peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_dataset.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import contextlib | |
import datetime | |
import os | |
import pathlib | |
import posixpath | |
import sys | |
import tempfile | |
import textwrap | |
import threading | |
import time | |
from shutil import copytree | |
from urllib.parse import quote | |
import numpy as np | |
import pytest | |
import pyarrow as pa | |
import pyarrow.compute as pc | |
import pyarrow.csv | |
import pyarrow.feather | |
import pyarrow.fs as fs | |
import pyarrow.json | |
from pyarrow.tests.util import (FSProtocolClass, ProxyHandler, | |
_configure_s3_limited_user, _filesystem_uri, | |
change_cwd) | |
try: | |
import pandas as pd | |
except ImportError: | |
pd = None | |
try: | |
import pyarrow.dataset as ds | |
except ImportError: | |
ds = None | |
try: | |
import pyarrow.parquet as pq | |
except ImportError: | |
pq = None | |
# Marks all of the tests in this module | |
# Ignore these with pytest ... -m 'not dataset' | |
pytestmark = pytest.mark.dataset | |
def _generate_data(n): | |
import datetime | |
import itertools | |
day = datetime.datetime(2000, 1, 1) | |
interval = datetime.timedelta(days=5) | |
colors = itertools.cycle(['green', 'blue', 'yellow', 'red', 'orange']) | |
data = [] | |
for i in range(n): | |
data.append((day, i, float(i), next(colors))) | |
day += interval | |
return pd.DataFrame(data, columns=['date', 'index', 'value', 'color']) | |
def _table_from_pandas(df): | |
schema = pa.schema([ | |
pa.field('date', pa.date32()), | |
pa.field('index', pa.int64()), | |
pa.field('value', pa.float64()), | |
pa.field('color', pa.string()), | |
]) | |
table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) | |
return table.replace_schema_metadata() | |
def assert_dataset_fragment_convenience_methods(dataset): | |
# FileFragment convenience methods | |
for fragment in dataset.get_fragments(): | |
with fragment.open() as nf: | |
assert isinstance(nf, pa.NativeFile) | |
assert not nf.closed | |
assert nf.seekable() | |
assert nf.readable() | |
assert not nf.writable() | |
def mockfs(): | |
mockfs = fs._MockFileSystem() | |
directories = [ | |
'subdir/1/xxx', | |
'subdir/2/yyy', | |
] | |
for i, directory in enumerate(directories): | |
path = '{}/file{}.parquet'.format(directory, i) | |
mockfs.create_dir(directory) | |
with mockfs.open_output_stream(path) as out: | |
data = [ | |
list(range(5)), | |
list(map(float, range(5))), | |
list(map(str, range(5))), | |
[i] * 5, | |
[{'a': j % 3, 'b': str(j % 3)} for j in range(5)], | |
] | |
schema = pa.schema([ | |
('i64', pa.int64()), | |
('f64', pa.float64()), | |
('str', pa.string()), | |
('const', pa.int64()), | |
('struct', pa.struct({'a': pa.int64(), 'b': pa.string()})), | |
]) | |
batch = pa.record_batch(data, schema=schema) | |
table = pa.Table.from_batches([batch]) | |
pq.write_table(table, out) | |
return mockfs | |
def open_logging_fs(monkeypatch): | |
from pyarrow.fs import LocalFileSystem, PyFileSystem | |
from .test_fs import ProxyHandler | |
localfs = LocalFileSystem() | |
def normalized(paths): | |
return {localfs.normalize_path(str(p)) for p in paths} | |
opened = set() | |
def open_input_file(self, path): | |
path = localfs.normalize_path(str(path)) | |
opened.add(path) | |
return self._fs.open_input_file(path) | |
# patch proxyhandler to log calls to open_input_file | |
monkeypatch.setattr(ProxyHandler, "open_input_file", open_input_file) | |
fs = PyFileSystem(ProxyHandler(localfs)) | |
def assert_opens(expected_opened): | |
opened.clear() | |
try: | |
yield | |
finally: | |
assert normalized(opened) == normalized(expected_opened) | |
return fs, assert_opens | |
def multisourcefs(request): | |
request.config.pyarrow.requires('pandas') | |
request.config.pyarrow.requires('parquet') | |
df = _generate_data(1000) | |
mockfs = fs._MockFileSystem() | |
# simply split the dataframe into four chunks to construct a data source | |
# from each chunk into its own directory | |
n = len(df) | |
df_a, df_b, df_c, df_d = [df.iloc[i:i+n//4] for i in range(0, n, n//4)] | |
# create a directory containing a flat sequence of parquet files without | |
# any partitioning involved | |
mockfs.create_dir('plain') | |
n = len(df_a) | |
for i, chunk in enumerate([df_a.iloc[i:i+n//10] for i in range(0, n, n//10)]): | |
path = 'plain/chunk-{}.parquet'.format(i) | |
with mockfs.open_output_stream(path) as out: | |
pq.write_table(_table_from_pandas(chunk), out) | |
# create one with schema partitioning by weekday and color | |
mockfs.create_dir('schema') | |
for part, chunk in df_b.groupby([df_b.date.dt.dayofweek, df_b.color]): | |
folder = 'schema/{}/{}'.format(*part) | |
path = '{}/chunk.parquet'.format(folder) | |
mockfs.create_dir(folder) | |
with mockfs.open_output_stream(path) as out: | |
pq.write_table(_table_from_pandas(chunk), out) | |
# create one with hive partitioning by year and month | |
mockfs.create_dir('hive') | |
for part, chunk in df_c.groupby([df_c.date.dt.year, df_c.date.dt.month]): | |
folder = 'hive/year={}/month={}'.format(*part) | |
path = '{}/chunk.parquet'.format(folder) | |
mockfs.create_dir(folder) | |
with mockfs.open_output_stream(path) as out: | |
pq.write_table(_table_from_pandas(chunk), out) | |
# create one with hive partitioning by color | |
mockfs.create_dir('hive_color') | |
for part, chunk in df_d.groupby("color"): | |
folder = 'hive_color/color={}'.format(part) | |
path = '{}/chunk.parquet'.format(folder) | |
mockfs.create_dir(folder) | |
with mockfs.open_output_stream(path) as out: | |
pq.write_table(_table_from_pandas(chunk), out) | |
return mockfs | |
def dataset(mockfs): | |
format = ds.ParquetFileFormat() | |
selector = fs.FileSelector('subdir', recursive=True) | |
options = ds.FileSystemFactoryOptions('subdir') | |
options.partitioning = ds.DirectoryPartitioning( | |
pa.schema([ | |
pa.field('group', pa.int32()), | |
pa.field('key', pa.string()) | |
]) | |
) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
return factory.finish() | |
def dataset_reader(request): | |
''' | |
Fixture which allows dataset scanning operations to be | |
run with/without threads | |
''' | |
use_threads = request.param | |
class reader: | |
def __init__(self): | |
self.use_threads = use_threads | |
def _patch_kwargs(self, kwargs): | |
if 'use_threads' in kwargs: | |
raise Exception( | |
('Invalid use of dataset_reader, do not specify' | |
' use_threads')) | |
kwargs['use_threads'] = use_threads | |
def to_table(self, dataset, **kwargs): | |
self._patch_kwargs(kwargs) | |
return dataset.to_table(**kwargs) | |
def to_batches(self, dataset, **kwargs): | |
self._patch_kwargs(kwargs) | |
return dataset.to_batches(**kwargs) | |
def scanner(self, dataset, **kwargs): | |
self._patch_kwargs(kwargs) | |
return dataset.scanner(**kwargs) | |
def head(self, dataset, num_rows, **kwargs): | |
self._patch_kwargs(kwargs) | |
return dataset.head(num_rows, **kwargs) | |
def take(self, dataset, indices, **kwargs): | |
self._patch_kwargs(kwargs) | |
return dataset.take(indices, **kwargs) | |
def count_rows(self, dataset, **kwargs): | |
self._patch_kwargs(kwargs) | |
return dataset.count_rows(**kwargs) | |
return reader() | |
def test_filesystem_dataset(mockfs): | |
schema = pa.schema([ | |
pa.field('const', pa.int64()) | |
]) | |
file_format = ds.ParquetFileFormat() | |
paths = ['subdir/1/xxx/file0.parquet', 'subdir/2/yyy/file1.parquet'] | |
partitions = [ds.field('part') == x for x in range(1, 3)] | |
fragments = [file_format.make_fragment(path, mockfs, part) | |
for path, part in zip(paths, partitions)] | |
root_partition = ds.field('level') == ds.scalar(1337) | |
dataset_from_fragments = ds.FileSystemDataset( | |
fragments, schema=schema, format=file_format, | |
filesystem=mockfs, root_partition=root_partition, | |
) | |
dataset_from_paths = ds.FileSystemDataset.from_paths( | |
paths, schema=schema, format=file_format, filesystem=mockfs, | |
partitions=partitions, root_partition=root_partition, | |
) | |
for dataset in [dataset_from_fragments, dataset_from_paths]: | |
assert isinstance(dataset, ds.FileSystemDataset) | |
assert isinstance(dataset.format, ds.ParquetFileFormat) | |
assert dataset.partition_expression.equals(root_partition) | |
assert set(dataset.files) == set(paths) | |
fragments = list(dataset.get_fragments()) | |
for fragment, partition, path in zip(fragments, partitions, paths): | |
assert fragment.partition_expression.equals(partition) | |
assert fragment.path == path | |
assert isinstance(fragment.format, ds.ParquetFileFormat) | |
assert isinstance(fragment, ds.ParquetFileFragment) | |
assert fragment.row_groups == [0] | |
assert fragment.num_row_groups == 1 | |
row_group_fragments = list(fragment.split_by_row_group()) | |
assert fragment.num_row_groups == len(row_group_fragments) == 1 | |
assert isinstance(row_group_fragments[0], ds.ParquetFileFragment) | |
assert row_group_fragments[0].path == path | |
assert row_group_fragments[0].row_groups == [0] | |
assert row_group_fragments[0].num_row_groups == 1 | |
fragments = list(dataset.get_fragments(filter=ds.field("const") == 0)) | |
assert len(fragments) == 2 | |
# the root_partition keyword has a default | |
dataset = ds.FileSystemDataset( | |
fragments, schema=schema, format=file_format, filesystem=mockfs | |
) | |
assert dataset.partition_expression.equals(ds.scalar(True)) | |
# from_paths partitions have defaults | |
dataset = ds.FileSystemDataset.from_paths( | |
paths, schema=schema, format=file_format, filesystem=mockfs | |
) | |
assert dataset.partition_expression.equals(ds.scalar(True)) | |
for fragment in dataset.get_fragments(): | |
assert fragment.partition_expression.equals(ds.scalar(True)) | |
# validation of required arguments | |
with pytest.raises(TypeError, match="incorrect type"): | |
ds.FileSystemDataset(fragments, file_format, schema) | |
# validation of root_partition | |
with pytest.raises(TypeError, match="incorrect type"): | |
ds.FileSystemDataset(fragments, schema=schema, | |
format=file_format, root_partition=1) | |
# missing required argument in from_paths | |
with pytest.raises(TypeError, match="incorrect type"): | |
ds.FileSystemDataset.from_paths(fragments, format=file_format) | |
def test_filesystem_dataset_no_filesystem_interaction(dataset_reader): | |
# ARROW-8283 | |
schema = pa.schema([ | |
pa.field('f1', pa.int64()) | |
]) | |
file_format = ds.IpcFileFormat() | |
paths = ['nonexistingfile.arrow'] | |
# creating the dataset itself doesn't raise | |
dataset = ds.FileSystemDataset.from_paths( | |
paths, schema=schema, format=file_format, | |
filesystem=fs.LocalFileSystem(), | |
) | |
# getting fragments also doesn't raise | |
dataset.get_fragments() | |
# scanning does raise | |
with pytest.raises(FileNotFoundError): | |
dataset_reader.to_table(dataset) | |
def test_dataset(dataset, dataset_reader): | |
assert isinstance(dataset, ds.Dataset) | |
assert isinstance(dataset.schema, pa.Schema) | |
# TODO(kszucs): test non-boolean Exprs for filter do raise | |
expected_i64 = pa.array([0, 1, 2, 3, 4], type=pa.int64()) | |
expected_f64 = pa.array([0, 1, 2, 3, 4], type=pa.float64()) | |
for batch in dataset_reader.to_batches(dataset): | |
assert isinstance(batch, pa.RecordBatch) | |
assert batch.column(0).equals(expected_i64) | |
assert batch.column(1).equals(expected_f64) | |
for batch in dataset_reader.scanner(dataset).scan_batches(): | |
assert isinstance(batch, ds.TaggedRecordBatch) | |
assert isinstance(batch.fragment, ds.Fragment) | |
table = dataset_reader.to_table(dataset) | |
assert isinstance(table, pa.Table) | |
assert len(table) == 10 | |
condition = ds.field('i64') == 1 | |
result = dataset.to_table(use_threads=True, filter=condition) | |
# Don't rely on the scanning order | |
result = result.sort_by('group').to_pydict() | |
assert result['i64'] == [1, 1] | |
assert result['f64'] == [1., 1.] | |
assert sorted(result['group']) == [1, 2] | |
assert sorted(result['key']) == ['xxx', 'yyy'] | |
# Filtering on a nested field ref | |
condition = ds.field(('struct', 'b')) == '1' | |
result = dataset.to_table(use_threads=True, filter=condition) | |
result = result.sort_by('group').to_pydict() | |
assert result['i64'] == [1, 4, 1, 4] | |
assert result['f64'] == [1.0, 4.0, 1.0, 4.0] | |
assert result['group'] == [1, 1, 2, 2] | |
assert result['key'] == ['xxx', 'xxx', 'yyy', 'yyy'] | |
# Projecting on a nested field ref expression | |
projection = { | |
'i64': ds.field('i64'), | |
'f64': ds.field('f64'), | |
'new': ds.field(('struct', 'b')) == '1', | |
} | |
result = dataset.to_table(use_threads=True, columns=projection) | |
result = result.sort_by('i64').to_pydict() | |
assert list(result) == ['i64', 'f64', 'new'] | |
assert result['i64'] == [0, 0, 1, 1, 2, 2, 3, 3, 4, 4] | |
assert result['f64'] == [0.0, 0.0, 1.0, 1.0, | |
2.0, 2.0, 3.0, 3.0, 4.0, 4.0] | |
assert result['new'] == [False, False, True, True, False, False, | |
False, False, True, True] | |
assert_dataset_fragment_convenience_methods(dataset) | |
def test_scanner_options(dataset): | |
scanner = dataset.to_batches(fragment_readahead=16, batch_readahead=8) | |
batch = next(scanner) | |
assert batch.num_columns == 7 | |
def test_scanner(dataset, dataset_reader): | |
scanner = dataset_reader.scanner( | |
dataset, memory_pool=pa.default_memory_pool()) | |
assert isinstance(scanner, ds.Scanner) | |
with pytest.raises(pa.ArrowInvalid): | |
dataset_reader.scanner(dataset, columns=['unknown']) | |
scanner = dataset_reader.scanner(dataset, columns=['i64'], | |
memory_pool=pa.default_memory_pool()) | |
assert scanner.dataset_schema == dataset.schema | |
assert scanner.projected_schema == pa.schema([("i64", pa.int64())]) | |
assert isinstance(scanner, ds.Scanner) | |
table = scanner.to_table() | |
for batch in scanner.to_batches(): | |
assert batch.schema == scanner.projected_schema | |
assert batch.num_columns == 1 | |
assert table == scanner.to_reader().read_all() | |
assert table.schema == scanner.projected_schema | |
for i in range(table.num_rows): | |
indices = pa.array([i]) | |
assert table.take(indices) == scanner.take(indices) | |
with pytest.raises(pa.ArrowIndexError): | |
scanner.take(pa.array([table.num_rows])) | |
assert table.num_rows == scanner.count_rows() | |
scanner = dataset_reader.scanner(dataset, columns=['__filename', | |
'__fragment_index', | |
'__batch_index', | |
'__last_in_fragment'], | |
memory_pool=pa.default_memory_pool()) | |
table = scanner.to_table() | |
expected_names = ['__filename', '__fragment_index', | |
'__batch_index', '__last_in_fragment'] | |
assert table.column_names == expected_names | |
sorted_table = table.sort_by('__fragment_index') | |
assert sorted_table['__filename'].to_pylist() == ( | |
['subdir/1/xxx/file0.parquet'] * 5 + | |
['subdir/2/yyy/file1.parquet'] * 5) | |
assert sorted_table['__fragment_index'].to_pylist() == ([0] * 5 + [1] * 5) | |
assert sorted_table['__batch_index'].to_pylist() == [0] * 10 | |
assert sorted_table['__last_in_fragment'].to_pylist() == [True] * 10 | |
def test_scanner_memory_pool(dataset): | |
# honor default pool - https://issues.apache.org/jira/browse/ARROW-18164 | |
old_pool = pa.default_memory_pool() | |
# TODO(ARROW-18293) we should be able to use the proxy memory pool for | |
# for testing, but this crashes | |
# pool = pa.proxy_memory_pool(old_pool) | |
pool = pa.system_memory_pool() | |
pa.set_memory_pool(pool) | |
try: | |
allocated_before = pool.bytes_allocated() | |
scanner = ds.Scanner.from_dataset(dataset) | |
_ = scanner.to_table() | |
assert pool.bytes_allocated() > allocated_before | |
finally: | |
pa.set_memory_pool(old_pool) | |
def test_head(dataset, dataset_reader): | |
result = dataset_reader.head(dataset, 0) | |
assert result == pa.Table.from_batches([], schema=dataset.schema) | |
result = dataset_reader.head(dataset, 1, columns=['i64']).to_pydict() | |
assert result == {'i64': [0]} | |
result = dataset_reader.head(dataset, 2, columns=['i64'], | |
filter=ds.field('i64') > 1).to_pydict() | |
assert result == {'i64': [2, 3]} | |
result = dataset_reader.head(dataset, 1024, columns=['i64']).to_pydict() | |
assert result == {'i64': list(range(5)) * 2} | |
fragment = next(dataset.get_fragments()) | |
result = fragment.head(1, columns=['i64']).to_pydict() | |
assert result == {'i64': [0]} | |
result = fragment.head(1024, columns=['i64']).to_pydict() | |
assert result == {'i64': list(range(5))} | |
def test_take(dataset, dataset_reader): | |
fragment = next(dataset.get_fragments()) | |
for indices in [[1, 3], pa.array([1, 3])]: | |
expected = dataset_reader.to_table(fragment).take(indices) | |
assert dataset_reader.take(fragment, indices) == expected | |
with pytest.raises(IndexError): | |
dataset_reader.take(fragment, pa.array([5])) | |
for indices in [[1, 7], pa.array([1, 7])]: | |
assert dataset_reader.take( | |
dataset, indices) == dataset_reader.to_table(dataset).take(indices) | |
with pytest.raises(IndexError): | |
dataset_reader.take(dataset, pa.array([10])) | |
def test_count_rows(dataset, dataset_reader): | |
fragment = next(dataset.get_fragments()) | |
assert dataset_reader.count_rows(fragment) == 5 | |
assert dataset_reader.count_rows( | |
fragment, filter=ds.field("i64") == 4) == 1 | |
assert dataset_reader.count_rows(dataset) == 10 | |
# Filter on partition key | |
assert dataset_reader.count_rows( | |
dataset, filter=ds.field("group") == 1) == 5 | |
# Filter on data | |
assert dataset_reader.count_rows(dataset, filter=ds.field("i64") >= 3) == 4 | |
assert dataset_reader.count_rows(dataset, filter=ds.field("i64") < 0) == 0 | |
def test_abstract_classes(): | |
classes = [ | |
ds.FileFormat, | |
ds.Scanner, | |
ds.Partitioning, | |
] | |
for klass in classes: | |
with pytest.raises(TypeError): | |
klass() | |
def test_partitioning(): | |
schema = pa.schema([ | |
pa.field('i64', pa.int64()), | |
pa.field('f64', pa.float64()) | |
]) | |
for klass in [ds.DirectoryPartitioning, ds.HivePartitioning, | |
ds.FilenamePartitioning]: | |
partitioning = klass(schema) | |
assert isinstance(partitioning, ds.Partitioning) | |
assert partitioning == klass(schema) | |
assert partitioning != "other object" | |
schema = pa.schema([ | |
pa.field('group', pa.int64()), | |
pa.field('key', pa.float64()) | |
]) | |
partitioning = ds.DirectoryPartitioning(schema) | |
assert len(partitioning.dictionaries) == 2 | |
assert all(x is None for x in partitioning.dictionaries) | |
expr = partitioning.parse('/3/3.14/') | |
assert isinstance(expr, ds.Expression) | |
expected = (ds.field('group') == 3) & (ds.field('key') == 3.14) | |
assert expr.equals(expected) | |
with pytest.raises(pa.ArrowInvalid): | |
partitioning.parse('/prefix/3/aaa') | |
expr = partitioning.parse('/3/') | |
expected = ds.field('group') == 3 | |
assert expr.equals(expected) | |
assert partitioning != ds.DirectoryPartitioning(schema, segment_encoding="none") | |
schema = pa.schema([ | |
pa.field('alpha', pa.int64()), | |
pa.field('beta', pa.int64()) | |
]) | |
partitioning = ds.HivePartitioning(schema, null_fallback='xyz') | |
assert len(partitioning.dictionaries) == 2 | |
assert all(x is None for x in partitioning.dictionaries) | |
expr = partitioning.parse('/alpha=0/beta=3/') | |
expected = ( | |
(ds.field('alpha') == ds.scalar(0)) & | |
(ds.field('beta') == ds.scalar(3)) | |
) | |
assert expr.equals(expected) | |
expr = partitioning.parse('/alpha=xyz/beta=3/') | |
expected = ( | |
(ds.field('alpha').is_null() & (ds.field('beta') == ds.scalar(3))) | |
) | |
assert expr.equals(expected) | |
for shouldfail in ['/alpha=one/beta=2/', '/alpha=one/', '/beta=two/']: | |
with pytest.raises(pa.ArrowInvalid): | |
partitioning.parse(shouldfail) | |
assert partitioning != ds.HivePartitioning(schema, null_fallback='other') | |
schema = pa.schema([ | |
pa.field('group', pa.int64()), | |
pa.field('key', pa.float64()) | |
]) | |
partitioning = ds.FilenamePartitioning(schema) | |
assert len(partitioning.dictionaries) == 2 | |
assert all(x is None for x in partitioning.dictionaries) | |
expr = partitioning.parse('3_3.14_') | |
assert isinstance(expr, ds.Expression) | |
expected = (ds.field('group') == 3) & (ds.field('key') == 3.14) | |
assert expr.equals(expected) | |
with pytest.raises(pa.ArrowInvalid): | |
