocated + 128 | |
del cudabuf | |
assert global_context.bytes_allocated == bytes_allocated | |
def make_random_buffer(size, target='host'): | |
"""Return a host or device buffer with random data. | |
""" | |
if target == 'host': | |
assert size >= 0 | |
buf = pa.allocate_buffer(size) | |
assert buf.size == size | |
arr = np.frombuffer(buf, dtype=np.uint8) | |
assert arr.size == size | |
arr[:] = np.random.randint(low=1, high=255, size=size, dtype=np.uint8) | |
assert arr.sum() > 0 or size == 0 | |
arr_ = np.frombuffer(buf, dtype=np.uint8) | |
np.testing.assert_equal(arr, arr_) | |
return arr, buf | |
elif target == 'device': | |
arr, buf = make_random_buffer(size, target='host') | |
dbuf = global_context.new_buffer(size) | |
assert dbuf.size == size | |
dbuf.copy_from_host(buf, position=0, nbytes=size) | |
return arr, dbuf | |
raise ValueError('invalid target value') | |
def test_context_device_buffer(size): | |
# Creating device buffer from host buffer; | |
arr, buf = make_random_buffer(size) | |
cudabuf = global_context.buffer_from_data(buf) | |
assert cudabuf.size == size | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
# CudaBuffer does not support buffer protocol | |
with pytest.raises(BufferError): | |
memoryview(cudabuf) | |
# Creating device buffer from array: | |
cudabuf = global_context.buffer_from_data(arr) | |
assert cudabuf.size == size | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
# Creating device buffer from bytes: | |
cudabuf = global_context.buffer_from_data(arr.tobytes()) | |
assert cudabuf.size == size | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
# Creating a device buffer from another device buffer, view: | |
cudabuf2 = cudabuf.slice(0, cudabuf.size) | |
assert cudabuf2.size == size | |
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
if size > 1: | |
cudabuf2.copy_from_host(arr[size//2:]) | |
arr3 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(np.concatenate((arr[size//2:], arr[size//2:])), | |
arr3) | |
cudabuf2.copy_from_host(arr[:size//2]) # restoring arr | |
# Creating a device buffer from another device buffer, copy: | |
cudabuf2 = global_context.buffer_from_data(cudabuf) | |
assert cudabuf2.size == size | |
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
cudabuf2.copy_from_host(arr[size//2:]) | |
arr3 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr3) | |
# Slice of a device buffer | |
cudabuf2 = cudabuf.slice(0, cudabuf.size+10) | |
assert cudabuf2.size == size | |
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
cudabuf2 = cudabuf.slice(size//4, size+10) | |
assert cudabuf2.size == size - size//4 | |
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[size//4:], arr2) | |
# Creating a device buffer from a slice of host buffer | |
soffset = size//4 | |
ssize = 2*size//4 | |
cudabuf = global_context.buffer_from_data(buf, offset=soffset, | |
size=ssize) | |
assert cudabuf.size == ssize | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2) | |
cudabuf = global_context.buffer_from_data(buf.slice(offset=soffset, | |
length=ssize)) | |
assert cudabuf.size == ssize | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2) | |
# Creating a device buffer from a slice of an array | |
cudabuf = global_context.buffer_from_data(arr, offset=soffset, size=ssize) | |
assert cudabuf.size == ssize | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2) | |
cudabuf = global_context.buffer_from_data(arr[soffset:soffset+ssize]) | |
assert cudabuf.size == ssize | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2) | |
# Creating a device buffer from a slice of bytes | |
cudabuf = global_context.buffer_from_data(arr.tobytes(), | |
offset=soffset, | |
size=ssize) | |
assert cudabuf.size == ssize | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset + ssize], arr2) | |