partitioning.parse('prefix_3_aaa_') | |
assert partitioning != ds.FilenamePartitioning(schema, segment_encoding="none") | |
schema = pa.schema([ | |
pa.field('group', pa.int64()), | |
pa.field('key', pa.dictionary(pa.int8(), pa.string())) | |
]) | |
partitioning = ds.DirectoryPartitioning( | |
schema, dictionaries={"key": pa.array(["first", "second", "third"])} | |
) | |
assert partitioning.dictionaries[0] is None | |
assert partitioning.dictionaries[1].to_pylist() == [ | |
"first", "second", "third"] | |
assert partitioning != ds.DirectoryPartitioning(schema, dictionaries=None) | |
partitioning = ds.FilenamePartitioning( | |
pa.schema([ | |
pa.field('group', pa.int64()), | |
pa.field('key', pa.dictionary(pa.int8(), pa.string())) | |
]), | |
dictionaries={ | |
"key": pa.array(["first", "second", "third"]), | |
}) | |
assert partitioning.dictionaries[0] is None | |
assert partitioning.dictionaries[1].to_pylist() == [ | |
"first", "second", "third"] | |
# test partitioning roundtrip | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10))], | |
names=["f1", "f2", "part"] | |
) | |
partitioning_schema = pa.schema([("part", pa.string())]) | |
for klass in [ds.DirectoryPartitioning, ds.HivePartitioning, | |
ds.FilenamePartitioning]: | |
with tempfile.TemporaryDirectory() as tempdir: | |
partitioning = klass(partitioning_schema) | |
ds.write_dataset(table, tempdir, | |
format='ipc', partitioning=partitioning) | |
load_back = ds.dataset(tempdir, format='ipc', | |
partitioning=partitioning) | |
load_back_table = load_back.to_table() | |
assert load_back_table.equals(table) | |
# test invalid partitioning input | |
with tempfile.TemporaryDirectory() as tempdir: | |
partitioning = ds.DirectoryPartitioning(partitioning_schema) | |
ds.write_dataset(table, tempdir, | |
format='ipc', partitioning=partitioning) | |
load_back = None | |
with pytest.raises(ValueError, | |
match="Expected Partitioning or PartitioningFactory"): | |
load_back = ds.dataset(tempdir, format='ipc', partitioning=int(0)) | |
assert load_back is None | |
def test_partitioning_pickling(pickle_module): | |
schema = pa.schema([ | |
pa.field('i64', pa.int64()), | |
pa.field('f64', pa.float64()) | |
]) | |
parts = [ | |
ds.DirectoryPartitioning(schema), | |
ds.HivePartitioning(schema), | |
ds.FilenamePartitioning(schema), | |
ds.DirectoryPartitioning(schema, segment_encoding="none"), | |
ds.FilenamePartitioning(schema, segment_encoding="none"), | |
ds.HivePartitioning(schema, segment_encoding="none", null_fallback="xyz"), | |
] | |
for part in parts: | |
assert pickle_module.loads(pickle_module.dumps(part)) == part | |
def test_expression_arithmetic_operators(): | |
dataset = ds.dataset(pa.table({'a': [1, 2, 3], 'b': [2, 2, 2]})) | |
a = ds.field("a") | |
b = ds.field("b") | |
result = dataset.to_table(columns={ | |
"a+1": a + 1, | |
"b-a": b - a, | |
"a*2": a * 2, | |
"a/b": a.cast("float64") / b, | |
}) | |
expected = pa.table({ | |
"a+1": [2, 3, 4], "b-a": [1, 0, -1], | |
"a*2": [2, 4, 6], "a/b": [0.5, 1.0, 1.5], | |
}) | |
assert result.equals(expected) | |
def test_partition_keys(): | |
a, b, c = [ds.field(f) == f for f in 'abc'] | |
assert ds.get_partition_keys(a) == {'a': 'a'} | |
assert ds.get_partition_keys(a) == ds._get_partition_keys(a) | |
assert ds.get_partition_keys(a & b & c) == {f: f for f in 'abc'} | |
nope = ds.field('d') >= 3 | |
assert ds.get_partition_keys(nope) == {} | |
assert ds.get_partition_keys(a & nope) == {'a': 'a'} | |
null = ds.field('a').is_null() | |
assert ds.get_partition_keys(null) == {'a': None} | |
def test_parquet_read_options(): | |
opts1 = ds.ParquetReadOptions() | |
opts2 = ds.ParquetReadOptions(dictionary_columns=['a', 'b']) | |
opts3 = ds.ParquetReadOptions(coerce_int96_timestamp_unit="ms") | |
assert opts1.dictionary_columns == set() | |
assert opts2.dictionary_columns == {'a', 'b'} | |
assert opts1.coerce_int96_timestamp_unit == "ns" | |
assert opts3.coerce_int96_timestamp_unit == "ms" | |
assert opts1 == opts1 | |
assert opts1 != opts2 | |
assert opts1 != opts3 | |
def test_parquet_file_format_read_options(): | |
pff1 = ds.ParquetFileFormat() | |
pff2 = ds.ParquetFileFormat(dictionary_columns={'a'}) | |
pff3 = ds.ParquetFileFormat(coerce_int96_timestamp_unit="s") | |
assert pff1.read_options == ds.ParquetReadOptions() | |
assert pff2.read_options == ds.ParquetReadOptions(dictionary_columns=['a']) | |
assert pff3.read_options == ds.ParquetReadOptions( | |
coerce_int96_timestamp_unit="s") | |
def test_parquet_scan_options(): | |
opts1 = ds.ParquetFragmentScanOptions() | |
opts2 = ds.ParquetFragmentScanOptions(buffer_size=4096) | |
opts3 = ds.ParquetFragmentScanOptions( | |
buffer_size=2**13, use_buffered_stream=True) | |
opts4 = ds.ParquetFragmentScanOptions(buffer_size=2**13, pre_buffer=False) | |
opts5 = ds.ParquetFragmentScanOptions( | |
thrift_string_size_limit=123456, | |
thrift_container_size_limit=987654,) | |
opts6 = ds.ParquetFragmentScanOptions( | |
page_checksum_verification=True) | |
cache_opts = pa.CacheOptions( | |
hole_size_limit=2**10, range_size_limit=8*2**10, lazy=True) | |
opts7 = ds.ParquetFragmentScanOptions(pre_buffer=True, cache_options=cache_opts) | |
assert opts1.use_buffered_stream is False | |
assert opts1.buffer_size == 2**13 | |
assert opts1.pre_buffer is True | |
assert opts1.thrift_string_size_limit == 100_000_000 # default in C++ | |
assert opts1.thrift_container_size_limit == 1_000_000 # default in C++ | |
assert opts1.page_checksum_verification is False | |
assert opts2.use_buffered_stream is False | |
assert opts2.buffer_size == 2**12 | |
assert opts2.pre_buffer is True | |
assert opts3.use_buffered_stream is True | |
assert opts3.buffer_size == 2**13 | |
assert opts3.pre_buffer is True | |
assert opts4.use_buffered_stream is False | |
assert opts4.buffer_size == 2**13 | |
assert opts4.pre_buffer is False | |
assert opts5.thrift_string_size_limit == 123456 | |
assert opts5.thrift_container_size_limit == 987654 | |
assert opts6.page_checksum_verification is True | |
assert opts7.pre_buffer is True | |
assert opts7.cache_options == cache_opts | |
assert opts7.cache_options != opts1.cache_options | |
assert opts1 == opts1 | |
assert opts1 != opts2 | |
assert opts2 != opts3 | |
assert opts3 != opts4 | |
assert opts5 != opts1 | |
assert opts6 != opts1 | |
assert opts7 != opts1 | |
def test_file_format_pickling(pickle_module): | |
formats = [ | |
ds.IpcFileFormat(), | |
ds.CsvFileFormat(), | |
ds.CsvFileFormat(pa.csv.ParseOptions(delimiter='\t', | |
ignore_empty_lines=True)), | |
ds.CsvFileFormat(read_options=pa.csv.ReadOptions( | |
skip_rows=3, column_names=['foo'])), | |
ds.CsvFileFormat(read_options=pa.csv.ReadOptions( | |
skip_rows=3, block_size=2**20)), | |
ds.JsonFileFormat(), | |
ds.JsonFileFormat( | |
parse_options=pa.json.ParseOptions(newlines_in_values=True, | |
unexpected_field_behavior="ignore")), | |
ds.JsonFileFormat(read_options=pa.json.ReadOptions( | |
use_threads=False, block_size=14)), | |
] | |
try: | |
formats.append(ds.OrcFileFormat()) | |
except ImportError: | |
pass | |
if pq is not None: | |
formats.extend([ | |
ds.ParquetFileFormat(), | |
ds.ParquetFileFormat(dictionary_columns={'a'}), | |
ds.ParquetFileFormat(use_buffered_stream=True), | |
ds.ParquetFileFormat( | |
use_buffered_stream=True, | |
buffer_size=4096, | |
thrift_string_size_limit=123, | |
thrift_container_size_limit=456, | |
), | |
]) | |
for file_format in formats: | |
assert pickle_module.loads(pickle_module.dumps(file_format)) == file_format | |
def test_fragment_scan_options_pickling(pickle_module): | |
options = [ | |
ds.CsvFragmentScanOptions(), | |
ds.CsvFragmentScanOptions( | |
convert_options=pa.csv.ConvertOptions(strings_can_be_null=True)), | |
ds.CsvFragmentScanOptions( | |
read_options=pa.csv.ReadOptions(block_size=2**16)), | |
ds.JsonFragmentScanOptions(), | |
ds.JsonFragmentScanOptions( | |
pa.json.ParseOptions(newlines_in_values=False, | |
unexpected_field_behavior="error")), | |
ds.JsonFragmentScanOptions( | |
read_options=pa.json.ReadOptions(use_threads=True, block_size=512)), | |
] | |
if pq is not None: | |
options.extend([ | |
ds.ParquetFragmentScanOptions(buffer_size=4096), | |
ds.ParquetFragmentScanOptions(pre_buffer=True), | |
]) | |
for option in options: | |
assert pickle_module.loads(pickle_module.dumps(option)) == option | |
def test_filesystem_factory(mockfs, paths_or_selector, pre_buffer): | |
format = ds.ParquetFileFormat( | |
read_options=ds.ParquetReadOptions(dictionary_columns={"str"}), | |
pre_buffer=pre_buffer | |
) | |
options = ds.FileSystemFactoryOptions('subdir') | |
options.partitioning = ds.DirectoryPartitioning( | |
pa.schema([ | |
pa.field('group', pa.int32()), | |
pa.field('key', pa.string()) | |
]) | |
) | |
assert options.partition_base_dir == 'subdir' | |
assert options.selector_ignore_prefixes == ['.', '_'] | |
assert options.exclude_invalid_files is False | |
factory = ds.FileSystemDatasetFactory( | |
mockfs, paths_or_selector, format, options | |
) | |
inspected_schema = factory.inspect() | |
assert factory.inspect().equals(pa.schema([ | |
pa.field('i64', pa.int64()), | |
pa.field('f64', pa.float64()), | |
pa.field('str', pa.dictionary(pa.int32(), pa.string())), | |
pa.field('const', pa.int64()), | |
pa.field('struct', pa.struct({'a': pa.int64(), | |
'b': pa.string()})), | |
pa.field('group', pa.int32()), | |
pa.field('key', pa.string()), | |
]), check_metadata=False) | |
assert isinstance(factory.inspect_schemas(), list) | |
assert isinstance(factory.finish(inspected_schema), | |
ds.FileSystemDataset) | |
assert factory.root_partition.equals(ds.scalar(True)) | |
dataset = factory.finish() | |
assert isinstance(dataset, ds.FileSystemDataset) | |
scanner = dataset.scanner() | |
expected_i64 = pa.array([0, 1, 2, 3, 4], type=pa.int64()) | |
expected_f64 = pa.array([0, 1, 2, 3, 4], type=pa.float64()) | |
expected_str = pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 2, 3, 4], type=pa.int32()), | |
pa.array("0 1 2 3 4".split(), type=pa.string()) | |
) | |
expected_struct = pa.array([{'a': i % 3, 'b': str(i % 3)} | |
for i in range(5)]) | |
iterator = scanner.scan_batches() | |
for (batch, fragment), group, key in zip(iterator, [1, 2], ['xxx', 'yyy']): | |
expected_group = pa.array([group] * 5, type=pa.int32()) | |
expected_key = pa.array([key] * 5, type=pa.string()) | |
expected_const = pa.array([group - 1] * 5, type=pa.int64()) | |
# Can't compare or really introspect expressions from Python | |
assert fragment.partition_expression is not None | |
assert batch.num_columns == 7 | |
assert batch[0].equals(expected_i64) | |
assert batch[1].equals(expected_f64) | |
assert batch[2].equals(expected_str) | |
assert batch[3].equals(expected_const) | |
assert batch[4].equals(expected_struct) | |
assert batch[5].equals(expected_group) | |
assert batch[6].equals(expected_key) | |
table = dataset.to_table() | |
assert isinstance(table, pa.Table) | |
assert len(table) == 10 | |
assert table.num_columns == 7 | |
def test_make_fragment(multisourcefs): | |
parquet_format = ds.ParquetFileFormat() | |
dataset = ds.dataset('/plain', filesystem=multisourcefs, | |
format=parquet_format) | |
for path in dataset.files: | |
fragment = parquet_format.make_fragment(path, multisourcefs) | |
assert fragment.row_groups == [0] | |
row_group_fragment = parquet_format.make_fragment(path, multisourcefs, | |
row_groups=[0]) | |
for f in [fragment, row_group_fragment]: | |
assert isinstance(f, ds.ParquetFileFragment) | |
assert f.path == path | |
assert isinstance(f.filesystem, type(multisourcefs)) | |
assert row_group_fragment.row_groups == [0] | |
def test_make_fragment_with_size(s3_example_simple): | |
""" | |
Test passing file_size to make_fragment. Not all FS implementations make use | |
of the file size (by implementing an OpenInputFile that takes a FileInfo), but | |
s3 does, which is why it's used here. | |
""" | |
table, path, fs, uri, host, port, access_key, secret_key = s3_example_simple | |
file_format = ds.ParquetFileFormat() | |
paths = [path] | |
fragments = [file_format.make_fragment(path, fs) | |
for path in paths] | |
dataset = ds.FileSystemDataset( | |
fragments, format=file_format, schema=table.schema, filesystem=fs | |
) | |
tbl = dataset.to_table() | |
assert tbl.equals(table) | |
# true sizes -> works | |
sizes_true = [dataset.filesystem.get_file_info(x).size for x in dataset.files] | |
fragments_with_size = [file_format.make_fragment(path, fs, file_size=size) | |
for path, size in zip(paths, sizes_true)] | |
dataset_with_size = ds.FileSystemDataset( | |
fragments_with_size, format=file_format, schema=table.schema, filesystem=fs | |
) | |
tbl = dataset.to_table() | |
assert tbl.equals(table) | |
# too small sizes -> error | |
sizes_toosmall = [1 for path in paths] | |
fragments_with_size = [file_format.make_fragment(path, fs, file_size=size) | |
for path, size in zip(paths, sizes_toosmall)] | |
dataset_with_size = ds.FileSystemDataset( | |
fragments_with_size, format=file_format, schema=table.schema, filesystem=fs | |
) | |
with pytest.raises(pyarrow.lib.ArrowInvalid, match='Parquet file size is 1 bytes'): | |
table = dataset_with_size.to_table() | |
# too large sizes -> error | |
sizes_toolarge = [1000000 for path in paths] | |
fragments_with_size = [file_format.make_fragment(path, fs, file_size=size) | |
for path, size in zip(paths, sizes_toolarge)] | |
dataset_with_size = ds.FileSystemDataset( | |
fragments_with_size, format=file_format, schema=table.schema, filesystem=fs | |
) | |
# invalid range | |
with pytest.raises(OSError, match='HTTP status 416'): | |
table = dataset_with_size.to_table() | |
def test_make_csv_fragment_from_buffer(dataset_reader, pickle_module): | |
content = textwrap.dedent(""" | |
alpha,num,animal | |
a,12,dog | |
b,11,cat | |
c,10,rabbit | |
""") | |
buffer = pa.py_buffer(content.encode('utf-8')) | |
csv_format = ds.CsvFileFormat() | |
fragment = csv_format.make_fragment(buffer) | |
# When buffer, fragment open returns a BufferReader, not NativeFile | |
assert isinstance(fragment.open(), pa.BufferReader) | |
expected = pa.table([['a', 'b', 'c'], | |
[12, 11, 10], | |
['dog', 'cat', 'rabbit']], | |
names=['alpha', 'num', 'animal']) | |
assert dataset_reader.to_table(fragment).equals(expected) | |
pickled = pickle_module.loads(pickle_module.dumps(fragment)) | |
assert dataset_reader.to_table(pickled).equals(fragment.to_table()) | |
def test_make_json_fragment_from_buffer(dataset_reader, pickle_module): | |
content = '{"alpha" : "a", "num": 12, "animal" : "dog"}\n' + \ | |
'{"alpha" : "b", "num": 11, "animal" : "cat"}\n' + \ | |
'{"alpha" : "c", "num": 10, "animal" : "rabbit"}\n' | |
buffer = pa.py_buffer(content.encode('utf-8')) | |
json_format = ds.JsonFileFormat() | |
fragment = json_format.make_fragment(buffer) | |
# When buffer, fragment open returns a BufferReader, not NativeFile | |
assert isinstance(fragment.open(), pa.BufferReader) | |
expected = pa.table([['a', 'b', 'c'], | |
[12, 11, 10], | |
['dog', 'cat', 'rabbit']], | |
names=['alpha', 'num', 'animal']) | |
assert dataset_reader.to_table(fragment).equals(expected) | |
pickled = pickle_module.loads(pickle_module.dumps(fragment)) | |
assert dataset_reader.to_table(pickled).equals(fragment.to_table()) | |
def test_make_parquet_fragment_from_buffer(dataset_reader, pickle_module): | |
arrays = [ | |
pa.array(['a', 'b', 'c']), | |
pa.array([12, 11, 10]), | |
pa.array(['dog', 'cat', 'rabbit']) | |
] | |
dictionary_arrays = [ | |
arrays[0].dictionary_encode(), | |
arrays[1], | |
arrays[2].dictionary_encode() | |
] | |
dictionary_format = ds.ParquetFileFormat( | |
read_options=ds.ParquetReadOptions( | |
dictionary_columns=['alpha', 'animal'] | |
), | |
use_buffered_stream=True, | |
buffer_size=4096, | |
) | |
cases = [ | |
(arrays, ds.ParquetFileFormat()), | |
(dictionary_arrays, dictionary_format) | |
] | |
for arrays, format_ in cases: | |
table = pa.table(arrays, names=['alpha', 'num', 'animal']) | |
out = pa.BufferOutputStream() | |
pq.write_table(table, out) | |
buffer = out.getvalue() | |
fragment = format_.make_fragment(buffer) | |
assert dataset_reader.to_table(fragment).equals(table) | |
pickled = pickle_module.loads(pickle_module.dumps(fragment)) | |
assert dataset_reader.to_table(pickled).equals(table) | |
def _create_dataset_for_fragments(tempdir, chunk_size=None, filesystem=None): | |
table = pa.table( | |
[range(8), [1] * 8, ['a'] * 4 + ['b'] * 4], | |
names=['f1', 'f2', 'part'] | |
) | |
path = str(tempdir / "test_parquet_dataset") | |
pq.write_to_dataset(table, path, | |
partition_cols=["part"], chunk_size=chunk_size) | |
dataset = ds.dataset( | |
path, format="parquet", partitioning="hive", filesystem=filesystem | |
) | |
return table, dataset | |
def test_fragments(tempdir, dataset_reader): | |
table, dataset = _create_dataset_for_fragments(tempdir) | |
# list fragments | |
fragments = list(dataset.get_fragments()) | |
assert len(fragments) == 2 | |
f = fragments[0] | |
physical_names = ['f1', 'f2'] | |
# file's schema does not include partition column | |
assert f.physical_schema.names == physical_names | |
assert f.format.inspect(f.path, f.filesystem) == f.physical_schema | |
assert f.partition_expression.equals(ds.field('part') == 'a') | |
# By default, the partition column is not part of the schema. | |
result = dataset_reader.to_table(f) | |
assert result.column_names == physical_names | |
assert result.equals(table.remove_column(2).slice(0, 4)) | |
# scanning fragment includes partition columns when given the proper | |
# schema. | |
result = dataset_reader.to_table(f, schema=dataset.schema) | |
assert result.column_names == ['f1', 'f2', 'part'] | |
assert result.equals(table.slice(0, 4)) | |
assert f.physical_schema == result.schema.remove(2) | |
# scanning fragments follow filter predicate | |
result = dataset_reader.to_table( | |
f, schema=dataset.schema, filter=ds.field('f1') < 2) | |
assert result.column_names == ['f1', 'f2', 'part'] | |
def test_fragments_implicit_cast(tempdir): | |
# ARROW-8693 | |
table = pa.table([range(8), [1] * 4 + [2] * 4], names=['col', 'part']) | |
path = str(tempdir / "test_parquet_dataset") | |
pq.write_to_dataset(table, path, partition_cols=["part"]) | |
part = ds.partitioning(pa.schema([('part', 'int8')]), flavor="hive") | |
dataset = ds.dataset(path, format="parquet", partitioning=part) | |
fragments = dataset.get_fragments(filter=ds.field("part") >= 2) | |
assert len(list(fragments)) == 1 | |
def test_fragments_reconstruct(tempdir, dataset_reader, pickle_module): | |
table, dataset = _create_dataset_for_fragments(tempdir) | |
def assert_yields_projected(fragment, row_slice, | |
columns=None, filter=None): | |
actual = fragment.to_table( | |
schema=table.schema, columns=columns, filter=filter) | |
column_names = columns if columns else table.column_names | |
assert actual.column_names == column_names | |
expected = table.slice(*row_slice).select(column_names) | |
assert actual.equals(expected) | |
fragment = list(dataset.get_fragments())[0] | |
parquet_format = fragment.format | |
# test pickle roundtrip | |
pickled_fragment = pickle_module.loads(pickle_module.dumps(fragment)) | |
assert dataset_reader.to_table( | |
pickled_fragment) == dataset_reader.to_table(fragment) | |
# manually re-construct a fragment, with explicit schema | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression) | |
assert dataset_reader.to_table(new_fragment).equals( | |
dataset_reader.to_table(fragment)) | |
assert_yields_projected(new_fragment, (0, 4)) | |
# filter / column projection, inspected schema | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression) | |
assert_yields_projected(new_fragment, (0, 2), filter=ds.field('f1') < 2) | |
# filter requiring cast / column projection, inspected schema | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression) | |
assert_yields_projected(new_fragment, (0, 2), | |
columns=['f1'], filter=ds.field('f1') < 2.0) | |
# filter on the partition column | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression) | |
assert_yields_projected(new_fragment, (0, 4), | |
filter=ds.field('part') == 'a') | |
# Fragments don't contain the partition's columns if not provided to the | |
# `to_table(schema=...)` method. | |
pattern = (r'No match for FieldRef.Name\(part\) in ' + | |