# Creating a device buffer from size | |
cudabuf = global_context.new_buffer(size) | |
assert cudabuf.size == size | |
# Creating device buffer from a slice of another device buffer: | |
cudabuf = global_context.buffer_from_data(arr) | |
cudabuf2 = cudabuf.slice(soffset, ssize) | |
assert cudabuf2.size == ssize | |
arr2 = np.frombuffer(cudabuf2.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset+ssize], arr2) | |
# Creating device buffer from HostBuffer | |
buf = cuda.new_host_buffer(size) | |
arr_ = np.frombuffer(buf, dtype=np.uint8) | |
arr_[:] = arr | |
cudabuf = global_context.buffer_from_data(buf) | |
assert cudabuf.size == size | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
# Creating device buffer from HostBuffer slice | |
cudabuf = global_context.buffer_from_data(buf, offset=soffset, size=ssize) | |
assert cudabuf.size == ssize | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset+ssize], arr2) | |
cudabuf = global_context.buffer_from_data( | |
buf.slice(offset=soffset, length=ssize)) | |
assert cudabuf.size == ssize | |
arr2 = np.frombuffer(cudabuf.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr[soffset:soffset+ssize], arr2) | |
def test_context_from_object(size): | |
ctx = global_context | |
arr, cbuf = make_random_buffer(size, target='device') | |
dtype = arr.dtype | |
# Creating device buffer from a CUDA host buffer | |
hbuf = cuda.new_host_buffer(size * arr.dtype.itemsize) | |
np.frombuffer(hbuf, dtype=dtype)[:] = arr | |
cbuf2 = ctx.buffer_from_object(hbuf) | |
assert cbuf2.size == cbuf.size | |
arr2 = np.frombuffer(cbuf2.copy_to_host(), dtype=dtype) | |
np.testing.assert_equal(arr, arr2) | |
# Creating device buffer from a device buffer | |
cbuf2 = ctx.buffer_from_object(cbuf2) | |
assert cbuf2.size == cbuf.size | |
arr2 = np.frombuffer(cbuf2.copy_to_host(), dtype=dtype) | |
np.testing.assert_equal(arr, arr2) | |
# Trying to create a device buffer from a Buffer | |
with pytest.raises(pa.ArrowTypeError, | |
match=('buffer is not backed by a CudaBuffer')): | |
ctx.buffer_from_object(pa.py_buffer(b"123")) | |
# Trying to create a device buffer from numpy.array | |
with pytest.raises(pa.ArrowTypeError, | |
match=("cannot create device buffer view from " | |
".* \'numpy.ndarray\'")): | |
ctx.buffer_from_object(np.array([1, 2, 3])) | |
def test_foreign_buffer(): | |
ctx = global_context | |
dtype = np.dtype(np.uint8) | |
size = 10 | |
hbuf = cuda.new_host_buffer(size * dtype.itemsize) | |
# test host buffer memory reference counting | |
rc = sys.getrefcount(hbuf) | |
fbuf = ctx.foreign_buffer(hbuf.address, hbuf.size, hbuf) | |
assert sys.getrefcount(hbuf) == rc + 1 | |
del fbuf | |
assert sys.getrefcount(hbuf) == rc | |
# test postponed deallocation of host buffer memory | |
fbuf = ctx.foreign_buffer(hbuf.address, hbuf.size, hbuf) | |
del hbuf | |
fbuf.copy_to_host() | |
# test deallocating the host buffer memory making it inaccessible | |
hbuf = cuda.new_host_buffer(size * dtype.itemsize) | |
fbuf = ctx.foreign_buffer(hbuf.address, hbuf.size) | |
del hbuf | |
with pytest.raises(pa.ArrowIOError, | |
match=('Cuda error ')): | |
fbuf.copy_to_host() | |
def test_CudaBuffer(size): | |
arr, buf = make_random_buffer(size) | |
assert arr.tobytes() == buf.to_pybytes() | |
cbuf = global_context.buffer_from_data(buf) | |
assert cbuf.size == size | |
assert not cbuf.is_cpu | |
assert arr.tobytes() == cbuf.to_pybytes() | |
if size > 0: | |
assert cbuf.address > 0 | |
for i in range(size): | |
assert cbuf[i] == arr[i] | |
for s in [ | |
slice(None), | |
slice(size//4, size//2), | |
]: | |
assert cbuf[s].to_pybytes() == arr[s].tobytes() | |
sbuf = cbuf.slice(size//4, size//2) | |
assert sbuf.parent == cbuf | |
with pytest.raises(TypeError, | |