fragment.physical_schema.to_string(False, False, False)) | |
with pytest.raises(ValueError, match=pattern): | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression) | |
dataset_reader.to_table(new_fragment, filter=ds.field('part') == 'a') | |
def test_fragments_parquet_row_groups(tempdir, dataset_reader): | |
table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=2) | |
fragment = list(dataset.get_fragments())[0] | |
# list and scan row group fragments | |
row_group_fragments = list(fragment.split_by_row_group()) | |
assert len(row_group_fragments) == fragment.num_row_groups == 2 | |
result = dataset_reader.to_table( | |
row_group_fragments[0], schema=dataset.schema) | |
assert result.column_names == ['f1', 'f2', 'part'] | |
assert len(result) == 2 | |
assert result.equals(table.slice(0, 2)) | |
assert row_group_fragments[0].row_groups is not None | |
assert row_group_fragments[0].num_row_groups == 1 | |
assert row_group_fragments[0].row_groups[0].statistics == { | |
'f1': {'min': 0, 'max': 1}, | |
'f2': {'min': 1, 'max': 1}, | |
} | |
fragment = list(dataset.get_fragments(filter=ds.field('f1') < 1))[0] | |
row_group_fragments = list(fragment.split_by_row_group(ds.field('f1') < 1)) | |
assert len(row_group_fragments) == 1 | |
result = dataset_reader.to_table( | |
row_group_fragments[0], filter=ds.field('f1') < 1) | |
assert len(result) == 1 | |
def test_fragments_parquet_num_row_groups(tempdir): | |
table = pa.table({'a': range(8)}) | |
pq.write_table(table, tempdir / "test.parquet", row_group_size=2) | |
dataset = ds.dataset(tempdir / "test.parquet", format="parquet") | |
original_fragment = list(dataset.get_fragments())[0] | |
# create fragment with subset of row groups | |
fragment = original_fragment.format.make_fragment( | |
original_fragment.path, original_fragment.filesystem, | |
row_groups=[1, 3]) | |
assert fragment.num_row_groups == 2 | |
# ensure that parsing metadata preserves correct number of row groups | |
fragment.ensure_complete_metadata() | |
assert fragment.num_row_groups == 2 | |
assert len(fragment.row_groups) == 2 | |
def test_fragments_parquet_row_groups_dictionary(tempdir, dataset_reader): | |
df = pd.DataFrame(dict(col1=['a', 'b'], col2=[1, 2])) | |
df['col1'] = df['col1'].astype("category") | |
pq.write_table(pa.table(df), tempdir / "test_filter_dictionary.parquet") | |
import pyarrow.dataset as ds | |
dataset = ds.dataset(tempdir / 'test_filter_dictionary.parquet') | |
result = dataset_reader.to_table(dataset, filter=ds.field("col1") == "a") | |
assert (df.iloc[0] == result.to_pandas()).all().all() | |
def test_fragments_parquet_ensure_metadata(tempdir, open_logging_fs, pickle_module): | |
fs, assert_opens = open_logging_fs | |
_, dataset = _create_dataset_for_fragments( | |
tempdir, chunk_size=2, filesystem=fs | |
) | |
fragment = list(dataset.get_fragments())[0] | |
# with default discovery, no metadata loaded | |
with assert_opens([fragment.path]): | |
fragment.ensure_complete_metadata() | |
assert fragment.row_groups == [0, 1] | |
# second time -> use cached / no file IO | |
with assert_opens([]): | |
fragment.ensure_complete_metadata() | |
assert isinstance(fragment.metadata, pq.FileMetaData) | |
# recreate fragment with row group ids | |
new_fragment = fragment.format.make_fragment( | |
fragment.path, fragment.filesystem, row_groups=[0, 1] | |
) | |
assert new_fragment.row_groups == fragment.row_groups | |
# collect metadata | |
new_fragment.ensure_complete_metadata() | |
row_group = new_fragment.row_groups[0] | |
assert row_group.id == 0 | |
assert row_group.num_rows == 2 | |
assert row_group.statistics is not None | |
# pickling preserves row group ids | |
pickled_fragment = pickle_module.loads(pickle_module.dumps(new_fragment)) | |
with assert_opens([fragment.path]): | |
assert pickled_fragment.row_groups == [0, 1] | |
row_group = pickled_fragment.row_groups[0] | |
assert row_group.id == 0 | |
assert row_group.statistics is not None | |
def test_fragments_parquet_pickle_no_metadata(tempdir, open_logging_fs, pickle_module): | |
# https://issues.apache.org/jira/browse/ARROW-15796 | |
fs, assert_opens = open_logging_fs | |
_, dataset = _create_dataset_for_fragments(tempdir, filesystem=fs) | |
fragment = list(dataset.get_fragments())[1] | |
# second fragment hasn't yet loaded the metadata, | |
# and pickling it also should not read the metadata | |
with assert_opens([]): | |
pickled_fragment = pickle_module.loads(pickle_module.dumps(fragment)) | |
# then accessing the row group info reads the metadata | |
with assert_opens([pickled_fragment.path]): | |
row_groups = pickled_fragment.row_groups | |
assert row_groups == [0] | |
def _create_dataset_all_types(tempdir, chunk_size=None): | |
table = pa.table( | |
[ | |
pa.array([True, None, False], pa.bool_()), | |
pa.array([1, 10, 42], pa.int8()), | |
pa.array([1, 10, 42], pa.uint8()), | |
pa.array([1, 10, 42], pa.int16()), | |
pa.array([1, 10, 42], pa.uint16()), | |
pa.array([1, 10, 42], pa.int32()), | |
pa.array([1, 10, 42], pa.uint32()), | |
pa.array([1, 10, 42], pa.int64()), | |
pa.array([1, 10, 42], pa.uint64()), | |
pa.array([1.0, 10.0, 42.0], pa.float32()), | |
pa.array([1.0, 10.0, 42.0], pa.float64()), | |
pa.array(['a', None, 'z'], pa.utf8()), | |
pa.array(['a', None, 'z'], pa.binary()), | |
pa.array([1, 10, 42], pa.timestamp('s')), | |
pa.array([1, 10, 42], pa.timestamp('ms')), | |
pa.array([1, 10, 42], pa.timestamp('us')), | |
pa.array([1, 10, 42], pa.date32()), | |
pa.array([1, 10, 4200000000], pa.date64()), | |
pa.array([1, 10, 42], pa.time32('s')), | |
pa.array([1, 10, 42], pa.time64('us')), | |
], | |
names=[ | |
'boolean', | |
'int8', | |
'uint8', | |
'int16', | |
'uint16', | |
'int32', | |
'uint32', | |
'int64', | |
'uint64', | |
'float', | |
'double', | |
'utf8', | |
'binary', | |
'ts[s]', | |
'ts[ms]', | |
'ts[us]', | |
'date32', | |
'date64', | |
'time32', | |
'time64', | |
] | |
) | |
path = str(tempdir / "test_parquet_dataset_all_types") | |
# write_to_dataset currently requires pandas | |
pq.write_to_dataset(table, path, chunk_size=chunk_size) | |
return table, ds.dataset(path, format="parquet", partitioning="hive") | |
def test_parquet_fragment_statistics(tempdir): | |
table, dataset = _create_dataset_all_types(tempdir) | |
fragment = list(dataset.get_fragments())[0] | |
import datetime | |
def dt_s(x): return datetime.datetime(1970, 1, 1, 0, 0, x) | |
def dt_ms(x): return datetime.datetime(1970, 1, 1, 0, 0, 0, x*1000) | |
def dt_us(x): return datetime.datetime(1970, 1, 1, 0, 0, 0, x) | |
date = datetime.date | |
time = datetime.time | |
# list and scan row group fragments | |
row_group_fragments = list(fragment.split_by_row_group()) | |
assert row_group_fragments[0].row_groups is not None | |
row_group = row_group_fragments[0].row_groups[0] | |
assert row_group.num_rows == 3 | |
assert row_group.total_byte_size > 1000 | |
assert row_group.statistics == { | |
'boolean': {'min': False, 'max': True}, | |
'int8': {'min': 1, 'max': 42}, | |
'uint8': {'min': 1, 'max': 42}, | |
'int16': {'min': 1, 'max': 42}, | |
'uint16': {'min': 1, 'max': 42}, | |
'int32': {'min': 1, 'max': 42}, | |
'uint32': {'min': 1, 'max': 42}, | |
'int64': {'min': 1, 'max': 42}, | |
'uint64': {'min': 1, 'max': 42}, | |
'float': {'min': 1.0, 'max': 42.0}, | |
'double': {'min': 1.0, 'max': 42.0}, | |
'utf8': {'min': 'a', 'max': 'z'}, | |
'binary': {'min': b'a', 'max': b'z'}, | |
'ts[s]': {'min': dt_s(1), 'max': dt_s(42)}, | |
'ts[ms]': {'min': dt_ms(1), 'max': dt_ms(42)}, | |
'ts[us]': {'min': dt_us(1), 'max': dt_us(42)}, | |
'date32': {'min': date(1970, 1, 2), 'max': date(1970, 2, 12)}, | |
'date64': {'min': date(1970, 1, 1), 'max': date(1970, 2, 18)}, | |
'time32': {'min': time(0, 0, 1), 'max': time(0, 0, 42)}, | |
'time64': {'min': time(0, 0, 0, 1), 'max': time(0, 0, 0, 42)}, | |
} | |
def test_parquet_fragment_statistics_nulls(tempdir): | |
table = pa.table({'a': [0, 1, None, None], 'b': ['a', 'b', None, None]}) | |
pq.write_table(table, tempdir / "test.parquet", row_group_size=2) | |
dataset = ds.dataset(tempdir / "test.parquet", format="parquet") | |
fragments = list(dataset.get_fragments())[0].split_by_row_group() | |
# second row group has all nulls -> no statistics | |
assert fragments[1].row_groups[0].statistics == {} | |
def test_parquet_empty_row_group_statistics(tempdir): | |
df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]})[:0] | |
df.to_parquet(tempdir / "test.parquet", engine="pyarrow") | |
dataset = ds.dataset(tempdir / "test.parquet", format="parquet") | |
fragments = list(dataset.get_fragments())[0].split_by_row_group() | |
# Only row group is empty | |
assert fragments[0].row_groups[0].statistics == {} | |
def test_fragments_parquet_row_groups_predicate(tempdir): | |
table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=2) | |
fragment = list(dataset.get_fragments())[0] | |
assert fragment.partition_expression.equals(ds.field('part') == 'a') | |
# predicate may reference a partition field not present in the | |
# physical_schema if an explicit schema is provided to split_by_row_group | |
# filter matches partition_expression: all row groups | |
row_group_fragments = list( | |
fragment.split_by_row_group(filter=ds.field('part') == 'a', | |
schema=dataset.schema)) | |
assert len(row_group_fragments) == 2 | |
# filter contradicts partition_expression: no row groups | |
row_group_fragments = list( | |
fragment.split_by_row_group(filter=ds.field('part') == 'b', | |
schema=dataset.schema)) | |
assert len(row_group_fragments) == 0 | |
def test_fragments_parquet_row_groups_reconstruct(tempdir, dataset_reader, | |
pickle_module): | |
table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=2) | |
fragment = list(dataset.get_fragments())[0] | |
parquet_format = fragment.format | |
row_group_fragments = list(fragment.split_by_row_group()) | |
# test pickle roundtrip | |
pickled_fragment = pickle_module.loads(pickle_module.dumps(fragment)) | |
assert dataset_reader.to_table( | |
pickled_fragment) == dataset_reader.to_table(fragment) | |
# manually re-construct row group fragments | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression, | |
row_groups=[0]) | |
result = dataset_reader.to_table(new_fragment) | |
assert result.equals(dataset_reader.to_table(row_group_fragments[0])) | |
# manually re-construct a row group fragment with filter/column projection | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression, | |
row_groups={1}) | |
result = dataset_reader.to_table( | |
new_fragment, schema=table.schema, columns=['f1', 'part'], | |
filter=ds.field('f1') < 3, ) | |
assert result.column_names == ['f1', 'part'] | |
assert len(result) == 1 | |
# out of bounds row group index | |
new_fragment = parquet_format.make_fragment( | |
fragment.path, fragment.filesystem, | |
partition_expression=fragment.partition_expression, | |
row_groups={2}) | |
with pytest.raises(IndexError, match="references row group 2"): | |
dataset_reader.to_table(new_fragment) | |
def test_fragments_parquet_subset_ids(tempdir, open_logging_fs, | |
dataset_reader): | |
fs, assert_opens = open_logging_fs | |
table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=1, | |
filesystem=fs) | |
fragment = list(dataset.get_fragments())[0] | |
# select with row group ids | |
subfrag = fragment.subset(row_group_ids=[0, 3]) | |
with assert_opens([]): | |
assert subfrag.num_row_groups == 2 | |
assert subfrag.row_groups == [0, 3] | |
assert subfrag.row_groups[0].statistics is not None | |
# check correct scan result of subset | |
result = dataset_reader.to_table(subfrag) | |
assert result.to_pydict() == {"f1": [0, 3], "f2": [1, 1]} | |
# empty list of ids | |
subfrag = fragment.subset(row_group_ids=[]) | |
assert subfrag.num_row_groups == 0 | |
assert subfrag.row_groups == [] | |
result = dataset_reader.to_table(subfrag, schema=dataset.schema) | |
assert result.num_rows == 0 | |
assert result.equals(table[:0]) | |
def test_fragments_parquet_subset_filter(tempdir, open_logging_fs, | |
dataset_reader): | |
fs, assert_opens = open_logging_fs | |
table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=1, | |
filesystem=fs) | |
fragment = list(dataset.get_fragments())[0] | |
# select with filter | |
subfrag = fragment.subset(ds.field("f1") >= 1) | |
with assert_opens([]): | |
assert subfrag.num_row_groups == 3 | |
assert len(subfrag.row_groups) == 3 | |
assert subfrag.row_groups[0].statistics is not None | |
# check correct scan result of subset | |
result = dataset_reader.to_table(subfrag) | |
assert result.to_pydict() == {"f1": [1, 2, 3], "f2": [1, 1, 1]} | |
# filter that results in empty selection | |
subfrag = fragment.subset(ds.field("f1") > 5) | |
assert subfrag.num_row_groups == 0 | |
assert subfrag.row_groups == [] | |
result = dataset_reader.to_table(subfrag, schema=dataset.schema) | |
assert result.num_rows == 0 | |
assert result.equals(table[:0]) | |
# passing schema to ensure filter on partition expression works | |
subfrag = fragment.subset(ds.field("part") == "a", schema=dataset.schema) | |
assert subfrag.num_row_groups == 4 | |
def test_fragments_parquet_subset_invalid(tempdir): | |
_, dataset = _create_dataset_for_fragments(tempdir, chunk_size=1) | |
fragment = list(dataset.get_fragments())[0] | |
# passing none or both of filter / row_group_ids | |
with pytest.raises(ValueError): | |
fragment.subset(ds.field("f1") >= 1, row_group_ids=[1, 2]) | |
with pytest.raises(ValueError): | |
fragment.subset() | |
def test_fragments_parquet_subset_with_nested_fields(tempdir): | |
# ensure row group filtering with nested field works | |
f1 = pa.array([0, 1, 2, 3]) | |
f21 = pa.array([0.1, 0.2, 0.3, 0.4]) | |
f22 = pa.array([1, 2, 3, 4]) | |
f2 = pa.StructArray.from_arrays([f21, f22], names=["f21", "f22"]) | |
struct_col = pa.StructArray.from_arrays([f1, f2], names=["f1", "f2"]) | |
table = pa.table({"col": struct_col}) | |
pq.write_table(table, tempdir / "data_struct.parquet", row_group_size=2) | |
dataset = ds.dataset(tempdir / "data_struct.parquet", format="parquet") | |
fragment = list(dataset.get_fragments())[0] | |
assert fragment.num_row_groups == 2 | |
subfrag = fragment.subset(ds.field("col", "f1") > 2) | |
assert subfrag.num_row_groups == 1 | |
subfrag = fragment.subset(ds.field("col", "f1") > 5) | |
assert subfrag.num_row_groups == 0 | |
subfrag = fragment.subset(ds.field("col", "f2", "f21") > 0) | |
assert subfrag.num_row_groups == 2 | |
subfrag = fragment.subset(ds.field("col", "f2", "f22") <= 2) | |
assert subfrag.num_row_groups == 1 | |
# nonexisting field ref | |
with pytest.raises(pa.ArrowInvalid, match="No match for FieldRef.Nested"): | |
fragment.subset(ds.field("col", "f3") > 0) | |
# comparison with struct field is not implemented | |
with pytest.raises( | |
NotImplementedError, match="Function 'greater' has no kernel matching" | |
): | |
fragment.subset(ds.field("col", "f2") > 0) | |
def test_fragments_repr(tempdir, dataset): | |
# partitioned parquet dataset | |
fragment = list(dataset.get_fragments())[0] | |
assert ( | |
# Ordering of partition items is non-deterministic | |
repr(fragment) == | |
"<pyarrow.dataset.ParquetFileFragment path=subdir/1/xxx/file0.parquet " | |
"partition=[key=xxx, group=1]>" or | |
repr(fragment) == | |
"<pyarrow.dataset.ParquetFileFragment path=subdir/1/xxx/file0.parquet " | |
"partition=[group=1, key=xxx]>" | |
) | |
# single-file parquet dataset (no partition information in repr) | |
table, path = _create_single_file(tempdir) | |
dataset = ds.dataset(path, format="parquet") | |
fragment = list(dataset.get_fragments())[0] | |
assert ( | |
repr(fragment) == | |
"<pyarrow.dataset.ParquetFileFragment path={}>".format( | |
dataset.filesystem.normalize_path(str(path))) | |
) | |
# non-parquet format | |
path = tempdir / "data.feather" | |
pa.feather.write_feather(table, path) | |
dataset = ds.dataset(path, format="feather") | |
fragment = list(dataset.get_fragments())[0] | |
assert ( | |
repr(fragment) == | |
"<pyarrow.dataset.FileFragment type=ipc path={}>".format( | |
dataset.filesystem.normalize_path(str(path))) | |
) | |
def test_partitioning_factory(mockfs, pickled, pickle_module): | |
paths_or_selector = fs.FileSelector('subdir', recursive=True) | |
format = ds.ParquetFileFormat() | |
options = ds.FileSystemFactoryOptions('subdir') | |
partitioning_factory = ds.DirectoryPartitioning.discover(['group', 'key']) | |
partitioning_factory = pickled(partitioning_factory, pickle_module) | |
assert isinstance(partitioning_factory, ds.PartitioningFactory) | |
options.partitioning_factory = partitioning_factory | |
factory = ds.FileSystemDatasetFactory( | |
mockfs, paths_or_selector, format, options | |
) | |
inspected_schema = factory.inspect() | |
# i64/f64 from data, group/key from "/1/xxx" and "/2/yyy" paths | |
expected_schema = pa.schema([ | |
("i64", pa.int64()), | |
("f64", pa.float64()), | |
("str", pa.string()), | |
("const", pa.int64()), | |
("struct", pa.struct({'a': pa.int64(), 'b': pa.string()})), | |
("group", pa.int32()), | |
("key", pa.string()), | |
]) | |
assert inspected_schema.equals(expected_schema) | |
hive_partitioning_factory = ds.HivePartitioning.discover() | |
assert isinstance(hive_partitioning_factory, ds.PartitioningFactory) | |
def test_partitioning_factory_dictionary(mockfs, infer_dictionary, pickled, | |
pickle_module): | |
paths_or_selector = fs.FileSelector('subdir', recursive=True) | |
format = ds.ParquetFileFormat() | |
options = ds.FileSystemFactoryOptions('subdir') | |
partitioning_factory = ds.DirectoryPartitioning.discover( | |
['group', 'key'], infer_dictionary=infer_dictionary) | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory( | |
mockfs, paths_or_selector, format, options) | |
inferred_schema = factory.inspect() | |
if infer_dictionary: | |
expected_type = pa.dictionary(pa.int32(), pa.string()) | |
assert inferred_schema.field('key').type == expected_type | |
table = factory.finish().to_table().combine_chunks() | |
actual = table.column('key').chunk(0) | |
expected = pa.array(['xxx'] * 5 + ['yyy'] * 5).dictionary_encode() | |
assert actual.equals(expected) | |
# ARROW-9345 ensure filtering on the partition field works | |
table = factory.finish().to_table(filter=ds.field('key') == 'xxx') | |
actual = table.column('key').chunk(0) | |
expected = expected.slice(0, 5) | |
assert actual.equals(expected) | |
else: | |
assert inferred_schema.field('key').type == pa.string() | |
def test_partitioning_factory_segment_encoding(pickled, pickle_module): | |
mockfs = fs._MockFileSystem() | |
format = ds.IpcFileFormat() | |
schema = pa.schema([("i64", pa.int64())]) | |
table = pa.table([pa.array(range(10))], schema=schema) | |
partition_schema = pa.schema( | |
[("date", pa.timestamp("s")), ("string", pa.string())]) | |
string_partition_schema = pa.schema( | |
[("date", pa.string()), ("string", pa.string())]) | |
full_schema = pa.schema(list(schema) + list(partition_schema)) | |
for directory in [ | |
"directory/2021-05-04 00%3A00%3A00/%24", | |
"hive/date=2021-05-04 00%3A00%3A00/string=%24", | |
]: | |
mockfs.create_dir(directory) | |
with mockfs.open_output_stream(directory + "/0.feather") as sink: | |
with pa.ipc.new_file(sink, schema) as writer: | |
writer.write_table(table) | |
writer.close() | |
# Directory | |
selector = fs.FileSelector("directory", recursive=True) | |
options = ds.FileSystemFactoryOptions("directory") | |
partitioning_factory = ds.DirectoryPartitioning.discover( | |
schema=partition_schema) | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
inferred_schema = factory.inspect() | |
assert inferred_schema == full_schema | |
actual = factory.finish().to_table(columns={ | |
"date_int": ds.field("date").cast(pa.int64()), | |
}) | |
assert actual[0][0].as_py() == 1620086400 | |
partitioning_factory = ds.DirectoryPartitioning.discover( | |
["date", "string"], segment_encoding="none") | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("date") == "2021-05-04 00%3A00%3A00") & | |
(ds.field("string") == "%24")) | |
partitioning = ds.DirectoryPartitioning( | |
string_partition_schema, segment_encoding="none") | |
options.partitioning = pickled(partitioning, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("date") == "2021-05-04 00%3A00%3A00") & | |