match="Do not call CudaBuffer's constructor directly"): | |
cuda.CudaBuffer() | |
def test_HostBuffer(size): | |
arr, buf = make_random_buffer(size) | |
assert arr.tobytes() == buf.to_pybytes() | |
hbuf = cuda.new_host_buffer(size) | |
np.frombuffer(hbuf, dtype=np.uint8)[:] = arr | |
assert hbuf.size == size | |
assert hbuf.is_cpu | |
assert arr.tobytes() == hbuf.to_pybytes() | |
for i in range(size): | |
assert hbuf[i] == arr[i] | |
for s in [ | |
slice(None), | |
slice(size//4, size//2), | |
]: | |
assert hbuf[s].to_pybytes() == arr[s].tobytes() | |
sbuf = hbuf.slice(size//4, size//2) | |
assert sbuf.parent == hbuf | |
del hbuf | |
with pytest.raises(TypeError, | |
match="Do not call HostBuffer's constructor directly"): | |
cuda.HostBuffer() | |
def test_copy_from_to_host(size): | |
# Create a buffer in host containing range(size) | |
dt = np.dtype('uint16') | |
nbytes = size * dt.itemsize | |
buf = pa.allocate_buffer(nbytes, resizable=True) # in host | |
assert isinstance(buf, pa.Buffer) | |
assert not isinstance(buf, cuda.CudaBuffer) | |
arr = np.frombuffer(buf, dtype=dt) | |
assert arr.size == size | |
arr[:] = range(size) | |
arr_ = np.frombuffer(buf, dtype=dt) | |
np.testing.assert_equal(arr, arr_) | |
# Create a device buffer of the same size and copy from host | |
device_buffer = global_context.new_buffer(nbytes) | |
assert isinstance(device_buffer, cuda.CudaBuffer) | |
assert isinstance(device_buffer, pa.Buffer) | |
assert device_buffer.size == nbytes | |
assert not device_buffer.is_cpu | |
device_buffer.copy_from_host(buf, position=0, nbytes=nbytes) | |
# Copy back to host and compare contents | |
buf2 = device_buffer.copy_to_host(position=0, nbytes=nbytes) | |
arr2 = np.frombuffer(buf2, dtype=dt) | |
np.testing.assert_equal(arr, arr2) | |
def test_copy_to_host(size): | |
arr, dbuf = make_random_buffer(size, target='device') | |
buf = dbuf.copy_to_host() | |
assert buf.is_cpu | |
np.testing.assert_equal(arr, np.frombuffer(buf, dtype=np.uint8)) | |
buf = dbuf.copy_to_host(position=size//4) | |
assert buf.is_cpu | |
np.testing.assert_equal(arr[size//4:], np.frombuffer(buf, dtype=np.uint8)) | |
buf = dbuf.copy_to_host(position=size//4, nbytes=size//8) | |
assert buf.is_cpu | |
np.testing.assert_equal(arr[size//4:size//4+size//8], | |
np.frombuffer(buf, dtype=np.uint8)) | |
buf = dbuf.copy_to_host(position=size//4, nbytes=0) | |
assert buf.is_cpu | |
assert buf.size == 0 | |
for (position, nbytes) in [ | |
(size+2, -1), (-2, -1), (size+1, 0), (-3, 0), | |
]: | |
with pytest.raises(ValueError, | |
match='position argument is out-of-range'): | |
dbuf.copy_to_host(position=position, nbytes=nbytes) | |
for (position, nbytes) in [ | |
(0, size+1), (size//2, (size+1)//2+1), (size, 1) | |
]: | |
with pytest.raises(ValueError, | |
match=('requested more to copy than' | |
' available from device buffer')): | |
dbuf.copy_to_host(position=position, nbytes=nbytes) | |
buf = pa.allocate_buffer(size//4) | |
dbuf.copy_to_host(buf=buf) | |
np.testing.assert_equal(arr[:size//4], np.frombuffer(buf, dtype=np.uint8)) | |
if size < 12: | |
return | |
dbuf.copy_to_host(buf=buf, position=12) | |
np.testing.assert_equal(arr[12:12+size//4], | |
np.frombuffer(buf, dtype=np.uint8)) | |
dbuf.copy_to_host(buf=buf, nbytes=12) | |
np.testing.assert_equal(arr[:12], np.frombuffer(buf, dtype=np.uint8)[:12]) | |
dbuf.copy_to_host(buf=buf, nbytes=12, position=6) | |
np.testing.assert_equal(arr[6:6+12], | |
np.frombuffer(buf, dtype=np.uint8)[:12]) | |
for (position, nbytes) in [ | |
(0, size+10), (10, size-5), | |
(0, size//2), (size//4, size//4+1) | |
]: | |
with pytest.raises(ValueError, | |
match=('requested copy does not ' | |
'fit into host buffer')): | |
dbuf.copy_to_host(buf=buf, position=position, nbytes=nbytes) | |