(ds.field("string") == "%24")) | |
partitioning_factory = ds.DirectoryPartitioning.discover( | |
schema=partition_schema, segment_encoding="none") | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
with pytest.raises(pa.ArrowInvalid, | |
match="Could not cast segments for partition field"): | |
inferred_schema = factory.inspect() | |
# Hive | |
selector = fs.FileSelector("hive", recursive=True) | |
options = ds.FileSystemFactoryOptions("hive") | |
partitioning_factory = ds.HivePartitioning.discover( | |
schema=partition_schema) | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
inferred_schema = factory.inspect() | |
assert inferred_schema == full_schema | |
actual = factory.finish().to_table(columns={ | |
"date_int": ds.field("date").cast(pa.int64()), | |
}) | |
assert actual[0][0].as_py() == 1620086400 | |
partitioning_factory = ds.HivePartitioning.discover( | |
segment_encoding="none") | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("date") == "2021-05-04 00%3A00%3A00") & | |
(ds.field("string") == "%24")) | |
options.partitioning = ds.HivePartitioning( | |
string_partition_schema, segment_encoding="none") | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("date") == "2021-05-04 00%3A00%3A00") & | |
(ds.field("string") == "%24")) | |
partitioning_factory = ds.HivePartitioning.discover( | |
schema=partition_schema, segment_encoding="none") | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
with pytest.raises(pa.ArrowInvalid, | |
match="Could not cast segments for partition field"): | |
inferred_schema = factory.inspect() | |
def test_partitioning_factory_hive_segment_encoding_key_encoded(pickled, pickle_module): | |
mockfs = fs._MockFileSystem() | |
format = ds.IpcFileFormat() | |
schema = pa.schema([("i64", pa.int64())]) | |
table = pa.table([pa.array(range(10))], schema=schema) | |
partition_schema = pa.schema( | |
[("test'; date", pa.timestamp("s")), ("test';[ string'", pa.string())]) | |
string_partition_schema = pa.schema( | |
[("test'; date", pa.string()), ("test';[ string'", pa.string())]) | |
full_schema = pa.schema(list(schema) + list(partition_schema)) | |
partition_schema_en = pa.schema( | |
[("test%27%3B%20date", pa.timestamp("s")), | |
("test%27%3B%5B%20string%27", pa.string())]) | |
string_partition_schema_en = pa.schema( | |
[("test%27%3B%20date", pa.string()), | |
("test%27%3B%5B%20string%27", pa.string())]) | |
directory = ("hive/test%27%3B%20date=2021-05-04 00%3A00%3A00/" | |
"test%27%3B%5B%20string%27=%24") | |
mockfs.create_dir(directory) | |
with mockfs.open_output_stream(directory + "/0.feather") as sink: | |
with pa.ipc.new_file(sink, schema) as writer: | |
writer.write_table(table) | |
writer.close() | |
# Hive | |
selector = fs.FileSelector("hive", recursive=True) | |
options = ds.FileSystemFactoryOptions("hive") | |
partitioning_factory = ds.HivePartitioning.discover( | |
schema=partition_schema) | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
inferred_schema = factory.inspect() | |
assert inferred_schema == full_schema | |
actual = factory.finish().to_table(columns={ | |
"date_int": ds.field("test'; date").cast(pa.int64()), | |
}) | |
assert actual[0][0].as_py() == 1620086400 | |
partitioning_factory = ds.HivePartitioning.discover( | |
segment_encoding="uri") | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("test'; date") == "2021-05-04 00:00:00") & | |
(ds.field("test';[ string'") == "$")) | |
partitioning = ds.HivePartitioning( | |
string_partition_schema, segment_encoding="uri") | |
options.partitioning = pickled(partitioning, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("test'; date") == "2021-05-04 00:00:00") & | |
(ds.field("test';[ string'") == "$")) | |
partitioning_factory = ds.HivePartitioning.discover( | |
segment_encoding="none") | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("test%27%3B%20date") == "2021-05-04 00%3A00%3A00") & | |
(ds.field("test%27%3B%5B%20string%27") == "%24")) | |
partitioning = ds.HivePartitioning( | |
string_partition_schema_en, segment_encoding="none") | |
options.partitioning = pickled(partitioning, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
fragments = list(factory.finish().get_fragments()) | |
assert fragments[0].partition_expression.equals( | |
(ds.field("test%27%3B%20date") == "2021-05-04 00%3A00%3A00") & | |
(ds.field("test%27%3B%5B%20string%27") == "%24")) | |
partitioning_factory = ds.HivePartitioning.discover( | |
schema=partition_schema_en, segment_encoding="none") | |
options.partitioning_factory = pickled(partitioning_factory, pickle_module) | |
factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) | |
with pytest.raises(pa.ArrowInvalid, | |
match="Could not cast segments for partition field"): | |
inferred_schema = factory.inspect() | |
def test_dictionary_partitioning_outer_nulls_raises(tempdir): | |
table = pa.table({'a': ['x', 'y', None], 'b': ['x', 'y', 'z']}) | |
part = ds.partitioning( | |
pa.schema([pa.field('a', pa.string()), pa.field('b', pa.string())])) | |
with pytest.raises(pa.ArrowInvalid): | |
ds.write_dataset(table, tempdir, format='ipc', partitioning=part) | |
def test_positional_keywords_raises(tempdir): | |
table = pa.table({'a': ['x', 'y', None], 'b': ['x', 'y', 'z']}) | |
with pytest.raises(TypeError): | |
ds.write_dataset(table, tempdir, "basename-{i}.arrow") | |
def test_read_partition_keys_only(tempdir): | |
BATCH_SIZE = 2 ** 15 | |
# This is a regression test for ARROW-15318 which saw issues | |
# reading only the partition keys from files with batches larger | |
# than the default batch size (e.g. so we need to return two chunks) | |
table = pa.table({ | |
'key': pa.repeat(0, BATCH_SIZE + 1), | |
'value': np.arange(BATCH_SIZE + 1)}) | |
pq.write_to_dataset( | |
table[:BATCH_SIZE], | |
tempdir / 'one', partition_cols=['key']) | |
pq.write_to_dataset( | |
table[:BATCH_SIZE + 1], | |
tempdir / 'two', partition_cols=['key']) | |
table = pq.read_table(tempdir / 'one', columns=['key']) | |
assert table['key'].num_chunks == 1 | |
table = pq.read_table(tempdir / 'two', columns=['key', 'value']) | |
assert table['key'].num_chunks == 2 | |
table = pq.read_table(tempdir / 'two', columns=['key']) | |
assert table['key'].num_chunks == 2 | |
def _has_subdirs(basedir): | |
elements = os.listdir(basedir) | |
return any([os.path.isdir(os.path.join(basedir, el)) for el in elements]) | |
def _do_list_all_dirs(basedir, path_so_far, result): | |
for f in os.listdir(basedir): | |
true_nested = os.path.join(basedir, f) | |
if os.path.isdir(true_nested): | |
norm_nested = posixpath.join(path_so_far, f) | |
if _has_subdirs(true_nested): | |
_do_list_all_dirs(true_nested, norm_nested, result) | |
else: | |
result.append(norm_nested) | |
def _list_all_dirs(basedir): | |
result = [] | |
_do_list_all_dirs(basedir, '', result) | |
return result | |
def _check_dataset_directories(tempdir, expected_directories): | |
actual_directories = set(_list_all_dirs(tempdir)) | |
assert actual_directories == set(expected_directories) | |
def test_dictionary_partitioning_inner_nulls(tempdir): | |
table = pa.table({'a': ['x', 'y', 'z'], 'b': ['x', 'y', None]}) | |
part = ds.partitioning( | |
pa.schema([pa.field('a', pa.string()), pa.field('b', pa.string())])) | |
ds.write_dataset(table, tempdir, format='ipc', partitioning=part) | |
_check_dataset_directories(tempdir, ['x/x', 'y/y', 'z']) | |
def test_hive_partitioning_nulls(tempdir): | |
table = pa.table({'a': ['x', None, 'z'], 'b': ['x', 'y', None]}) | |
part = ds.HivePartitioning(pa.schema( | |
[pa.field('a', pa.string()), pa.field('b', pa.string())]), None, 'xyz') | |
ds.write_dataset(table, tempdir, format='ipc', partitioning=part) | |
_check_dataset_directories(tempdir, ['a=x/b=x', 'a=xyz/b=y', 'a=z/b=xyz']) | |
def test_partitioning_function(): | |
schema = pa.schema([("year", pa.int16()), ("month", pa.int8())]) | |
names = ["year", "month"] | |
# default DirectoryPartitioning | |
part = ds.partitioning(schema) | |
assert isinstance(part, ds.DirectoryPartitioning) | |
part = ds.partitioning(schema, dictionaries="infer") | |
assert isinstance(part, ds.PartitioningFactory) | |
part = ds.partitioning(field_names=names) | |
assert isinstance(part, ds.PartitioningFactory) | |
# needs schema or list of names | |
with pytest.raises(ValueError): | |
ds.partitioning() | |
with pytest.raises(ValueError, match="Expected list"): | |
ds.partitioning(field_names=schema) | |
with pytest.raises(ValueError, match="Cannot specify both"): | |
ds.partitioning(schema, field_names=schema) | |
# Hive partitioning | |
part = ds.partitioning(schema, flavor="hive") | |
assert isinstance(part, ds.HivePartitioning) | |
part = ds.partitioning(schema, dictionaries="infer", flavor="hive") | |
assert isinstance(part, ds.PartitioningFactory) | |
part = ds.partitioning(flavor="hive") | |
assert isinstance(part, ds.PartitioningFactory) | |
# cannot pass list of names | |
with pytest.raises(ValueError): | |
ds.partitioning(names, flavor="hive") | |
with pytest.raises(ValueError, match="Cannot specify 'field_names'"): | |
ds.partitioning(field_names=names, flavor="hive") | |
# unsupported flavor | |
with pytest.raises(ValueError): | |
ds.partitioning(schema, flavor="unsupported") | |
def test_directory_partitioning_dictionary_key(mockfs): | |
# ARROW-8088 specifying partition key as dictionary type | |
schema = pa.schema([ | |
pa.field('group', pa.dictionary(pa.int8(), pa.int32())), | |
pa.field('key', pa.dictionary(pa.int8(), pa.string())) | |
]) | |
part = ds.DirectoryPartitioning.discover(schema=schema) | |
dataset = ds.dataset( | |
"subdir", format="parquet", filesystem=mockfs, partitioning=part | |
) | |
assert dataset.partitioning.schema == schema | |
table = dataset.to_table() | |
assert table.column('group').type.equals(schema.types[0]) | |
assert table.column('group').to_pylist() == [1] * 5 + [2] * 5 | |
assert table.column('key').type.equals(schema.types[1]) | |
assert table.column('key').to_pylist() == ['xxx'] * 5 + ['yyy'] * 5 | |
def test_hive_partitioning_dictionary_key(multisourcefs): | |
# ARROW-8088 specifying partition key as dictionary type | |
schema = pa.schema([ | |
pa.field('year', pa.dictionary(pa.int8(), pa.int16())), | |
pa.field('month', pa.dictionary(pa.int8(), pa.int16())) | |
]) | |
part = ds.HivePartitioning.discover(schema=schema) | |
dataset = ds.dataset( | |
"hive", format="parquet", filesystem=multisourcefs, partitioning=part | |
) | |
assert dataset.partitioning.schema == schema | |
table = dataset.to_table() | |
year_dictionary = list(range(2006, 2011)) | |
month_dictionary = list(range(1, 13)) | |
assert table.column('year').type.equals(schema.types[0]) | |
for chunk in table.column('year').chunks: | |
actual = chunk.dictionary.to_pylist() | |
actual.sort() | |
assert actual == year_dictionary | |
assert table.column('month').type.equals(schema.types[1]) | |
for chunk in table.column('month').chunks: | |
actual = chunk.dictionary.to_pylist() | |
actual.sort() | |
assert actual == month_dictionary | |
def _create_single_file(base_dir, table=None, row_group_size=None): | |
if table is None: | |
table = pa.table({'a': range(9), 'b': [0.] * 4 + [1.] * 5}) | |
path = base_dir / "test.parquet" | |
pq.write_table(table, path, row_group_size=row_group_size) | |
return table, path | |
def _create_directory_of_files(base_dir): | |
table1 = pa.table({'a': range(9), 'b': [0.] * 4 + [1.] * 5}) | |
path1 = base_dir / "test1.parquet" | |
pq.write_table(table1, path1) | |
table2 = pa.table({'a': range(9, 18), 'b': [0.] * 4 + [1.] * 5}) | |
path2 = base_dir / "test2.parquet" | |
pq.write_table(table2, path2) | |
return (table1, table2), (path1, path2) | |
def _check_dataset(dataset, table, dataset_reader, pickler): | |
# also test that pickle roundtrip keeps the functionality | |
for d in [dataset, pickler.loads(pickler.dumps(dataset))]: | |
assert dataset.schema.equals(table.schema) | |
assert dataset_reader.to_table(dataset).equals(table) | |
def _check_dataset_from_path(path, table, dataset_reader, pickler, **kwargs): | |
# pathlib object | |
assert isinstance(path, pathlib.Path) | |
# accept Path, str, List[Path], List[str] | |
for p in [path, str(path), [path], [str(path)]]: | |
dataset = ds.dataset(path, **kwargs) | |
assert isinstance(dataset, ds.FileSystemDataset) | |
_check_dataset(dataset, table, dataset_reader, pickler) | |
# relative string path | |
with change_cwd(path.parent): | |
dataset = ds.dataset(path.name, **kwargs) | |
assert isinstance(dataset, ds.FileSystemDataset) | |
_check_dataset(dataset, table, dataset_reader, pickler) | |
def test_open_dataset_single_file(tempdir, dataset_reader, pickle_module): | |
table, path = _create_single_file(tempdir) | |
_check_dataset_from_path(path, table, dataset_reader, pickle_module) | |
def test_deterministic_row_order(tempdir, dataset_reader, pickle_module): | |
# ARROW-8447 Ensure that dataset.to_table (and Scanner::ToTable) returns a | |
# deterministic row ordering. This is achieved by constructing a single | |
# parquet file with one row per RowGroup. | |
table, path = _create_single_file(tempdir, row_group_size=1) | |
_check_dataset_from_path(path, table, dataset_reader, pickle_module) | |
def test_open_dataset_directory(tempdir, dataset_reader, pickle_module): | |
tables, _ = _create_directory_of_files(tempdir) | |
table = pa.concat_tables(tables) | |
_check_dataset_from_path(tempdir, table, dataset_reader, pickle_module) | |
def test_open_dataset_list_of_files(tempdir, dataset_reader, pickle_module): | |
tables, (path1, path2) = _create_directory_of_files(tempdir) | |
table = pa.concat_tables(tables) | |
datasets = [ | |
ds.dataset([path1, path2]), | |
ds.dataset([str(path1), str(path2)]) | |
] | |
datasets += [ | |
pickle_module.loads(pickle_module.dumps(d)) for d in datasets | |
] | |
for dataset in datasets: | |
assert dataset.schema.equals(table.schema) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
def test_open_dataset_filesystem_fspath(tempdir): | |
# single file | |
table, path = _create_single_file(tempdir) | |
fspath = FSProtocolClass(path) | |
# filesystem inferred from path | |
dataset1 = ds.dataset(fspath) | |
assert dataset1.schema.equals(table.schema) | |
# filesystem specified | |
dataset2 = ds.dataset(fspath, filesystem=fs.LocalFileSystem()) | |
assert dataset2.schema.equals(table.schema) | |
# passing different filesystem | |
with pytest.raises(TypeError): | |
ds.dataset(fspath, filesystem=fs._MockFileSystem()) | |
def test_construct_from_single_file(tempdir, dataset_reader, pickle_module): | |
directory = tempdir / 'single-file' | |
directory.mkdir() | |
table, path = _create_single_file(directory) | |
relative_path = path.relative_to(directory) | |
# instantiate from a single file | |
d1 = ds.dataset(path) | |
# instantiate from a single file with a filesystem object | |
d2 = ds.dataset(path, filesystem=fs.LocalFileSystem()) | |
# instantiate from a single file with prefixed filesystem URI | |
d3 = ds.dataset(str(relative_path), filesystem=_filesystem_uri(directory)) | |
# pickle roundtrip | |
d4 = pickle_module.loads(pickle_module.dumps(d1)) | |
assert dataset_reader.to_table(d1) == dataset_reader.to_table( | |
d2) == dataset_reader.to_table(d3) == dataset_reader.to_table(d4) | |
def test_construct_from_single_directory(tempdir, dataset_reader, pickle_module): | |
directory = tempdir / 'single-directory' | |
directory.mkdir() | |
tables, paths = _create_directory_of_files(directory) | |
d1 = ds.dataset(directory) | |
d2 = ds.dataset(directory, filesystem=fs.LocalFileSystem()) | |
d3 = ds.dataset(directory.name, filesystem=_filesystem_uri(tempdir)) | |
t1 = dataset_reader.to_table(d1) | |
t2 = dataset_reader.to_table(d2) | |
t3 = dataset_reader.to_table(d3) | |
assert t1 == t2 == t3 | |
# test pickle roundtrip | |
for d in [d1, d2, d3]: | |
restored = pickle_module.loads(pickle_module.dumps(d)) | |
assert dataset_reader.to_table(restored) == t1 | |
def test_construct_from_list_of_files(tempdir, dataset_reader): | |
# instantiate from a list of files | |
directory = tempdir / 'list-of-files' | |
directory.mkdir() | |
tables, paths = _create_directory_of_files(directory) | |
relative_paths = [p.relative_to(tempdir) for p in paths] | |
with change_cwd(tempdir): | |
d1 = ds.dataset(relative_paths) | |
t1 = dataset_reader.to_table(d1) | |
assert len(t1) == sum(map(len, tables)) | |
d2 = ds.dataset(relative_paths, filesystem=_filesystem_uri(tempdir)) | |
t2 = dataset_reader.to_table(d2) | |
d3 = ds.dataset(paths) | |
t3 = dataset_reader.to_table(d3) | |
d4 = ds.dataset(paths, filesystem=fs.LocalFileSystem()) | |
t4 = dataset_reader.to_table(d4) | |
assert t1 == t2 == t3 == t4 | |
def test_construct_from_list_of_mixed_paths_fails(mockfs): | |
# instantiate from a list of mixed paths | |
files = [ | |
'subdir/1/xxx/file0.parquet', | |
'subdir/1/xxx/doesnt-exist.parquet', | |
] | |
with pytest.raises(FileNotFoundError, match='doesnt-exist'): | |
ds.dataset(files, filesystem=mockfs) | |
def test_construct_from_mixed_child_datasets(mockfs): | |
# instantiate from a list of mixed paths | |
a = ds.dataset(['subdir/1/xxx/file0.parquet', | |
'subdir/2/yyy/file1.parquet'], filesystem=mockfs) | |
b = ds.dataset('subdir', filesystem=mockfs) | |
dataset = ds.dataset([a, b]) | |
assert isinstance(dataset, ds.UnionDataset) | |
assert len(list(dataset.get_fragments())) == 4 | |
table = dataset.to_table() | |
assert len(table) == 20 | |
assert table.num_columns == 5 | |
assert len(dataset.children) == 2 | |
for child in dataset.children: | |
assert child.files == ['subdir/1/xxx/file0.parquet', | |
'subdir/2/yyy/file1.parquet'] | |
def test_construct_empty_dataset(): | |
empty = ds.dataset([], format='ipc') | |
table = empty.to_table() | |
assert table.num_rows == 0 | |
assert table.num_columns == 0 | |
def test_construct_dataset_with_invalid_schema(): | |
empty = ds.dataset([], format='ipc', schema=pa.schema([ | |
('a', pa.int64()), | |
('a', pa.string()) | |
])) | |
with pytest.raises(ValueError, match='Multiple matches for .*a.* in '): | |
empty.to_table() | |
def test_construct_from_invalid_sources_raise(multisourcefs): | |
child1 = ds.FileSystemDatasetFactory( | |
multisourcefs, | |
fs.FileSelector('/plain'), | |
format=ds.ParquetFileFormat() | |
) | |
child2 = ds.FileSystemDatasetFactory( | |
multisourcefs, | |
fs.FileSelector('/schema'), | |
format=ds.ParquetFileFormat() | |
) | |
batch1 = pa.RecordBatch.from_arrays([pa.array(range(10))], names=["a"]) | |
batch2 = pa.RecordBatch.from_arrays([pa.array(range(10))], names=["b"]) | |
with pytest.raises(TypeError, match='Expected.*FileSystemDatasetFactory'): | |
ds.dataset([child1, child2]) | |
expected = ( | |
"Expected a list of path-like or dataset objects, or a list " | |
"of batches or tables. The given list contains the following " | |
"types: int" | |
) | |
with pytest.raises(TypeError, match=expected): | |
ds.dataset([1, 2, 3]) | |
expected = ( | |
"Expected a path-like, list of path-likes or a list of Datasets " | |
"instead of the given type: NoneType" | |
) | |
with pytest.raises(TypeError, match=expected): | |
ds.dataset(None) | |
expected = ( | |
"Expected a path-like, list of path-likes or a list of Datasets " | |
"instead of the given type: generator" | |
) | |
with pytest.raises(TypeError, match=expected): | |
ds.dataset((batch1 for _ in range(3))) | |
expected = ( | |
"Must provide schema to construct in-memory dataset from an empty list" | |
) | |
with pytest.raises(ValueError, match=expected): | |
ds.InMemoryDataset([]) | |
expected = ( | |
"Item has schema\nb: int64\nwhich does not match expected schema\n" | |
"a: int64" | |
) | |
with pytest.raises(TypeError, match=expected): | |
ds.dataset([batch1, batch2]) | |
expected = ( | |
"Expected a list of path-like or dataset objects, or a list of " | |
"batches or tables. The given list contains the following types:" | |
) | |
with pytest.raises(TypeError, match=expected): | |
ds.dataset([batch1, 0]) | |
expected = ( | |
"Expected a list of tables or batches. The given list contains a int" | |
) | |
with pytest.raises(TypeError, match=expected): | |
ds.InMemoryDataset([batch1, 0]) | |
def test_construct_in_memory(dataset_reader): | |