def test_copy_from_device(dest_ctx, size): | |
arr, buf = make_random_buffer(size=size, target='device') | |
lst = arr.tolist() | |
if dest_ctx == 'another': | |
dest_ctx = global_context1 | |
if buf.context.device_number == dest_ctx.device_number: | |
pytest.skip("not a multi-GPU system") | |
else: | |
dest_ctx = buf.context | |
dbuf = dest_ctx.new_buffer(size) | |
def put(*args, **kwargs): | |
dbuf.copy_from_device(buf, *args, **kwargs) | |
rbuf = dbuf.copy_to_host() | |
return np.frombuffer(rbuf, dtype=np.uint8).tolist() | |
assert put() == lst | |
if size > 4: | |
assert put(position=size//4) == lst[:size//4]+lst[:-size//4] | |
assert put() == lst | |
assert put(position=1, nbytes=size//2) == \ | |
lst[:1] + lst[:size//2] + lst[-(size-size//2-1):] | |
for (position, nbytes) in [ | |
(size+2, -1), (-2, -1), (size+1, 0), (-3, 0), | |
]: | |
with pytest.raises(ValueError, | |
match='position argument is out-of-range'): | |
put(position=position, nbytes=nbytes) | |
for (position, nbytes) in [ | |
(0, size+1), | |
]: | |
with pytest.raises(ValueError, | |
match=('requested more to copy than' | |
' available from device buffer')): | |
put(position=position, nbytes=nbytes) | |
if size < 4: | |
return | |
for (position, nbytes) in [ | |
(size//2, (size+1)//2+1) | |
]: | |
with pytest.raises(ValueError, | |
match=('requested more to copy than' | |
' available in device buffer')): | |
put(position=position, nbytes=nbytes) | |
def test_copy_from_host(size): | |
arr, buf = make_random_buffer(size=size, target='host') | |
lst = arr.tolist() | |
dbuf = global_context.new_buffer(size) | |
def put(*args, **kwargs): | |
dbuf.copy_from_host(buf, *args, **kwargs) | |
rbuf = dbuf.copy_to_host() | |
return np.frombuffer(rbuf, dtype=np.uint8).tolist() | |
assert put() == lst | |
if size > 4: | |
assert put(position=size//4) == lst[:size//4]+lst[:-size//4] | |
assert put() == lst | |
assert put(position=1, nbytes=size//2) == \ | |
lst[:1] + lst[:size//2] + lst[-(size-size//2-1):] | |
for (position, nbytes) in [ | |
(size+2, -1), (-2, -1), (size+1, 0), (-3, 0), | |
]: | |
with pytest.raises(ValueError, | |
match='position argument is out-of-range'): | |
put(position=position, nbytes=nbytes) | |
for (position, nbytes) in [ | |
(0, size+1), | |
]: | |
with pytest.raises(ValueError, | |
match=('requested more to copy than' | |
' available from host buffer')): | |
put(position=position, nbytes=nbytes) | |
if size < 4: | |
return | |
for (position, nbytes) in [ | |
(size//2, (size+1)//2+1) | |
]: | |
with pytest.raises(ValueError, | |
match=('requested more to copy than' | |
' available in device buffer')): | |
put(position=position, nbytes=nbytes) | |
def test_BufferWriter(): | |
def allocate(size): | |
cbuf = global_context.new_buffer(size) | |
writer = cuda.BufferWriter(cbuf) | |
return cbuf, writer | |
def test_writes(total_size, chunksize, buffer_size=0): | |
cbuf, writer = allocate(total_size) | |
arr, buf = make_random_buffer(size=total_size, target='host') | |
if buffer_size > 0: | |
writer.buffer_size = buffer_size | |
position = writer.tell() | |
assert position == 0 | |
writer.write(buf.slice(length=chunksize)) | |
assert writer.tell() == chunksize | |
writer.seek(0) | |
position = writer.tell() | |
assert position == 0 | |
while position < total_size: | |
bytes_to_write = min(chunksize, total_size - position) | |
writer.write(buf.slice(offset=position, length=bytes_to_write)) | |
position += bytes_to_write | |
writer.flush() | |
assert cbuf.size == total_size | |
cbuf.context.synchronize() | |
buf2 = cbuf.copy_to_host() | |
cbuf.context.synchronize() | |
assert buf2.size == total_size | |
arr2 = np.frombuffer(buf2, dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
total_size, chunk_size = 1 << 16, 1000 | |
test_writes(total_size, chunk_size) | |