batch = pa.RecordBatch.from_arrays([pa.array(range(10))], names=["a"]) | |
table = pa.Table.from_batches([batch]) | |
dataset_table = ds.dataset([], format='ipc', schema=pa.schema([]) | |
).to_table() | |
assert dataset_table == pa.table([]) | |
for source in (batch, table, [batch], [table]): | |
dataset = ds.dataset(source) | |
assert dataset_reader.to_table(dataset) == table | |
assert len(list(dataset.get_fragments())) == 1 | |
assert next(dataset.get_fragments()).to_table() == table | |
assert pa.Table.from_batches(list(dataset.to_batches())) == table | |
def test_scan_iterator(use_threads): | |
batch = pa.RecordBatch.from_arrays([pa.array(range(10))], names=["a"]) | |
table = pa.Table.from_batches([batch]) | |
# When constructed from readers/iterators, should be one-shot | |
match = "OneShotFragment was already scanned" | |
for factory, schema in ( | |
(lambda: pa.RecordBatchReader.from_batches( | |
batch.schema, [batch]), None), | |
(lambda: (batch for _ in range(1)), batch.schema), | |
): | |
# Scanning the fragment consumes the underlying iterator | |
scanner = ds.Scanner.from_batches( | |
factory(), schema=schema, use_threads=use_threads) | |
assert scanner.to_table() == table | |
with pytest.raises(pa.ArrowInvalid, match=match): | |
scanner.to_table() | |
def _create_partitioned_dataset(basedir): | |
table = pa.table({'a': range(9), 'b': [0.] * 4 + [1.] * 5}) | |
path = basedir / "dataset-partitioned" | |
path.mkdir() | |
for i in range(3): | |
part = path / "part={}".format(i) | |
part.mkdir() | |
pq.write_table(table.slice(3*i, 3), part / "test.parquet") | |
full_table = table.append_column( | |
"part", pa.array(np.repeat([0, 1, 2], 3), type=pa.int32())) | |
return full_table, path | |
def test_open_dataset_partitioned_directory(tempdir, dataset_reader, pickle_module): | |
full_table, path = _create_partitioned_dataset(tempdir) | |
# no partitioning specified, just read all individual files | |
table = full_table.select(['a', 'b']) | |
_check_dataset_from_path(path, table, dataset_reader, pickle_module) | |
# specify partition scheme with discovery | |
dataset = ds.dataset( | |
str(path), partitioning=ds.partitioning(flavor="hive")) | |
assert dataset.schema.equals(full_table.schema) | |
# specify partition scheme with discovery and relative path | |
with change_cwd(tempdir): | |
dataset = ds.dataset("dataset-partitioned/", | |
partitioning=ds.partitioning(flavor="hive")) | |
assert dataset.schema.equals(full_table.schema) | |
# specify partition scheme with string short-cut | |
dataset = ds.dataset(str(path), partitioning="hive") | |
assert dataset.schema.equals(full_table.schema) | |
# specify partition scheme with explicit scheme | |
dataset = ds.dataset( | |
str(path), | |
partitioning=ds.partitioning( | |
pa.schema([("part", pa.int8())]), flavor="hive")) | |
expected_schema = table.schema.append(pa.field("part", pa.int8())) | |
assert dataset.schema.equals(expected_schema) | |
result = dataset.to_table() | |
expected = table.append_column( | |
"part", pa.array(np.repeat([0, 1, 2], 3), type=pa.int8())) | |
assert result.equals(expected) | |
def test_open_dataset_filesystem(tempdir): | |
# single file | |
table, path = _create_single_file(tempdir) | |
# filesystem inferred from path | |
dataset1 = ds.dataset(str(path)) | |
assert dataset1.schema.equals(table.schema) | |
# filesystem specified | |
dataset2 = ds.dataset(str(path), filesystem=fs.LocalFileSystem()) | |
assert dataset2.schema.equals(table.schema) | |
# local filesystem specified with relative path | |
with change_cwd(tempdir): | |
dataset3 = ds.dataset("test.parquet", filesystem=fs.LocalFileSystem()) | |
assert dataset3.schema.equals(table.schema) | |
# passing different filesystem | |
with pytest.raises(FileNotFoundError): | |
ds.dataset(str(path), filesystem=fs._MockFileSystem()) | |
def test_open_dataset_unsupported_format(tempdir): | |
_, path = _create_single_file(tempdir) | |
with pytest.raises(ValueError, match="format 'blabla' is not supported"): | |
ds.dataset([path], format="blabla") | |
def test_open_union_dataset(tempdir, dataset_reader, pickle_module): | |
_, path = _create_single_file(tempdir) | |
dataset = ds.dataset(path) | |
union = ds.dataset([dataset, dataset]) | |
assert isinstance(union, ds.UnionDataset) | |
pickled = pickle_module.loads(pickle_module.dumps(union)) | |
assert dataset_reader.to_table(pickled) == dataset_reader.to_table(union) | |
def test_open_union_dataset_with_additional_kwargs(multisourcefs): | |
child = ds.dataset('/plain', filesystem=multisourcefs, format='parquet') | |
with pytest.raises(ValueError, match="cannot pass any additional"): | |
ds.dataset([child], format="parquet") | |
def test_open_dataset_non_existing_file(): | |
# ARROW-8213: Opening a dataset with a local incorrect path gives confusing | |
# error message | |
with pytest.raises(FileNotFoundError): | |
ds.dataset('i-am-not-existing.arrow', format='ipc') | |
with pytest.raises(pa.ArrowInvalid, match='cannot be relative'): | |
ds.dataset('file:i-am-not-existing.arrow', format='ipc') | |
def test_partition_discovery( | |
tempdir, partitioning, null_fallback, infer_dictionary, partition_keys | |
): | |
# ARROW-9288 / ARROW-9476 | |
table = pa.table({'a': range(9), 'b': [0.0] * 4 + [1.0] * 5}) | |
has_null = None in partition_keys[0] or None in partition_keys[1] | |
if partitioning == "directory" and has_null: | |
# Directory partitioning can't handle the first part being null | |
return | |
if partitioning == "directory": | |
partitioning = ds.DirectoryPartitioning.discover( | |
["part1", "part2"], infer_dictionary=infer_dictionary) | |
fmt = "{0}/{1}" | |
null_value = None | |
else: | |
if null_fallback: | |
partitioning = ds.HivePartitioning.discover( | |
infer_dictionary=infer_dictionary, null_fallback=null_fallback | |
) | |
else: | |
partitioning = ds.HivePartitioning.discover( | |
infer_dictionary=infer_dictionary) | |
fmt = "part1={0}/part2={1}" | |
if null_fallback: | |
null_value = null_fallback | |
else: | |
null_value = "__HIVE_DEFAULT_PARTITION__" | |
basepath = tempdir / "dataset" | |
basepath.mkdir() | |
part_keys1, part_keys2 = partition_keys | |
for part1 in part_keys1: | |
for part2 in part_keys2: | |
path = basepath / \ | |
fmt.format(part1 or null_value, part2 or null_value) | |
path.mkdir(parents=True) | |
pq.write_table(table, path / "test.parquet") | |
dataset = ds.dataset(str(basepath), partitioning=partitioning) | |
def expected_type(key): | |
if infer_dictionary: | |
value_type = pa.string() if isinstance(key, str) else pa.int32() | |
return pa.dictionary(pa.int32(), value_type) | |
else: | |
return pa.string() if isinstance(key, str) else pa.int32() | |
expected_schema = table.schema.append( | |
pa.field("part1", expected_type(part_keys1[0])) | |
).append( | |
pa.field("part2", expected_type(part_keys2[0])) | |
) | |
assert dataset.schema.equals(expected_schema) | |
def test_dataset_partitioned_dictionary_type_reconstruct(tempdir, pickle_module): | |
# https://issues.apache.org/jira/browse/ARROW-11400 | |
table = pa.table({'part': np.repeat(['A', 'B'], 5), 'col': range(10)}) | |
part = ds.partitioning(table.select(['part']).schema, flavor="hive") | |
ds.write_dataset(table, tempdir, partitioning=part, format="feather") | |
dataset = ds.dataset( | |
tempdir, format="feather", | |
partitioning=ds.HivePartitioning.discover(infer_dictionary=True) | |
) | |
expected = pa.table( | |
{'col': table['col'], 'part': table['part'].dictionary_encode()} | |
) | |
assert dataset.to_table().equals(expected) | |
fragment = list(dataset.get_fragments())[0] | |
assert fragment.to_table(schema=dataset.schema).equals(expected[:5]) | |
part_expr = fragment.partition_expression | |
restored = pickle_module.loads(pickle_module.dumps(dataset)) | |
assert restored.to_table().equals(expected) | |
restored = pickle_module.loads(pickle_module.dumps(fragment)) | |
assert restored.to_table(schema=dataset.schema).equals(expected[:5]) | |
# to_pandas call triggers computation of the actual dictionary values | |
assert restored.to_table(schema=dataset.schema).to_pandas().equals( | |
expected[:5].to_pandas() | |
) | |
assert restored.partition_expression.equals(part_expr) | |
def s3_example_simple(s3_server): | |
from pyarrow.fs import FileSystem | |
host, port, access_key, secret_key = s3_server['connection'] | |
uri = ( | |
"s3://{}:{}@mybucket/data.parquet?scheme=http&endpoint_override={}:{}" | |
"&allow_bucket_creation=True" | |
.format(access_key, secret_key, host, port) | |
) | |
fs, path = FileSystem.from_uri(uri) | |
fs.create_dir("mybucket") | |
table = pa.table({'a': [1, 2, 3]}) | |
with fs.open_output_stream("mybucket/data.parquet") as out: | |
pq.write_table(table, out) | |
return table, path, fs, uri, host, port, access_key, secret_key | |
def test_open_dataset_from_uri_s3(s3_example_simple, dataset_reader): | |
# open dataset from non-localfs string path | |
table, path, fs, uri, _, _, _, _ = s3_example_simple | |
# full string URI | |
dataset = ds.dataset(uri, format="parquet") | |
assert dataset_reader.to_table(dataset).equals(table) | |
# passing filesystem object | |
dataset = ds.dataset(path, format="parquet", filesystem=fs) | |
assert dataset_reader.to_table(dataset).equals(table) | |
def test_open_dataset_from_fileinfos(s3_example_simple, dataset_reader): | |
table, path, filesystem, uri, _, _, _, _ = s3_example_simple | |
selector = fs.FileSelector("mybucket") | |
finfos = filesystem.get_file_info(selector) | |
dataset = ds.dataset(finfos, format="parquet", filesystem=filesystem) | |
assert dataset_reader.to_table(dataset).equals(table) | |
# still needed to create the data | |
def test_open_dataset_from_uri_s3_fsspec(s3_example_simple): | |
table, path, _, _, host, port, access_key, secret_key = s3_example_simple | |
s3fs = pytest.importorskip("s3fs") | |
from pyarrow.fs import FSSpecHandler, PyFileSystem | |
fs = s3fs.S3FileSystem( | |
key=access_key, | |
secret=secret_key, | |
client_kwargs={ | |
'endpoint_url': 'http://{}:{}'.format(host, port) | |
} | |
) | |
# passing as fsspec filesystem | |
dataset = ds.dataset(path, format="parquet", filesystem=fs) | |
assert dataset.to_table().equals(table) | |
# directly passing the fsspec-handler | |
fs = PyFileSystem(FSSpecHandler(fs)) | |
dataset = ds.dataset(path, format="parquet", filesystem=fs) | |
assert dataset.to_table().equals(table) | |
def test_open_dataset_from_s3_with_filesystem_uri(s3_server): | |
from pyarrow.fs import FileSystem | |
host, port, access_key, secret_key = s3_server['connection'] | |
bucket = 'theirbucket' | |
path = 'nested/folder/data.parquet' | |
uri = "s3://{}:{}@{}/{}?scheme=http&endpoint_override={}:{}"\ | |
"&allow_bucket_creation=true".format( | |
access_key, secret_key, bucket, path, host, port | |
) | |
fs, path = FileSystem.from_uri(uri) | |
assert path == 'theirbucket/nested/folder/data.parquet' | |
fs.create_dir(bucket) | |
table = pa.table({'a': [1, 2, 3]}) | |
with fs.open_output_stream(path) as out: | |
pq.write_table(table, out) | |
# full string URI | |
dataset = ds.dataset(uri, format="parquet") | |
assert dataset.to_table().equals(table) | |
# passing filesystem as an uri | |
template = ( | |
"s3://{}:{}@{{}}?scheme=http&endpoint_override={}:{}".format( | |
access_key, secret_key, host, port | |
) | |
) | |
cases = [ | |
('theirbucket/nested/folder/', '/data.parquet'), | |
('theirbucket/nested/folder', 'data.parquet'), | |
('theirbucket/nested/', 'folder/data.parquet'), | |
('theirbucket/nested', 'folder/data.parquet'), | |
('theirbucket', '/nested/folder/data.parquet'), | |
('theirbucket', 'nested/folder/data.parquet'), | |
] | |
for prefix, path in cases: | |
uri = template.format(prefix) | |
dataset = ds.dataset(path, filesystem=uri, format="parquet") | |
assert dataset.to_table().equals(table) | |
with pytest.raises(pa.ArrowInvalid, match='Missing bucket name'): | |
uri = template.format('/') | |
ds.dataset('/theirbucket/nested/folder/data.parquet', filesystem=uri) | |
error = ( | |
"The path component of the filesystem URI must point to a directory " | |
"but it has a type: `{}`. The path component is `{}` and the given " | |
"filesystem URI is `{}`" | |
) | |
path = 'theirbucket/doesnt/exist' | |
uri = template.format(path) | |
with pytest.raises(ValueError) as exc: | |
ds.dataset('data.parquet', filesystem=uri) | |
assert str(exc.value) == error.format('NotFound', path, uri) | |
path = 'theirbucket/nested/folder/data.parquet' | |
uri = template.format(path) | |
with pytest.raises(ValueError) as exc: | |
ds.dataset('data.parquet', filesystem=uri) | |
assert str(exc.value) == error.format('File', path, uri) | |
def test_open_dataset_from_fsspec(tempdir): | |
table, path = _create_single_file(tempdir) | |
fsspec = pytest.importorskip("fsspec") | |
localfs = fsspec.filesystem("file") | |
dataset = ds.dataset(path, filesystem=localfs) | |
assert dataset.schema.equals(table.schema) | |
def test_file_format_inspect_fsspec(tempdir): | |
# https://issues.apache.org/jira/browse/ARROW-16413 | |
fsspec = pytest.importorskip("fsspec") | |
# create bucket + file with pyarrow | |
table = pa.table({'a': [1, 2, 3]}) | |
path = tempdir / "data.parquet" | |
pq.write_table(table, path) | |
# read using fsspec filesystem | |
fsspec_fs = fsspec.filesystem("file") | |
assert fsspec_fs.ls(tempdir)[0].endswith("data.parquet") | |
# inspect using dataset file format | |
format = ds.ParquetFileFormat() | |
# manually creating a PyFileSystem instead of using fs._ensure_filesystem | |
# which would convert an fsspec local filesystem to a native one | |
filesystem = fs.PyFileSystem(fs.FSSpecHandler(fsspec_fs)) | |
schema = format.inspect(path, filesystem) | |
assert schema.equals(table.schema) | |
fragment = format.make_fragment(path, filesystem) | |
assert fragment.physical_schema.equals(table.schema) | |
def test_filter_timestamp(tempdir, dataset_reader): | |
# ARROW-11379 | |
path = tempdir / "test_partition_timestamps" | |
table = pa.table({ | |
"dates": ['2012-01-01', '2012-01-02'] * 5, | |
"id": range(10)}) | |
# write dataset partitioned on dates (as strings) | |
part = ds.partitioning(table.select(['dates']).schema, flavor="hive") | |
ds.write_dataset(table, path, partitioning=part, format="feather") | |
# read dataset partitioned on dates (as timestamps) | |
part = ds.partitioning(pa.schema([("dates", pa.timestamp("s"))]), | |
flavor="hive") | |
dataset = ds.dataset(path, format="feather", partitioning=part) | |
condition = ds.field("dates") > pd.Timestamp("2012-01-01") | |
table = dataset_reader.to_table(dataset, filter=condition) | |
assert table.column('id').to_pylist() == [1, 3, 5, 7, 9] | |
import datetime | |
condition = ds.field("dates") > datetime.datetime(2012, 1, 1) | |
table = dataset_reader.to_table(dataset, filter=condition) | |
assert table.column('id').to_pylist() == [1, 3, 5, 7, 9] | |
def test_filter_implicit_cast(tempdir, dataset_reader): | |
# ARROW-7652 | |
table = pa.table({'a': pa.array([0, 1, 2, 3, 4, 5], type=pa.int8())}) | |
_, path = _create_single_file(tempdir, table) | |
dataset = ds.dataset(str(path)) | |
filter_ = ds.field('a') > 2 | |
assert len(dataset_reader.to_table(dataset, filter=filter_)) == 3 | |
def test_filter_equal_null(tempdir, dataset_reader): | |
# ARROW-12066 equality with null, although not useful, should not crash | |
table = pa.table({"A": ["a", "b", None]}) | |
_, path = _create_single_file(tempdir, table) | |
dataset = ds.dataset(str(path)) | |
table = dataset_reader.to_table( | |
dataset, filter=ds.field("A") == ds.scalar(None) | |
) | |
assert table.num_rows == 0 | |
def test_filter_compute_expression(tempdir, dataset_reader): | |
table = pa.table({ | |
"A": ["a", "b", None, "a", "c"], | |
"B": [datetime.datetime(2022, 1, 1, i) for i in range(5)], | |
"C": [datetime.datetime(2022, 1, i) for i in range(1, 6)], | |
}) | |
_, path = _create_single_file(tempdir, table) | |
dataset = ds.dataset(str(path)) | |
filter_ = pc.is_in(ds.field('A'), pa.array(["a", "b"])) | |
assert dataset_reader.to_table(dataset, filter=filter_).num_rows == 3 | |
filter_ = pc.hour(ds.field('B')) >= 3 | |
assert dataset_reader.to_table(dataset, filter=filter_).num_rows == 2 | |
days = pc.days_between(ds.field('B'), ds.field("C")) | |
result = dataset_reader.to_table(dataset, columns={"days": days}) | |
assert result["days"].to_pylist() == [0, 1, 2, 3, 4] | |
def test_dataset_union(multisourcefs): | |
child = ds.FileSystemDatasetFactory( | |
multisourcefs, fs.FileSelector('/plain'), | |
format=ds.ParquetFileFormat() | |
) | |
factory = ds.UnionDatasetFactory([child]) | |
# TODO(bkietz) reintroduce factory.children property | |
assert len(factory.inspect_schemas()) == 1 | |
assert all(isinstance(s, pa.Schema) for s in factory.inspect_schemas()) | |
assert factory.inspect_schemas()[0].equals(child.inspect()) | |
assert factory.inspect().equals(child.inspect()) | |
assert isinstance(factory.finish(), ds.Dataset) | |
def test_union_dataset_from_other_datasets(tempdir, multisourcefs): | |
child1 = ds.dataset('/plain', filesystem=multisourcefs, format='parquet') | |
child2 = ds.dataset('/schema', filesystem=multisourcefs, format='parquet', | |
partitioning=['week', 'color']) | |
child3 = ds.dataset('/hive', filesystem=multisourcefs, format='parquet', | |
partitioning='hive') | |
assert child1.schema != child2.schema != child3.schema | |
assembled = ds.dataset([child1, child2, child3]) | |
assert isinstance(assembled, ds.UnionDataset) | |
msg = 'cannot pass any additional arguments' | |
with pytest.raises(ValueError, match=msg): | |
ds.dataset([child1, child2], filesystem=multisourcefs) | |
expected_schema = pa.schema([ | |
('date', pa.date32()), | |
('index', pa.int64()), | |
('value', pa.float64()), | |
('color', pa.string()), | |
('week', pa.int32()), | |
('year', pa.int32()), | |
('month', pa.int32()), | |
]) | |
assert assembled.schema.equals(expected_schema) | |
assert assembled.to_table().schema.equals(expected_schema) | |
assembled = ds.dataset([child1, child3]) | |
expected_schema = pa.schema([ | |
('date', pa.date32()), | |
('index', pa.int64()), | |
('value', pa.float64()), | |
('color', pa.string()), | |
('year', pa.int32()), | |
('month', pa.int32()), | |
]) | |
assert assembled.schema.equals(expected_schema) | |
assert assembled.to_table().schema.equals(expected_schema) | |
expected_schema = pa.schema([ | |
('month', pa.int32()), | |
('color', pa.string()), | |
('date', pa.date32()), | |
]) | |
assembled = ds.dataset([child1, child3], schema=expected_schema) | |
assert assembled.to_table().schema.equals(expected_schema) | |
expected_schema = pa.schema([ | |
('month', pa.int32()), | |
('color', pa.string()), | |
('unknown', pa.string()) # fill with nulls | |
]) | |
assembled = ds.dataset([child1, child3], schema=expected_schema) | |
assert assembled.to_table().schema.equals(expected_schema) | |
# incompatible schemas, date and index columns have conflicting types | |
table = pa.table([range(9), [0.] * 4 + [1.] * 5, 'abcdefghj'], | |
names=['date', 'value', 'index']) | |
_, path = _create_single_file(tempdir, table=table) | |
child4 = ds.dataset(path) | |
with pytest.raises(pa.ArrowTypeError, match='Unable to merge'): | |
ds.dataset([child1, child4]) | |
def test_dataset_from_a_list_of_local_directories_raises(multisourcefs): | |
msg = 'points to a directory, but only file paths are supported' | |
with pytest.raises(IsADirectoryError, match=msg): | |
ds.dataset(['/plain', '/schema', '/hive'], filesystem=multisourcefs) | |
def test_union_dataset_filesystem_datasets(multisourcefs): | |
# without partitioning | |
dataset = ds.dataset([ | |
ds.dataset('/plain', filesystem=multisourcefs), | |
ds.dataset('/schema', filesystem=multisourcefs), | |
ds.dataset('/hive', filesystem=multisourcefs), | |
]) | |
expected_schema = pa.schema([ | |
('date', pa.date32()), | |
('index', pa.int64()), | |
('value', pa.float64()), | |
('color', pa.string()), | |
]) | |
assert dataset.schema.equals(expected_schema) | |
# with hive partitioning for two hive sources | |
dataset = ds.dataset([ | |
ds.dataset('/plain', filesystem=multisourcefs), | |
ds.dataset('/schema', filesystem=multisourcefs), | |
ds.dataset('/hive', filesystem=multisourcefs, partitioning='hive') | |
]) | |
expected_schema = pa.schema([ | |
('date', pa.date32()), | |
('index', pa.int64()), | |
('value', pa.float64()), | |
('color', pa.string()), | |
('year', pa.int32()), | |
('month', pa.int32()), | |
]) | |
assert dataset.schema.equals(expected_schema) | |
def test_specified_schema(tempdir, dataset_reader): | |
table = pa.table({'a': [1, 2, 3], 'b': [.1, .2, .3]}) | |
pq.write_table(table, tempdir / "data.parquet") | |
def _check_dataset(schema, expected, expected_schema=None): | |
dataset = ds.dataset(str(tempdir / "data.parquet"), schema=schema) | |
if expected_schema is not None: | |
assert dataset.schema.equals(expected_schema) | |
else: | |
assert dataset.schema.equals(schema) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(expected) | |
# no schema specified | |
schema = None | |
expected = table | |
_check_dataset(schema, expected, expected_schema=table.schema) | |
# identical schema specified | |
schema = table.schema | |
expected = table | |
_check_dataset(schema, expected) | |
# Specifying schema with change column order | |
schema = pa.schema([('b', 'float64'), ('a', 'int64')]) | |
expected = pa.table([[.1, .2, .3], [1, 2, 3]], names=['b', 'a']) | |
_check_dataset(schema, expected) | |
# Specifying schema with missing column | |
schema = pa.schema([('a', 'int64')]) | |
expected = pa.table([[1, 2, 3]], names=['a']) | |
_check_dataset(schema, expected) | |
# Specifying schema with additional column | |
schema = pa.schema([('a', 'int64'), ('c', 'int32')]) | |
expected = pa.table([[1, 2, 3], | |
pa.array([None, None, None], type='int32')], | |
names=['a', 'c']) | |
_check_dataset(schema, expected) | |
# Specifying with differing field types | |
schema = pa.schema([('a', 'int32'), ('b', 'float64')]) | |
dataset = ds.dataset(str(tempdir / "data.parquet"), schema=schema) | |
expected = pa.table([table['a'].cast('int32'), | |
table['b']], | |
names=['a', 'b']) | |
_check_dataset(schema, expected) | |
# Specifying with incompatible schema | |
schema = pa.schema([('a', pa.list_(pa.int32())), ('b', 'float64')]) | |
dataset = ds.dataset(str(tempdir / "data.parquet"), schema=schema) | |
assert dataset.schema.equals(schema) | |
with pytest.raises(NotImplementedError, | |
match='Unsupported cast from int64 to list'): | |
dataset_reader.to_table(dataset) | |
def test_incompatible_schema_hang(tempdir, dataset_reader): | |
# ARROW-13480: deadlock when reading past an errored fragment | |
fn = tempdir / "data.parquet" | |
table = pa.table({'a': [1, 2, 3]}) | |
pq.write_table(table, fn) | |
schema = pa.schema([('a', pa.null())]) | |
dataset = ds.dataset([str(fn)] * 100, schema=schema) | |
assert dataset.schema.equals(schema) | |
scanner = dataset_reader.scanner(dataset) | |
with pytest.raises(NotImplementedError, | |
match='Unsupported cast from int64 to null'): | |
reader = scanner.to_reader() | |
reader.read_all() | |
def test_ipc_format(tempdir, dataset_reader): | |
table = pa.table({'a': pa.array([1, 2, 3], type="int8"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
path = str(tempdir / 'test.arrow') | |
with pa.output_stream(path) as sink: | |
writer = pa.RecordBatchFileWriter(sink, table.schema) | |
writer.write_batch(table.to_batches()[0]) | |
writer.close() | |
dataset = ds.dataset(path, format=ds.IpcFileFormat()) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
assert_dataset_fragment_convenience_methods(dataset) | |
for format_str in ["ipc", "arrow"]: | |
dataset = ds.dataset(path, format=format_str) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
def test_orc_format(tempdir, dataset_reader): | |
from pyarrow import orc | |
table = pa.table({'a': pa.array([1, 2, 3], type="int8"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
path = str(tempdir / 'test.orc') | |
orc.write_table(table, path) | |
dataset = ds.dataset(path, format=ds.OrcFileFormat()) | |
fragments = list(dataset.get_fragments()) | |
assert isinstance(fragments[0], ds.FileFragment) | |
result = dataset_reader.to_table(dataset) | |
result.validate(full=True) | |
assert result.equals(table) | |
assert_dataset_fragment_convenience_methods(dataset) | |
dataset = ds.dataset(path, format="orc") | |
result = dataset_reader.to_table(dataset) | |
result.validate(full=True) | |
assert result.equals(table) | |
result = dataset_reader.to_table(dataset, columns=["b"]) | |
result.validate(full=True) | |
assert result.equals(table.select(["b"])) | |
result = dataset_reader.to_table( | |
dataset, columns={"b2": ds.field("b") * 2} | |
) | |
result.validate(full=True) | |
assert result.equals( | |
pa.table({'b2': pa.array([.2, .4, .6], type="float64")}) | |
) | |
assert dataset_reader.count_rows(dataset) == 3 | |
assert dataset_reader.count_rows(dataset, filter=ds.field("a") > 2) == 1 | |
def test_orc_scan_options(tempdir, dataset_reader): | |
from pyarrow import orc | |
table = pa.table({'a': pa.array([1, 2, 3], type="int8"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
path = str(tempdir / 'test.orc') | |
orc.write_table(table, path) | |
dataset = ds.dataset(path, format="orc") | |
result = list(dataset_reader.to_batches(dataset)) | |
assert len(result) == 1 | |
assert result[0].num_rows == 3 | |
assert result[0].equals(table.to_batches()[0]) | |
# TODO batch_size is not yet supported (ARROW-14153) | |
# result = list(dataset_reader.to_batches(dataset, batch_size=2)) | |
# assert len(result) == 2 | |
# assert result[0].num_rows == 2 | |
# assert result[0].equals(table.slice(0, 2).to_batches()[0]) | |
# assert result[1].num_rows == 1 | |
# assert result[1].equals(table.slice(2, 1).to_batches()[0]) | |
def test_orc_format_not_supported(): | |
try: | |
from pyarrow.dataset import OrcFileFormat # noqa | |
except ImportError: | |
# ORC is not available, test error message | |
with pytest.raises( | |
ValueError, match="not built with support for the ORC file" | |
): | |
ds.dataset(".", format="orc") | |
def test_orc_writer_not_implemented_for_dataset(): | |
with pytest.raises( | |
NotImplementedError, | |
match="Writing datasets not yet implemented for this file format" | |
): | |
ds.write_dataset( | |
pa.table({"a": range(10)}), format='orc', base_dir='/tmp' | |
) | |
of = ds.OrcFileFormat() | |
with pytest.raises( | |
NotImplementedError, | |
match="Writing datasets not yet implemented for this file format" | |
): | |
of.make_write_options() | |
def test_csv_format(tempdir, dataset_reader): | |
table = pa.table({'a': pa.array([1, 2, 3], type="int64"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
path = str(tempdir / 'test.csv') | |
table.to_pandas().to_csv(path, index=False) | |
dataset = ds.dataset(path, format=ds.CsvFileFormat()) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
assert_dataset_fragment_convenience_methods(dataset) | |
dataset = ds.dataset(path, format='csv') | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
def test_csv_format_compressed(tempdir, compression, dataset_reader): | |
if not pyarrow.Codec.is_available(compression): | |
pytest.skip("{} support is not built".format(compression)) | |
table = pa.table({'a': pa.array([1, 2, 3], type="int64"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
filesystem = fs.LocalFileSystem() | |
suffix = compression if compression != 'gzip' else 'gz' | |
path = str(tempdir / f'test.csv.{suffix}') | |
with filesystem.open_output_stream(path, compression=compression) as sink: | |
# https://github.com/pandas-dev/pandas/issues/23854 | |
# With CI version of Pandas (anything < 1.2), Pandas tries to write | |
# str to the sink | |
csv_str = table.to_pandas().to_csv(index=False) | |
sink.write(csv_str.encode('utf-8')) | |
dataset = ds.dataset(path, format=ds.CsvFileFormat()) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
def test_csv_format_options(tempdir, dataset_reader): | |
path = str(tempdir / 'test.csv') | |
with open(path, 'w') as sink: | |
sink.write('skipped\ncol0\nfoo\nbar\n') | |
dataset = ds.dataset(path, format='csv') | |
result = dataset_reader.to_table(dataset) | |
assert result.equals( | |
pa.table({'skipped': pa.array(['col0', 'foo', 'bar'])})) | |
dataset = ds.dataset(path, format=ds.CsvFileFormat( | |
read_options=pa.csv.ReadOptions(skip_rows=1))) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(pa.table({'col0': pa.array(['foo', 'bar'])})) | |
dataset = ds.dataset(path, format=ds.CsvFileFormat( | |
read_options=pa.csv.ReadOptions(column_names=['foo']))) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals( | |
pa.table({'foo': pa.array(['skipped', 'col0', 'foo', 'bar'])})) | |
def test_csv_format_options_generate_columns(tempdir, dataset_reader): | |
path = str(tempdir / 'test.csv') | |
with open(path, 'w') as sink: | |
sink.write('1,a,true,1\n') | |
dataset = ds.dataset(path, format=ds.CsvFileFormat( | |
read_options=pa.csv.ReadOptions(autogenerate_column_names=True))) | |
result = dataset_reader.to_table(dataset) | |
expected_column_names = ["f0", "f1", "f2", "f3"] | |
assert result.column_names == expected_column_names | |
assert result.equals(pa.table({'f0': pa.array([1]), | |
'f1': pa.array(["a"]), | |
'f2': pa.array([True]), | |
'f3': pa.array([1])})) | |
def test_csv_fragment_options(tempdir, dataset_reader): | |
path = str(tempdir / 'test.csv') | |
with open(path, 'w') as sink: | |
sink.write('col0\nfoo\nspam\nMYNULL\n') | |
dataset = ds.dataset(path, format='csv') | |
convert_options = pyarrow.csv.ConvertOptions(null_values=['MYNULL'], | |
strings_can_be_null=True) | |
options = ds.CsvFragmentScanOptions( | |
convert_options=convert_options, | |
read_options=pa.csv.ReadOptions(block_size=2**16)) | |
result = dataset_reader.to_table(dataset, fragment_scan_options=options) | |
assert result.equals(pa.table({'col0': pa.array(['foo', 'spam', None])})) | |
csv_format = ds.CsvFileFormat(convert_options=convert_options) | |
dataset = ds.dataset(path, format=csv_format) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(pa.table({'col0': pa.array(['foo', 'spam', None])})) | |
options = ds.CsvFragmentScanOptions() | |
result = dataset_reader.to_table(dataset, fragment_scan_options=options) | |
assert result.equals( | |
pa.table({'col0': pa.array(['foo', 'spam', 'MYNULL'])})) | |
def test_json_format(tempdir, dataset_reader): | |
table = pa.table({'a': pa.array([1, 2, 3], type="int64"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
path = str(tempdir / 'test.json') | |
out = table.to_pandas().to_json(orient='records')[1:-1].replace('},{', '}\n{') | |
with open(path, 'w') as f: | |
f.write(out) | |
dataset = ds.dataset(path, format=ds.JsonFileFormat()) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
assert_dataset_fragment_convenience_methods(dataset) | |
dataset = ds.dataset(path, format='json') | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
def test_json_format_options(tempdir, dataset_reader): | |
table = pa.table({'a': pa.array([1, 2, 3], type="int64"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
path = str(tempdir / 'test.json') | |
out = table.to_pandas().to_json(orient='records')[1:-1].replace('},{', '}\n{') | |
with open(path, 'w') as f: | |
f.write(out) | |
with pytest.raises(ValueError, | |
match="try to increase block size"): | |
dataset = ds.dataset(path, format=ds.JsonFileFormat( | |
read_options=pa.json.ReadOptions(block_size=4))) | |
dataset = ds.dataset(path, format=ds.JsonFileFormat( | |
read_options=pa.json.ReadOptions(block_size=64))) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
def test_json_fragment_options(tempdir, dataset_reader): | |
table = pa.table({'a': pa.array([1, 2, 3], type="int64"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
path = str(tempdir / 'test.json') | |
out = table.to_pandas().to_json(orient='records')[1:-1].replace('},{', '}\n{') | |
with open(path, 'w') as f: | |
f.write(out) | |
with pytest.raises(ValueError, | |
match="try to increase block size"): | |
options = ds.JsonFragmentScanOptions( | |
read_options=pa.json.ReadOptions(block_size=4)) | |
dataset = ds.dataset(path, format=ds.JsonFileFormat(options)) | |
options = ds.JsonFragmentScanOptions( | |
read_options=pa.json.ReadOptions(block_size=64)) | |
dataset = ds.dataset(path, format=ds.JsonFileFormat(options)) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
def test_encoding(tempdir, dataset_reader): | |
path = str(tempdir / 'test.csv') | |
for encoding, input_rows in [ | |
('latin-1', b"a,b\nun,\xe9l\xe9phant"), | |
('utf16', b'\xff\xfea\x00,\x00b\x00\n\x00u\x00n\x00,' | |
b'\x00\xe9\x00l\x00\xe9\x00p\x00h\x00a\x00n\x00t\x00'), | |
]: | |
with open(path, 'wb') as sink: | |
sink.write(input_rows) | |
# Interpret as utf8: | |
expected_schema = pa.schema([("a", pa.string()), ("b", pa.string())]) | |
expected_table = pa.table({'a': ["un"], | |
'b': ["éléphant"]}, schema=expected_schema) | |
read_options = pa.csv.ReadOptions(encoding=encoding) | |
file_format = ds.CsvFileFormat(read_options=read_options) | |
dataset_transcoded = ds.dataset(path, format=file_format) | |
assert dataset_transcoded.schema.equals(expected_schema) | |
assert dataset_transcoded.to_table().equals(expected_table) | |
# Test if a dataset with non-utf8 chars in the column names is properly handled | |
def test_column_names_encoding(tempdir, dataset_reader): | |
path = str(tempdir / 'test.csv') | |
with open(path, 'wb') as sink: | |
sink.write(b"\xe9,b\nun,\xe9l\xe9phant") | |
# Interpret as utf8: | |
expected_schema = pa.schema([("é", pa.string()), ("b", pa.string())]) | |
expected_table = pa.table({'é': ["un"], | |
'b': ["éléphant"]}, schema=expected_schema) | |
# Reading as string without specifying encoding should produce an error | |
dataset = ds.dataset(path, format='csv', schema=expected_schema) | |
with pytest.raises(pyarrow.lib.ArrowInvalid, match="invalid UTF8"): | |
dataset_reader.to_table(dataset) | |
# Setting the encoding in the read_options should transcode the data | |
read_options = pa.csv.ReadOptions(encoding='latin-1') | |
file_format = ds.CsvFileFormat(read_options=read_options) | |
dataset_transcoded = ds.dataset(path, format=file_format) | |
assert dataset_transcoded.schema.equals(expected_schema) | |
assert dataset_transcoded.to_table().equals(expected_table) | |
def test_feather_format(tempdir, dataset_reader): | |
from pyarrow.feather import write_feather | |
table = pa.table({'a': pa.array([1, 2, 3], type="int8"), | |
'b': pa.array([.1, .2, .3], type="float64")}) | |
basedir = tempdir / "feather_dataset" | |
basedir.mkdir() | |
write_feather(table, str(basedir / "data.feather")) | |
dataset = ds.dataset(basedir, format=ds.IpcFileFormat()) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
assert_dataset_fragment_convenience_methods(dataset) | |
dataset = ds.dataset(basedir, format="feather") | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
# ARROW-8641 - column selection order | |
result = dataset_reader.to_table(dataset, columns=["b", "a"]) | |
assert result.column_names == ["b", "a"] | |
result = dataset_reader.to_table(dataset, columns=["a", "a"]) | |
assert result.column_names == ["a", "a"] | |
# error with Feather v1 files | |
write_feather(table, str(basedir / "data1.feather"), version=1) | |
with pytest.raises(ValueError): | |
dataset_reader.to_table(ds.dataset(basedir, format="feather")) | |
def test_feather_format_compressed(tempdir, compression, dataset_reader): | |
table = pa.table({'a': pa.array([0]*300, type="int8"), | |
'b': pa.array([.1, .2, .3]*100, type="float64")}) | |
if not pa.Codec.is_available(compression): | |
pytest.skip() | |
basedir = tempdir / "feather_dataset_compressed" | |
basedir.mkdir() | |
file_format = ds.IpcFileFormat() | |
uncompressed_basedir = tempdir / "feather_dataset_uncompressed" | |
uncompressed_basedir.mkdir() | |
ds.write_dataset( | |
table, | |
str(uncompressed_basedir / "data.arrow"), | |
format=file_format, | |
file_options=file_format.make_write_options(compression=None) | |
) | |
if compression == "brotli": | |
with pytest.raises(ValueError, match="Compression type"): | |
write_options = file_format.make_write_options( | |
compression=compression) | |
with pytest.raises(ValueError, match="Compression type"): | |
codec = pa.Codec(compression) | |
write_options = file_format.make_write_options(compression=codec) | |
return | |
write_options = file_format.make_write_options(compression=compression) | |
ds.write_dataset( | |
table, | |
str(basedir / "data.arrow"), | |
format=file_format, | |
file_options=write_options | |
) | |
dataset = ds.dataset(basedir, format=ds.IpcFileFormat()) | |
result = dataset_reader.to_table(dataset) | |
assert result.equals(table) | |
compressed_file = basedir / "data.arrow" / "part-0.arrow" | |
compressed_size = compressed_file.stat().st_size | |
uncompressed_file = uncompressed_basedir / "data.arrow" / "part-0.arrow" | |
uncompressed_size = uncompressed_file.stat().st_size | |
assert compressed_size < uncompressed_size | |
def _create_parquet_dataset_simple(root_path): | |
""" | |
Creates a simple (flat files, no nested partitioning) Parquet dataset | |
""" | |
metadata_collector = [] | |
for i in range(4): | |
table = pa.table({'f1': [i] * 10, 'f2': np.random.randn(10)}) | |
pq.write_to_dataset( | |
table, str(root_path), metadata_collector=metadata_collector | |
) | |
metadata_path = str(root_path / '_metadata') | |
# write _metadata file | |
pq.write_metadata( | |
table.schema, metadata_path, | |
metadata_collector=metadata_collector | |
) | |
return metadata_path, table | |
# write_to_dataset currently requires pandas | |
def test_parquet_dataset_factory(tempdir): | |
root_path = tempdir / "test_parquet_dataset" | |
metadata_path, table = _create_parquet_dataset_simple(root_path) | |
dataset = ds.parquet_dataset(metadata_path) | |
assert dataset.schema.equals(table.schema) | |
assert len(dataset.files) == 4 | |
result = dataset.to_table() | |
assert result.num_rows == 40 | |
# write_to_dataset currently requires pandas | |
def test_parquet_dataset_factory_fsspec(tempdir): | |
# https://issues.apache.org/jira/browse/ARROW-16413 | |
fsspec = pytest.importorskip("fsspec") | |
# create dataset with pyarrow | |
root_path = tempdir / "test_parquet_dataset" | |
metadata_path, table = _create_parquet_dataset_simple(root_path) | |
# read using fsspec filesystem | |
fsspec_fs = fsspec.filesystem("file") | |
# manually creating a PyFileSystem, because passing the local fsspec | |
# filesystem would internally be converted to native LocalFileSystem | |
filesystem = fs.PyFileSystem(fs.FSSpecHandler(fsspec_fs)) | |
dataset = ds.parquet_dataset(metadata_path, filesystem=filesystem) | |
assert dataset.schema.equals(table.schema) | |
assert len(dataset.files) == 4 | |
result = dataset.to_table() | |
assert result.num_rows == 40 | |
# write_to_dataset currently requires pandas | |
def test_parquet_dataset_factory_roundtrip(tempdir): | |
# Simple test to ensure we can roundtrip dataset to | |
# _metadata/common_metadata and back. A more complex test | |
# using partitioning will have to wait for ARROW-13269. The | |
# above test (test_parquet_dataset_factory) will not work | |
# when legacy is False as there is no "append" equivalent in | |
# the new dataset until ARROW-12358 | |
root_path = tempdir / "test_parquet_dataset" | |
table = pa.table({'f1': [0] * 10, 'f2': np.random.randn(10)}) | |
metadata_collector = [] | |
pq.write_to_dataset( | |
table, str(root_path), metadata_collector=metadata_collector, | |
) | |
metadata_path = str(root_path / '_metadata') | |
# write _metadata file | |
pq.write_metadata( | |
table.schema, metadata_path, | |
metadata_collector=metadata_collector | |
) | |
dataset = ds.parquet_dataset(metadata_path) | |
assert dataset.schema.equals(table.schema) | |
result = dataset.to_table() | |
assert result.num_rows == 10 | |
def test_parquet_dataset_factory_order(tempdir): | |
# The order of the fragments in the dataset should match the order of the | |
# row groups in the _metadata file. | |
metadatas = [] | |
# Create a dataset where f1 is incrementing from 0 to 100 spread across | |
# 10 files. Put the row groups in the correct order in _metadata | |
for i in range(10): | |
table = pa.table( | |
{'f1': list(range(i*10, (i+1)*10))}) | |
table_path = tempdir / f'{i}.parquet' | |
pq.write_table(table, table_path, metadata_collector=metadatas) | |