test_writes(total_size, chunk_size, total_size // 16) | |
cbuf, writer = allocate(100) | |
writer.write(np.arange(100, dtype=np.uint8)) | |
writer.writeat(50, np.arange(25, dtype=np.uint8)) | |
writer.write(np.arange(25, dtype=np.uint8)) | |
writer.flush() | |
arr = np.frombuffer(cbuf.copy_to_host(), np.uint8) | |
np.testing.assert_equal(arr[:50], np.arange(50, dtype=np.uint8)) | |
np.testing.assert_equal(arr[50:75], np.arange(25, dtype=np.uint8)) | |
np.testing.assert_equal(arr[75:], np.arange(25, dtype=np.uint8)) | |
def test_BufferWriter_edge_cases(): | |
# edge cases, see cuda-test.cc for more information: | |
size = 1000 | |
cbuf = global_context.new_buffer(size) | |
writer = cuda.BufferWriter(cbuf) | |
arr, buf = make_random_buffer(size=size, target='host') | |
assert writer.buffer_size == 0 | |
writer.buffer_size = 100 | |
assert writer.buffer_size == 100 | |
writer.write(buf.slice(length=0)) | |
assert writer.tell() == 0 | |
writer.write(buf.slice(length=10)) | |
writer.buffer_size = 200 | |
assert writer.buffer_size == 200 | |
assert writer.num_bytes_buffered == 0 | |
writer.write(buf.slice(offset=10, length=300)) | |
assert writer.num_bytes_buffered == 0 | |
writer.write(buf.slice(offset=310, length=200)) | |
assert writer.num_bytes_buffered == 0 | |
writer.write(buf.slice(offset=510, length=390)) | |
writer.write(buf.slice(offset=900, length=100)) | |
writer.flush() | |
buf2 = cbuf.copy_to_host() | |
assert buf2.size == size | |
arr2 = np.frombuffer(buf2, dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
def test_BufferReader(): | |
size = 1000 | |
arr, cbuf = make_random_buffer(size=size, target='device') | |
reader = cuda.BufferReader(cbuf) | |
reader.seek(950) | |
assert reader.tell() == 950 | |
data = reader.read(100) | |
assert len(data) == 50 | |
assert reader.tell() == 1000 | |
reader.seek(925) | |
arr2 = np.zeros(100, dtype=np.uint8) | |
n = reader.readinto(arr2) | |
assert n == 75 | |
assert reader.tell() == 1000 | |
np.testing.assert_equal(arr[925:], arr2[:75]) | |
reader.seek(0) | |
assert reader.tell() == 0 | |
buf2 = reader.read_buffer() | |
arr2 = np.frombuffer(buf2.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
def test_BufferReader_zero_size(): | |
arr, cbuf = make_random_buffer(size=0, target='device') | |
reader = cuda.BufferReader(cbuf) | |
reader.seek(0) | |
data = reader.read() | |
assert len(data) == 0 | |
assert reader.tell() == 0 | |
buf2 = reader.read_buffer() | |
arr2 = np.frombuffer(buf2.copy_to_host(), dtype=np.uint8) | |
np.testing.assert_equal(arr, arr2) | |
def make_recordbatch(length): | |
schema = pa.schema([pa.field('f0', pa.int16()), | |
pa.field('f1', pa.int16())]) | |
a0 = pa.array(np.random.randint(0, 255, size=length, dtype=np.int16)) | |
a1 = pa.array(np.random.randint(0, 255, size=length, dtype=np.int16)) | |
batch = pa.record_batch([a0, a1], schema=schema) | |
return batch | |
def test_batch_serialize(): | |
batch = make_recordbatch(10) | |
hbuf = batch.serialize() | |
cbuf = cuda.serialize_record_batch(batch, global_context) | |
# Test that read_record_batch works properly | |
cbatch = cuda.read_record_batch(cbuf, batch.schema) | |
assert isinstance(cbatch, pa.RecordBatch) | |
assert batch.schema == cbatch.schema | |
assert batch.num_columns == cbatch.num_columns | |
assert batch.num_rows == cbatch.num_rows | |
# Deserialize CUDA-serialized batch on host | |
buf = cbuf.copy_to_host() | |
assert hbuf.equals(buf) | |
batch2 = pa.ipc.read_record_batch(buf, batch.schema) | |
assert hbuf.equals(batch2.serialize()) | |
assert batch.num_columns == batch2.num_columns | |
assert batch.num_rows == batch2.num_rows | |
assert batch.column(0).equals(batch2.column(0)) | |
assert batch.equals(batch2) | |
def make_table(): | |