metadatas[-1].set_file_path(f'{i}.parquet') | |
metadata_path = str(tempdir / '_metadata') | |
pq.write_metadata(table.schema, metadata_path, metadatas) | |
dataset = ds.parquet_dataset(metadata_path) | |
# Ensure the table contains values from 0-100 in the right order | |
scanned_table = dataset.to_table() | |
scanned_col = scanned_table.column('f1').to_pylist() | |
assert scanned_col == list(range(0, 100)) | |
def test_parquet_dataset_factory_invalid(tempdir): | |
root_path = tempdir / "test_parquet_dataset_invalid" | |
metadata_path, table = _create_parquet_dataset_simple(root_path) | |
# remove one of the files | |
list(root_path.glob("*.parquet"))[0].unlink() | |
dataset = ds.parquet_dataset(metadata_path) | |
assert dataset.schema.equals(table.schema) | |
assert len(dataset.files) == 4 | |
with pytest.raises(FileNotFoundError): | |
dataset.to_table() | |
def _create_metadata_file(root_path): | |
# create _metadata file from existing parquet dataset | |
parquet_paths = list(sorted(root_path.rglob("*.parquet"))) | |
schema = pq.ParquetFile(parquet_paths[0]).schema.to_arrow_schema() | |
metadata_collector = [] | |
for path in parquet_paths: | |
metadata = pq.ParquetFile(path).metadata | |
metadata.set_file_path(str(path.relative_to(root_path))) | |
metadata_collector.append(metadata) | |
metadata_path = root_path / "_metadata" | |
pq.write_metadata( | |
schema, metadata_path, metadata_collector=metadata_collector | |
) | |
return metadata_path | |
def _create_parquet_dataset_partitioned(root_path): | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10))], | |
names=["f1", "f2", "part"] | |
) | |
table = table.replace_schema_metadata({"key": "value"}) | |
pq.write_to_dataset(table, str(root_path), partition_cols=['part']) | |
return _create_metadata_file(root_path), table | |
def test_parquet_dataset_factory_partitioned(tempdir): | |
root_path = tempdir / "test_parquet_dataset_factory_partitioned" | |
metadata_path, table = _create_parquet_dataset_partitioned(root_path) | |
partitioning = ds.partitioning(flavor="hive") | |
dataset = ds.parquet_dataset(metadata_path, partitioning=partitioning) | |
assert dataset.schema.equals(table.schema) | |
assert len(dataset.files) == 2 | |
result = dataset.to_table() | |
assert result.num_rows == 20 | |
# the partitioned dataset does not preserve order | |
result = result.to_pandas().sort_values("f1").reset_index(drop=True) | |
expected = table.to_pandas() | |
pd.testing.assert_frame_equal(result, expected) | |
def test_parquet_dataset_factory_metadata(tempdir): | |
# ensure ParquetDatasetFactory preserves metadata (ARROW-9363) | |
root_path = tempdir / "test_parquet_dataset_factory_metadata" | |
metadata_path, table = _create_parquet_dataset_partitioned(root_path) | |
dataset = ds.parquet_dataset(metadata_path, partitioning="hive") | |
assert dataset.schema.equals(table.schema) | |
assert b"key" in dataset.schema.metadata | |
fragments = list(dataset.get_fragments()) | |
assert b"key" in fragments[0].physical_schema.metadata | |
def test_parquet_dataset_lazy_filtering(tempdir, open_logging_fs): | |
fs, assert_opens = open_logging_fs | |
# Test to ensure that no IO happens when filtering a dataset | |
# created with ParquetDatasetFactory from a _metadata file | |
root_path = tempdir / "test_parquet_dataset_lazy_filtering" | |
metadata_path, _ = _create_parquet_dataset_simple(root_path) | |
# creating the dataset should only open the metadata file | |
with assert_opens([metadata_path]): | |
dataset = ds.parquet_dataset( | |
metadata_path, | |
partitioning=ds.partitioning(flavor="hive"), | |
filesystem=fs) | |
# materializing fragments should not open any file | |
with assert_opens([]): | |
fragments = list(dataset.get_fragments()) | |
# filtering fragments should not open any file | |
with assert_opens([]): | |
list(dataset.get_fragments(ds.field("f1") > 15)) | |
# splitting by row group should still not open any file | |
with assert_opens([]): | |
fragments[0].split_by_row_group(ds.field("f1") > 15) | |
# ensuring metadata of split fragment should also not open any file | |
with assert_opens([]): | |
rg_fragments = fragments[0].split_by_row_group() | |
rg_fragments[0].ensure_complete_metadata() | |
# FIXME(bkietz) on Windows this results in FileNotFoundErrors. | |
# but actually scanning does open files | |
# with assert_opens([f.path for f in fragments]): | |
# dataset.to_table() | |
def test_dataset_schema_metadata(tempdir, dataset_reader): | |
# ARROW-8802 | |
df = pd.DataFrame({'a': [1, 2, 3]}) | |
path = tempdir / "test.parquet" | |
df.to_parquet(path) | |
dataset = ds.dataset(path) | |
schema = dataset_reader.to_table(dataset).schema | |
projected_schema = dataset_reader.to_table(dataset, columns=["a"]).schema | |
# ensure the pandas metadata is included in the schema | |
assert b"pandas" in schema.metadata | |
# ensure it is still there in a projected schema (with column selection) | |
assert schema.equals(projected_schema, check_metadata=True) | |
def test_filter_mismatching_schema(tempdir, dataset_reader): | |
# ARROW-9146 | |
table = pa.table({"col": pa.array([1, 2, 3, 4], type='int32')}) | |
pq.write_table(table, str(tempdir / "data.parquet")) | |
# specifying explicit schema, but that mismatches the schema of the data | |
schema = pa.schema([("col", pa.int64())]) | |
dataset = ds.dataset( | |
tempdir / "data.parquet", format="parquet", schema=schema) | |
# filtering on a column with such type mismatch should implicitly | |
# cast the column | |
filtered = dataset_reader.to_table(dataset, filter=ds.field("col") > 2) | |
assert filtered["col"].equals(table["col"].cast('int64').slice(2)) | |
fragment = list(dataset.get_fragments())[0] | |
filtered = dataset_reader.to_table( | |
fragment, filter=ds.field("col") > 2, schema=schema) | |
assert filtered["col"].equals(table["col"].cast('int64').slice(2)) | |
def test_dataset_project_only_partition_columns(tempdir, dataset_reader): | |
# ARROW-8729 | |
table = pa.table({'part': 'a a b b'.split(), 'col': list(range(4))}) | |
path = str(tempdir / 'test_dataset') | |
pq.write_to_dataset(table, path, partition_cols=['part']) | |
dataset = ds.dataset(path, partitioning='hive') | |
all_cols = dataset_reader.to_table(dataset) | |
part_only = dataset_reader.to_table(dataset, columns=['part']) | |
assert all_cols.column('part').equals(part_only.column('part')) | |
def test_dataset_project_null_column(tempdir, dataset_reader): | |
df = pd.DataFrame({"col": np.array([None, None, None], dtype='object')}) | |
f = tempdir / "test_dataset_project_null_column.parquet" | |
df.to_parquet(f, engine="pyarrow") | |
dataset = ds.dataset(f, format="parquet", | |
schema=pa.schema([("col", pa.int64())])) | |
expected = pa.table({'col': pa.array([None, None, None], pa.int64())}) | |
assert dataset_reader.to_table(dataset).equals(expected) | |
def test_dataset_project_columns(tempdir, dataset_reader): | |
# basic column re-projection with expressions | |
from pyarrow import feather | |
table = pa.table({"A": [1, 2, 3], "B": [1., 2., 3.], "C": ["a", "b", "c"]}) | |
feather.write_feather(table, tempdir / "data.feather") | |
dataset = ds.dataset(tempdir / "data.feather", format="feather") | |
result = dataset_reader.to_table(dataset, columns={ | |
'A_renamed': ds.field('A'), | |
'B_as_int': ds.field('B').cast("int32", safe=False), | |
'C_is_a': ds.field('C') == 'a' | |
}) | |
expected = pa.table({ | |
"A_renamed": [1, 2, 3], | |
"B_as_int": pa.array([1, 2, 3], type="int32"), | |
"C_is_a": [True, False, False], | |
}) | |
assert result.equals(expected) | |
# raise proper error when not passing an expression | |
with pytest.raises(TypeError, match="Expected an Expression"): | |
dataset_reader.to_table(dataset, columns={"A": "A"}) | |
def test_dataset_preserved_partitioning(tempdir): | |
# ARROW-8655 | |
# through discovery, but without partitioning | |
_, path = _create_single_file(tempdir) | |
dataset = ds.dataset(path) | |
assert isinstance(dataset.partitioning, ds.DirectoryPartitioning) | |
# TODO(GH-34884) partitioning attribute not preserved in pickling | |
# dataset_ = ds.dataset(path) | |
# for dataset in [dataset_, pickle_module.loads(pickle_module.dumps(dataset_))]: | |
# assert isinstance(dataset.partitioning, ds.DirectoryPartitioning) | |
# through discovery, with hive partitioning but not specified | |
full_table, path = _create_partitioned_dataset(tempdir) | |
dataset = ds.dataset(path) | |
assert isinstance(dataset.partitioning, ds.DirectoryPartitioning) | |
# through discovery, with hive partitioning (from a partitioning factory) | |
dataset = ds.dataset(path, partitioning="hive") | |
part = dataset.partitioning | |
assert part is not None | |
assert isinstance(part, ds.HivePartitioning) | |
assert part.schema == pa.schema([("part", pa.int32())]) | |
assert len(part.dictionaries) == 1 | |
assert part.dictionaries[0] == pa.array([0, 1, 2], pa.int32()) | |
# through discovery, with hive partitioning (from a partitioning object) | |
part = ds.partitioning(pa.schema([("part", pa.int32())]), flavor="hive") | |
assert isinstance(part, ds.HivePartitioning) # not a factory | |
assert len(part.dictionaries) == 1 | |
assert all(x is None for x in part.dictionaries) | |
dataset = ds.dataset(path, partitioning=part) | |
part = dataset.partitioning | |
assert isinstance(part, ds.HivePartitioning) | |
assert part.schema == pa.schema([("part", pa.int32())]) | |
# TODO is this expected? | |
assert len(part.dictionaries) == 1 | |
assert all(x is None for x in part.dictionaries) | |
# through manual creation -> not available | |
dataset = ds.dataset(path, partitioning="hive") | |
dataset2 = ds.FileSystemDataset( | |
list(dataset.get_fragments()), schema=dataset.schema, | |
format=dataset.format, filesystem=dataset.filesystem | |
) | |
assert dataset2.partitioning is None | |
# through discovery with ParquetDatasetFactory | |
root_path = tempdir / "data-partitioned-metadata" | |
metadata_path, _ = _create_parquet_dataset_partitioned(root_path) | |
dataset = ds.parquet_dataset(metadata_path, partitioning="hive") | |
part = dataset.partitioning | |
assert part is not None | |
assert isinstance(part, ds.HivePartitioning) | |
assert part.schema == pa.schema([("part", pa.string())]) | |
assert len(part.dictionaries) == 1 | |
# will be fixed by ARROW-13153 (order is not preserved at the moment) | |
# assert part.dictionaries[0] == pa.array(["a", "b"], pa.string()) | |
assert set(part.dictionaries[0].to_pylist()) == {"a", "b"} | |
def test_write_to_dataset_given_null_just_works(tempdir): | |
schema = pa.schema([ | |
pa.field('col', pa.int64()), | |
pa.field('part', pa.dictionary(pa.int32(), pa.string())) | |
]) | |
table = pa.table({'part': [None, None, 'a', 'a'], | |
'col': list(range(4))}, schema=schema) | |
path = str(tempdir / 'test_dataset') | |
pq.write_to_dataset(table, path, partition_cols=['part']) | |
actual_table = pq.read_table(tempdir / 'test_dataset') | |
# column.equals can handle the difference in chunking but not the fact | |
# that `part` will have different dictionaries for the two chunks | |
assert actual_table.column('part').to_pylist( | |
) == table.column('part').to_pylist() | |
assert actual_table.column('col').equals(table.column('col')) | |
def _sort_table(tab, sort_col): | |
import pyarrow.compute as pc | |
sorted_indices = pc.sort_indices( | |
tab, options=pc.SortOptions([(sort_col, 'ascending')])) | |
return pc.take(tab, sorted_indices) | |
def _check_dataset_roundtrip(dataset, base_dir, expected_files, sort_col, | |
base_dir_path=None, partitioning=None): | |
base_dir_path = base_dir_path or base_dir | |
ds.write_dataset(dataset, base_dir, format="arrow", | |
partitioning=partitioning, use_threads=False) | |
# check that all files are present | |
file_paths = list(base_dir_path.rglob("*")) | |
assert set(file_paths) == set(expected_files) | |
# check that reading back in as dataset gives the same result | |
dataset2 = ds.dataset( | |
base_dir_path, format="arrow", partitioning=partitioning) | |
assert _sort_table(dataset2.to_table(), sort_col).equals( | |
_sort_table(dataset.to_table(), sort_col)) | |
def test_write_dataset(tempdir): | |
# manually create a written dataset and read as dataset object | |
directory = tempdir / 'single-file' | |
directory.mkdir() | |
_ = _create_single_file(directory) | |
dataset = ds.dataset(directory) | |
# full string path | |
target = tempdir / 'single-file-target' | |
expected_files = [target / "part-0.arrow"] | |
_check_dataset_roundtrip(dataset, str(target), expected_files, 'a', target) | |
# pathlib path object | |
target = tempdir / 'single-file-target2' | |
expected_files = [target / "part-0.arrow"] | |
_check_dataset_roundtrip(dataset, target, expected_files, 'a', target) | |
# TODO | |
# # relative path | |
# target = tempdir / 'single-file-target3' | |
# expected_files = [target / "part-0.ipc"] | |
# _check_dataset_roundtrip( | |
# dataset, './single-file-target3', expected_files, target) | |
# Directory of files | |
directory = tempdir / 'single-directory' | |
directory.mkdir() | |
_ = _create_directory_of_files(directory) | |
dataset = ds.dataset(directory) | |
target = tempdir / 'single-directory-target' | |
expected_files = [target / "part-0.arrow"] | |
_check_dataset_roundtrip(dataset, str(target), expected_files, 'a', target) | |
def test_write_dataset_partitioned(tempdir): | |
directory = tempdir / "partitioned" | |
_ = _create_parquet_dataset_partitioned(directory) | |
partitioning = ds.partitioning(flavor="hive") | |
dataset = ds.dataset(directory, partitioning=partitioning) | |
# hive partitioning | |
target = tempdir / 'partitioned-hive-target' | |
expected_paths = [ | |
target / "part=a", target / "part=a" / "part-0.arrow", | |
target / "part=b", target / "part=b" / "part-0.arrow" | |
] | |
partitioning_schema = ds.partitioning( | |
pa.schema([("part", pa.string())]), flavor="hive") | |
_check_dataset_roundtrip( | |
dataset, str(target), expected_paths, 'f1', target, | |
partitioning=partitioning_schema) | |
# directory partitioning | |
target = tempdir / 'partitioned-dir-target' | |
expected_paths = [ | |
target / "a", target / "a" / "part-0.arrow", | |
target / "b", target / "b" / "part-0.arrow" | |
] | |
partitioning_schema = ds.partitioning( | |
pa.schema([("part", pa.string())])) | |
_check_dataset_roundtrip( | |
dataset, str(target), expected_paths, 'f1', target, | |
partitioning=partitioning_schema) | |
def test_write_dataset_with_field_names(tempdir): | |
table = pa.table({'a': ['x', 'y', None], 'b': ['x', 'y', 'z']}) | |
ds.write_dataset(table, tempdir, format='ipc', | |
partitioning=["b"]) | |
load_back = ds.dataset(tempdir, format='ipc', partitioning=["b"]) | |
files = load_back.files | |
partitioning_dirs = { | |
str(pathlib.Path(f).relative_to(tempdir).parent) for f in files | |
} | |
assert partitioning_dirs == {"x", "y", "z"} | |
load_back_table = load_back.to_table() | |
assert load_back_table.equals(table) | |
def test_write_dataset_with_field_names_hive(tempdir): | |
table = pa.table({'a': ['x', 'y', None], 'b': ['x', 'y', 'z']}) | |
ds.write_dataset(table, tempdir, format='ipc', | |
partitioning=["b"], partitioning_flavor="hive") | |
load_back = ds.dataset(tempdir, format='ipc', partitioning="hive") | |
files = load_back.files | |
partitioning_dirs = { | |
str(pathlib.Path(f).relative_to(tempdir).parent) for f in files | |
} | |
assert partitioning_dirs == {"b=x", "b=y", "b=z"} | |
load_back_table = load_back.to_table() | |
assert load_back_table.equals(table) | |
def test_write_dataset_with_scanner(tempdir): | |
table = pa.table({'a': ['x', 'y', None], 'b': ['x', 'y', 'z'], | |
'c': [1, 2, 3]}) | |
ds.write_dataset(table, tempdir, format='ipc', | |
partitioning=["b"]) | |
dataset = ds.dataset(tempdir, format='ipc', partitioning=["b"]) | |
with tempfile.TemporaryDirectory() as tempdir2: | |
ds.write_dataset(dataset.scanner(columns=["b", "c"]), | |
tempdir2, format='ipc', partitioning=["b"]) | |
load_back = ds.dataset(tempdir2, format='ipc', partitioning=["b"]) | |
load_back_table = load_back.to_table() | |
assert dict(load_back_table.to_pydict() | |
) == table.drop_columns("a").to_pydict() | |
def test_write_dataset_with_backpressure(tempdir): | |
consumer_gate = threading.Event() | |
# A filesystem that blocks all writes so that we can build | |
# up backpressure. The writes are released at the end of | |
# the test. | |
class GatingFs(ProxyHandler): | |
def open_output_stream(self, path, metadata): | |
# Block until the end of the test | |
consumer_gate.wait() | |
return self._fs.open_output_stream(path, metadata=metadata) | |
gating_fs = fs.PyFileSystem(GatingFs(fs.LocalFileSystem())) | |
schema = pa.schema([pa.field('data', pa.int32())]) | |
# The scanner should queue ~ 8Mi rows (~8 batches) but due to ARROW-16258 | |
# it always queues 32 batches. | |
batch = pa.record_batch([pa.array(list(range(1_000_000)))], schema=schema) | |
batches_read = 0 | |
min_backpressure = 32 | |
end = 200 | |
keep_going = True | |
def counting_generator(): | |
nonlocal batches_read | |
while batches_read < end: | |
if not keep_going: | |
return | |
time.sleep(0.01) | |
batches_read += 1 | |
yield batch | |
scanner = ds.Scanner.from_batches( | |
counting_generator(), schema=schema, use_threads=True) | |
write_thread = threading.Thread( | |
target=lambda: ds.write_dataset( | |
scanner, str(tempdir), format='parquet', filesystem=gating_fs)) | |
write_thread.start() | |
try: | |
start = time.time() | |
def duration(): | |
return time.time() - start | |
# This test is timing dependent. There is no signal from the C++ | |
# when backpressure has been hit. We don't know exactly when | |
# backpressure will be hit because it may take some time for the | |
# signal to get from the sink to the scanner. | |
# | |
# The test may emit false positives on slow systems. It could | |
# theoretically emit a false negative if the scanner managed to read | |
# and emit all 200 batches before the backpressure signal had a chance | |
# to propagate but the 0.01s delay in the generator should make that | |
# scenario unlikely. | |
last_value = 0 | |
backpressure_probably_hit = False | |
while duration() < 10: | |
if batches_read > min_backpressure: | |
if batches_read == last_value: | |
backpressure_probably_hit = True | |
break | |
last_value = batches_read | |
time.sleep(0.5) | |
assert backpressure_probably_hit | |
finally: | |
# If any batches remain to be generated go ahead and | |
# skip them | |
keep_going = False | |
consumer_gate.set() | |
write_thread.join() | |
def test_write_dataset_with_dataset(tempdir): | |
table = pa.table({'b': ['x', 'y', 'z'], 'c': [1, 2, 3]}) | |
ds.write_dataset(table, tempdir, format='ipc', | |
partitioning=["b"]) | |
dataset = ds.dataset(tempdir, format='ipc', partitioning=["b"]) | |
with tempfile.TemporaryDirectory() as tempdir2: | |
ds.write_dataset(dataset, tempdir2, | |
format='ipc', partitioning=["b"]) | |
load_back = ds.dataset(tempdir2, format='ipc', partitioning=["b"]) | |
load_back_table = load_back.to_table() | |
assert dict(load_back_table.to_pydict()) == table.to_pydict() | |
def test_write_dataset_existing_data(tempdir): | |
directory = tempdir / 'ds' | |
table = pa.table({'b': ['x', 'y', 'z'], 'c': [1, 2, 3]}) | |
partitioning = ds.partitioning(schema=pa.schema( | |
[pa.field('c', pa.int64())]), flavor='hive') | |
def compare_tables_ignoring_order(t1, t2): | |
df1 = t1.to_pandas().sort_values('b').reset_index(drop=True) | |
df2 = t2.to_pandas().sort_values('b').reset_index(drop=True) | |
assert df1.equals(df2) | |
# First write is ok | |
ds.write_dataset(table, directory, partitioning=partitioning, format='ipc') | |
table = pa.table({'b': ['a', 'b', 'c'], 'c': [2, 3, 4]}) | |
# Second write should fail | |
with pytest.raises(pa.ArrowInvalid): | |
ds.write_dataset(table, directory, | |
partitioning=partitioning, format='ipc') | |
extra_table = pa.table({'b': ['e']}) | |
extra_file = directory / 'c=2' / 'foo.arrow' | |
pyarrow.feather.write_feather(extra_table, extra_file) | |
# Should be ok and overwrite with overwrite behavior | |
ds.write_dataset(table, directory, partitioning=partitioning, | |
format='ipc', | |
existing_data_behavior='overwrite_or_ignore') | |
overwritten = pa.table( | |