a0 = pa.array([0, 1, 42, None], type=pa.int16()) | |
a1 = pa.array([[0, 1], [2], [], None], type=pa.list_(pa.int32())) | |
a2 = pa.array([("ab", True), ("cde", False), (None, None), None], | |
type=pa.struct([("strs", pa.utf8()), | |
("bools", pa.bool_())])) | |
# Dictionaries are validated on the IPC read path, but that can produce | |
# issues for GPU-located dictionaries. Check that they work fine. | |
a3 = pa.DictionaryArray.from_arrays( | |
indices=[0, 1, 1, None], | |
dictionary=pa.array(['foo', 'bar'])) | |
a4 = pa.DictionaryArray.from_arrays( | |
indices=[2, 1, 2, None], | |
dictionary=a1) | |
a5 = pa.DictionaryArray.from_arrays( | |
indices=[2, 1, 0, None], | |
dictionary=a2) | |
arrays = [a0, a1, a2, a3, a4, a5] | |
schema = pa.schema([('f{}'.format(i), arr.type) | |
for i, arr in enumerate(arrays)]) | |
batch = pa.record_batch(arrays, schema=schema) | |
table = pa.Table.from_batches([batch]) | |
return table | |
def make_table_cuda(): | |
htable = make_table() | |
# Serialize the host table to bytes | |
sink = pa.BufferOutputStream() | |
with pa.ipc.new_stream(sink, htable.schema) as out: | |
out.write_table(htable) | |
hbuf = pa.py_buffer(sink.getvalue().to_pybytes()) | |
# Copy the host bytes to a device buffer | |
dbuf = global_context.new_buffer(len(hbuf)) | |
dbuf.copy_from_host(hbuf, nbytes=len(hbuf)) | |
# Deserialize the device buffer into a Table | |
dtable = pa.ipc.open_stream(cuda.BufferReader(dbuf)).read_all() | |
return hbuf, htable, dbuf, dtable | |
def test_table_deserialize(): | |
# ARROW-9659: make sure that we can deserialize a GPU-located table | |
# without crashing when initializing or validating the underlying arrays. | |
hbuf, htable, dbuf, dtable = make_table_cuda() | |
# Assert basic fields the same between host and device tables | |
assert htable.schema == dtable.schema | |
assert htable.num_rows == dtable.num_rows | |
assert htable.num_columns == dtable.num_columns | |
# Assert byte-level equality | |
assert hbuf.equals(dbuf.copy_to_host()) | |
# Copy DtoH and assert the tables are still equivalent | |
assert htable.equals(pa.ipc.open_stream( | |
dbuf.copy_to_host() | |
).read_all()) | |
def test_create_table_with_device_buffers(): | |
# ARROW-11872: make sure that we can create an Arrow Table from | |
# GPU-located Arrays without crashing. | |
hbuf, htable, dbuf, dtable = make_table_cuda() | |
# Construct a new Table from the device Table | |
dtable2 = pa.Table.from_arrays(dtable.columns, dtable.column_names) | |
# Assert basic fields the same between host and device tables | |
assert htable.schema == dtable2.schema | |
assert htable.num_rows == dtable2.num_rows | |
assert htable.num_columns == dtable2.num_columns | |
# Assert byte-level equality | |
assert hbuf.equals(dbuf.copy_to_host()) | |
# Copy DtoH and assert the tables are still equivalent | |
assert htable.equals(pa.ipc.open_stream( | |
dbuf.copy_to_host() | |
).read_all()) | |
def other_process_for_test_IPC(handle_buffer, expected_arr): | |
other_context = pa.cuda.Context(0) | |
ipc_handle = pa.cuda.IpcMemHandle.from_buffer(handle_buffer) | |
ipc_buf = other_context.open_ipc_buffer(ipc_handle) | |
ipc_buf.context.synchronize() | |
buf = ipc_buf.copy_to_host() | |
assert buf.size == expected_arr.size, repr((buf.size, expected_arr.size)) | |
arr = np.frombuffer(buf, dtype=expected_arr.dtype) | |
np.testing.assert_equal(arr, expected_arr) | |
def test_IPC(size): | |
import multiprocessing | |
ctx = multiprocessing.get_context('spawn') | |
arr, cbuf = make_random_buffer(size=size, target='device') | |
ipc_handle = cbuf.export_for_ipc() | |
handle_buffer = ipc_handle.serialize() | |
p = ctx.Process(target=other_process_for_test_IPC, | |
args=(handle_buffer, arr)) | |
p.start() | |
p.join() | |
assert p.exitcode == 0 | |