{'b': ['e', 'x', 'a', 'b', 'c'], 'c': [2, 1, 2, 3, 4]}) | |
readback = ds.dataset(tempdir, format='ipc', | |
partitioning=partitioning).to_table() | |
compare_tables_ignoring_order(readback, overwritten) | |
assert extra_file.exists() | |
# Should be ok and delete matching with delete_matching | |
ds.write_dataset(table, directory, partitioning=partitioning, | |
format='ipc', existing_data_behavior='delete_matching') | |
overwritten = pa.table({'b': ['x', 'a', 'b', 'c'], 'c': [1, 2, 3, 4]}) | |
readback = ds.dataset(tempdir, format='ipc', | |
partitioning=partitioning).to_table() | |
compare_tables_ignoring_order(readback, overwritten) | |
assert not extra_file.exists() | |
def _generate_random_int_array(size=4, min=1, max=10): | |
return np.random.randint(min, max, size) | |
def _generate_data_and_columns(num_of_columns, num_of_records): | |
data = [] | |
column_names = [] | |
for i in range(num_of_columns): | |
data.append(_generate_random_int_array(size=num_of_records, | |
min=1, | |
max=num_of_records)) | |
column_names.append("c" + str(i)) | |
record_batch = pa.record_batch(data=data, names=column_names) | |
return record_batch | |
def _get_num_of_files_generated(base_directory, file_format): | |
return len(list(pathlib.Path(base_directory).glob(f'**/*.{file_format}'))) | |
def test_write_dataset_max_rows_per_file(tempdir): | |
directory = tempdir / 'ds' | |
max_rows_per_file = 10 | |
max_rows_per_group = 10 | |
num_of_columns = 2 | |
num_of_records = 35 | |
record_batch = _generate_data_and_columns(num_of_columns, | |
num_of_records) | |
ds.write_dataset(record_batch, directory, format="parquet", | |
max_rows_per_file=max_rows_per_file, | |
max_rows_per_group=max_rows_per_group) | |
files_in_dir = os.listdir(directory) | |
# number of partitions with max_rows and the partition with the remainder | |
expected_partitions = num_of_records // max_rows_per_file + 1 | |
# test whether the expected amount of files are written | |
assert len(files_in_dir) == expected_partitions | |
# compute the number of rows per each file written | |
result_row_combination = [] | |
for _, f_file in enumerate(files_in_dir): | |
f_path = directory / str(f_file) | |
dataset = ds.dataset(f_path, format="parquet") | |
result_row_combination.append(dataset.to_table().shape[0]) | |
# test whether the generated files have the expected number of rows | |
assert expected_partitions == len(result_row_combination) | |
assert num_of_records == sum(result_row_combination) | |
assert all(file_rowcount <= max_rows_per_file | |
for file_rowcount in result_row_combination) | |
def test_write_dataset_min_rows_per_group(tempdir): | |
directory = tempdir / 'ds' | |
min_rows_per_group = 6 | |
max_rows_per_group = 8 | |
num_of_columns = 2 | |
record_sizes = [5, 5, 5, 5, 5, 4, 4, 4, 4, 4] | |
record_batches = [_generate_data_and_columns(num_of_columns, | |
num_of_records) | |
for num_of_records in record_sizes] | |
data_source = directory / "min_rows_group" | |
ds.write_dataset(data=record_batches, base_dir=data_source, | |
min_rows_per_group=min_rows_per_group, | |
max_rows_per_group=max_rows_per_group, | |
format="parquet") | |
files_in_dir = os.listdir(data_source) | |
for _, f_file in enumerate(files_in_dir): | |
f_path = data_source / str(f_file) | |
dataset = ds.dataset(f_path, format="parquet") | |
table = dataset.to_table() | |
batches = table.to_batches() | |
for id, batch in enumerate(batches): | |
rows_per_batch = batch.num_rows | |
if id < len(batches) - 1: | |
assert rows_per_batch >= min_rows_per_group and \ | |
rows_per_batch <= max_rows_per_group | |
else: | |
assert rows_per_batch <= max_rows_per_group | |
def test_write_dataset_max_rows_per_group(tempdir): | |
directory = tempdir / 'ds' | |
max_rows_per_group = 18 | |
num_of_columns = 2 | |
num_of_records = 30 | |
record_batch = _generate_data_and_columns(num_of_columns, | |
num_of_records) | |
data_source = directory / "max_rows_group" | |
ds.write_dataset(data=record_batch, base_dir=data_source, | |
max_rows_per_group=max_rows_per_group, | |
format="parquet") | |
files_in_dir = os.listdir(data_source) | |
batched_data = [] | |
for f_file in files_in_dir: | |
f_path = data_source / str(f_file) | |
dataset = ds.dataset(f_path, format="parquet") | |
table = dataset.to_table() | |
batches = table.to_batches() | |
for batch in batches: | |
batched_data.append(batch.num_rows) | |
assert batched_data == [18, 12] | |
def test_write_dataset_max_open_files(tempdir): | |
directory = tempdir / 'ds' | |
file_format = "parquet" | |
partition_column_id = 1 | |
column_names = ['c1', 'c2'] | |
record_batch_1 = pa.record_batch(data=[[1, 2, 3, 4, 0, 10], | |
['a', 'b', 'c', 'd', 'e', 'a']], | |
names=column_names) | |
record_batch_2 = pa.record_batch(data=[[5, 6, 7, 8, 0, 1], | |
['a', 'b', 'c', 'd', 'e', 'c']], | |
names=column_names) | |
record_batch_3 = pa.record_batch(data=[[9, 10, 11, 12, 0, 1], | |
['a', 'b', 'c', 'd', 'e', 'd']], | |
names=column_names) | |
record_batch_4 = pa.record_batch(data=[[13, 14, 15, 16, 0, 1], | |
['a', 'b', 'c', 'd', 'e', 'b']], | |
names=column_names) | |
table = pa.Table.from_batches([record_batch_1, record_batch_2, | |
record_batch_3, record_batch_4]) | |
partitioning = ds.partitioning( | |
pa.schema([(column_names[partition_column_id], pa.string())]), | |
flavor="hive") | |
data_source_1 = directory / "default" | |
ds.write_dataset(data=table, base_dir=data_source_1, | |
partitioning=partitioning, format=file_format) | |
# Here we consider the number of unique partitions created when | |
# partitioning column contains duplicate records. | |
# Returns: (number_of_files_generated, number_of_partitions) | |
def _get_compare_pair(data_source, record_batch, file_format, col_id): | |
num_of_files_generated = _get_num_of_files_generated( | |
base_directory=data_source, file_format=file_format) | |
number_of_partitions = len(pa.compute.unique(record_batch[col_id])) | |
return num_of_files_generated, number_of_partitions | |
# CASE 1: when max_open_files=default & max_open_files >= num_of_partitions | |
# In case of a writing to disk via partitioning based on a | |
# particular column (considering row labels in that column), | |
# the number of unique rows must be equal | |
# to the number of files generated | |
num_of_files_generated, number_of_partitions \ | |
= _get_compare_pair(data_source_1, record_batch_1, file_format, | |
partition_column_id) | |
assert num_of_files_generated == number_of_partitions | |
# CASE 2: when max_open_files > 0 & max_open_files < num_of_partitions | |
# the number of files generated must be greater than the number of | |
# partitions | |
data_source_2 = directory / "max_1" | |
max_open_files = 3 | |
ds.write_dataset(data=table, base_dir=data_source_2, | |
partitioning=partitioning, format=file_format, | |
max_open_files=max_open_files, use_threads=False) | |
num_of_files_generated, number_of_partitions \ | |
= _get_compare_pair(data_source_2, record_batch_1, file_format, | |
partition_column_id) | |
assert num_of_files_generated > number_of_partitions | |
def test_write_dataset_partitioned_dict(tempdir): | |
directory = tempdir / "partitioned" | |
_ = _create_parquet_dataset_partitioned(directory) | |
# directory partitioning, dictionary partition columns | |
dataset = ds.dataset( | |
directory, | |
partitioning=ds.HivePartitioning.discover(infer_dictionary=True)) | |
target = tempdir / 'partitioned-dir-target' | |
expected_paths = [ | |
target / "a", target / "a" / "part-0.arrow", | |
target / "b", target / "b" / "part-0.arrow" | |
] | |
partitioning = ds.partitioning(pa.schema([ | |
dataset.schema.field('part')]), | |
dictionaries={'part': pa.array(['a', 'b'])}) | |
# NB: dictionaries required here since we use partitioning to parse | |
# directories in _check_dataset_roundtrip (not currently required for | |
# the formatting step) | |
_check_dataset_roundtrip( | |
dataset, str(target), expected_paths, 'f1', target, | |
partitioning=partitioning) | |
def test_write_dataset_use_threads(tempdir): | |
directory = tempdir / "partitioned" | |
_ = _create_parquet_dataset_partitioned(directory) | |
dataset = ds.dataset(directory, partitioning="hive") | |
partitioning = ds.partitioning( | |
pa.schema([("part", pa.string())]), flavor="hive") | |
target1 = tempdir / 'partitioned1' | |
paths_written = [] | |
def file_visitor(written_file): | |
paths_written.append(written_file.path) | |
ds.write_dataset( | |
dataset, target1, format="feather", partitioning=partitioning, | |
use_threads=True, file_visitor=file_visitor | |
) | |
expected_paths = { | |
target1 / 'part=a' / 'part-0.feather', | |
target1 / 'part=b' / 'part-0.feather' | |
} | |
paths_written_set = set(map(pathlib.Path, paths_written)) | |
assert paths_written_set == expected_paths | |
target2 = tempdir / 'partitioned2' | |
ds.write_dataset( | |
dataset, target2, format="feather", partitioning=partitioning, | |
use_threads=False | |
) | |
# check that reading in gives same result | |
result1 = ds.dataset(target1, format="feather", partitioning=partitioning) | |
result2 = ds.dataset(target2, format="feather", partitioning=partitioning) | |
assert result1.to_table().equals(result2.to_table()) | |
def test_write_table(tempdir): | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10)) | |
], names=["f1", "f2", "part"]) | |
base_dir = tempdir / 'single' | |
ds.write_dataset(table, base_dir, | |
basename_template='dat_{i}.arrow', format="feather") | |
# check that all files are present | |
file_paths = list(base_dir.rglob("*")) | |
expected_paths = [base_dir / "dat_0.arrow"] | |
assert set(file_paths) == set(expected_paths) | |
# check Table roundtrip | |
result = ds.dataset(base_dir, format="ipc").to_table() | |
assert result.equals(table) | |
# with partitioning | |
base_dir = tempdir / 'partitioned' | |
expected_paths = [ | |
base_dir / "part=a", base_dir / "part=a" / "dat_0.arrow", | |
base_dir / "part=b", base_dir / "part=b" / "dat_0.arrow" | |
] | |
visited_paths = [] | |
visited_sizes = [] | |
def file_visitor(written_file): | |
visited_paths.append(written_file.path) | |
visited_sizes.append(written_file.size) | |
partitioning = ds.partitioning( | |
pa.schema([("part", pa.string())]), flavor="hive") | |
ds.write_dataset(table, base_dir, format="feather", | |
basename_template='dat_{i}.arrow', | |
partitioning=partitioning, file_visitor=file_visitor) | |
file_paths = list(base_dir.rglob("*")) | |
assert set(file_paths) == set(expected_paths) | |
actual_sizes = [os.path.getsize(path) for path in visited_paths] | |
assert visited_sizes == actual_sizes | |
result = ds.dataset(base_dir, format="ipc", partitioning=partitioning) | |
assert result.to_table().equals(table) | |
assert len(visited_paths) == 2 | |
for visited_path in visited_paths: | |
assert pathlib.Path(visited_path) in expected_paths | |
def test_write_table_multiple_fragments(tempdir): | |
table = pa.table([ | |
pa.array(range(10)), pa.array(np.random.randn(10)), | |
pa.array(np.repeat(['a', 'b'], 5)) | |
], names=["f1", "f2", "part"]) | |
table = pa.concat_tables([table]*2) | |
# Table with multiple batches written as single Fragment by default | |
base_dir = tempdir / 'single' | |
ds.write_dataset(table, base_dir, format="feather") | |
assert set(base_dir.rglob("*")) == set([base_dir / "part-0.feather"]) | |
assert ds.dataset(base_dir, format="ipc").to_table().equals(table) | |
# Same for single-element list of Table | |
base_dir = tempdir / 'single-list' | |
ds.write_dataset([table], base_dir, format="feather") | |
assert set(base_dir.rglob("*")) == set([base_dir / "part-0.feather"]) | |
assert ds.dataset(base_dir, format="ipc").to_table().equals(table) | |
# Provide list of batches to write multiple fragments | |
base_dir = tempdir / 'multiple' | |
ds.write_dataset(table.to_batches(), base_dir, format="feather") | |
assert set(base_dir.rglob("*")) == set( | |
[base_dir / "part-0.feather"]) | |
assert ds.dataset(base_dir, format="ipc").to_table().equals(table) | |
# Provide list of tables to write multiple fragments | |
base_dir = tempdir / 'multiple-table' | |
ds.write_dataset([table, table], base_dir, format="feather") | |
assert set(base_dir.rglob("*")) == set( | |
[base_dir / "part-0.feather"]) | |
assert ds.dataset(base_dir, format="ipc").to_table().equals( | |
pa.concat_tables([table]*2) | |
) | |
def test_write_iterable(tempdir): | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10)) | |
], names=["f1", "f2", "part"]) | |
base_dir = tempdir / 'inmemory_iterable' | |
ds.write_dataset((batch for batch in table.to_batches()), base_dir, | |
schema=table.schema, | |
basename_template='dat_{i}.arrow', format="feather") | |
result = ds.dataset(base_dir, format="ipc").to_table() | |
assert result.equals(table) | |
base_dir = tempdir / 'inmemory_reader' | |
reader = pa.RecordBatchReader.from_batches(table.schema, | |
table.to_batches()) | |
ds.write_dataset(reader, base_dir, | |
basename_template='dat_{i}.arrow', format="feather") | |
result = ds.dataset(base_dir, format="ipc").to_table() | |
assert result.equals(table) | |
def test_write_scanner(tempdir, dataset_reader): | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10)) | |
], names=["f1", "f2", "part"]) | |
dataset = ds.dataset(table) | |
base_dir = tempdir / 'dataset_from_scanner' | |
ds.write_dataset(dataset_reader.scanner( | |
dataset), base_dir, format="feather") | |
result = dataset_reader.to_table(ds.dataset(base_dir, format="ipc")) | |
assert result.equals(table) | |
# scanner with different projected_schema | |
base_dir = tempdir / 'dataset_from_scanner2' | |
ds.write_dataset(dataset_reader.scanner(dataset, columns=["f1"]), | |
base_dir, format="feather") | |
result = dataset_reader.to_table(ds.dataset(base_dir, format="ipc")) | |
assert result.equals(table.select(["f1"])) | |
# schema not allowed when writing a scanner | |
with pytest.raises(ValueError, match="Cannot specify a schema"): | |
ds.write_dataset(dataset_reader.scanner(dataset), base_dir, | |
schema=table.schema, format="feather") | |
def test_write_table_partitioned_dict(tempdir): | |
# ensure writing table partitioned on a dictionary column works without | |
# specifying the dictionary values explicitly | |
table = pa.table([ | |
pa.array(range(20)), | |
pa.array(np.repeat(['a', 'b'], 10)).dictionary_encode(), | |
], names=['col', 'part']) | |
partitioning = ds.partitioning(table.select(["part"]).schema) | |
base_dir = tempdir / "dataset" | |
ds.write_dataset( | |
table, base_dir, format="feather", partitioning=partitioning | |
) | |
# check roundtrip | |
partitioning_read = ds.DirectoryPartitioning.discover( | |
["part"], infer_dictionary=True) | |
result = ds.dataset( | |
base_dir, format="ipc", partitioning=partitioning_read | |
).to_table() | |
assert result.equals(table) | |
def test_write_dataset_parquet(tempdir): | |
table = pa.table([ | |
pa.array(range(20), type="uint32"), | |
pa.array(np.arange("2012-01-01", 20, dtype="datetime64[D]").astype( | |
"datetime64[ns]")), | |
pa.array(np.repeat(['a', 'b'], 10)) | |
], names=["f1", "f2", "part"]) | |
# using default "parquet" format string | |
base_dir = tempdir / 'parquet_dataset' | |
ds.write_dataset(table, base_dir, format="parquet") | |
# check that all files are present | |
file_paths = list(base_dir.rglob("*")) | |
expected_paths = [base_dir / "part-0.parquet"] | |
assert set(file_paths) == set(expected_paths) | |
# check Table roundtrip with default version | |
result = ds.dataset(base_dir, format="parquet").to_table() | |
assert result.equals(table) | |
# using custom options | |
for version in ["1.0", "2.4", "2.6"]: | |
format = ds.ParquetFileFormat() | |
opts = format.make_write_options(version=version) | |
assert "<pyarrow.dataset.ParquetFileWriteOptions" in repr(opts) | |
base_dir = tempdir / 'parquet_dataset_version{0}'.format(version) | |
ds.write_dataset(table, base_dir, format=format, file_options=opts) | |
meta = pq.read_metadata(base_dir / "part-0.parquet") | |
expected_version = "1.0" if version == "1.0" else "2.6" | |
assert meta.format_version == expected_version | |
# ensure version is actually honored based on supported datatypes | |
result = ds.dataset(base_dir, format="parquet").to_table() | |
schema = table.schema | |
if version == "1.0": | |
# uint32 is written as int64 | |
schema = schema.set(0, schema.field(0).with_type(pa.int64())) | |
if version in ("1.0", "2.4"): | |
schema = schema.set(1, schema.field(1).with_type(pa.timestamp("us"))) | |
expected = table.cast(schema) | |
assert result.equals(expected) | |
def test_write_dataset_csv(tempdir): | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10)) | |
], names=["f1", "f2", "chr1"]) | |
base_dir = tempdir / 'csv_dataset' | |
ds.write_dataset(table, base_dir, format="csv") | |
# check that all files are present | |
file_paths = list(base_dir.rglob("*")) | |
expected_paths = [base_dir / "part-0.csv"] | |
assert set(file_paths) == set(expected_paths) | |
# check Table roundtrip | |
result = ds.dataset(base_dir, format="csv").to_table() | |
assert result.equals(table) | |
# using custom options | |
format = ds.CsvFileFormat(read_options=pyarrow.csv.ReadOptions( | |
column_names=table.schema.names)) | |
opts = format.make_write_options(include_header=False) | |
base_dir = tempdir / 'csv_dataset_noheader' | |
ds.write_dataset(table, base_dir, format=format, file_options=opts) | |
result = ds.dataset(base_dir, format=format).to_table() | |
assert result.equals(table) | |
def test_write_dataset_parquet_file_visitor(tempdir): | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10)) | |
], names=["f1", "f2", "part"]) | |
visitor_called = False | |
def file_visitor(written_file): | |
nonlocal visitor_called | |
if (written_file.metadata is not None and | |
written_file.metadata.num_columns == 3): | |
visitor_called = True | |
base_dir = tempdir / 'parquet_dataset' | |
ds.write_dataset(table, base_dir, format="parquet", | |
file_visitor=file_visitor) | |
assert visitor_called | |
def test_partition_dataset_parquet_file_visitor(tempdir): | |
f1_vals = [item for chunk in range(4) for item in [chunk] * 10] | |
f2_vals = [item*10 for chunk in range(4) for item in [chunk] * 10] | |
table = pa.table({'f1': f1_vals, 'f2': f2_vals, | |
'part': np.repeat(['a', 'b'], 20)}) | |
root_path = tempdir / 'partitioned' | |
partitioning = ds.partitioning( | |
pa.schema([("part", pa.string())]), flavor="hive") | |
paths_written = [] | |
sample_metadata = None | |
def file_visitor(written_file): | |
nonlocal sample_metadata | |
if written_file.metadata: | |
sample_metadata = written_file.metadata | |
paths_written.append(written_file.path) | |
ds.write_dataset( | |
table, root_path, format="parquet", partitioning=partitioning, | |
use_threads=True, file_visitor=file_visitor | |
) | |
expected_paths = { | |
root_path / 'part=a' / 'part-0.parquet', | |
root_path / 'part=b' / 'part-0.parquet' | |
} | |
paths_written_set = set(map(pathlib.Path, paths_written)) | |
assert paths_written_set == expected_paths | |
assert sample_metadata is not None | |
assert sample_metadata.num_columns == 2 | |
def test_write_dataset_arrow_schema_metadata(tempdir): | |
# ensure we serialize ARROW schema in the parquet metadata, to have a | |
# correct roundtrip (e.g. preserve non-UTC timezone) | |
table = pa.table({"a": [pd.Timestamp("2012-01-01", tz="Europe/Brussels")]}) | |
assert table["a"].type.tz == "Europe/Brussels" | |
ds.write_dataset(table, tempdir, format="parquet") | |
result = pq.read_table(tempdir / "part-0.parquet") | |
assert result["a"].type.tz == "Europe/Brussels" | |
def test_write_dataset_schema_metadata(tempdir): | |
# ensure that schema metadata gets written | |
from pyarrow import feather | |
table = pa.table({'a': [1, 2, 3]}) | |
table = table.replace_schema_metadata({b'key': b'value'}) | |
ds.write_dataset(table, tempdir, format="feather") | |
schema = feather.read_table(tempdir / "part-0.feather").schema | |
assert schema.metadata == {b'key': b'value'} | |
def test_write_dataset_schema_metadata_parquet(tempdir): | |
# ensure that schema metadata gets written | |
table = pa.table({'a': [1, 2, 3]}) | |
table = table.replace_schema_metadata({b'key': b'value'}) | |
ds.write_dataset(table, tempdir, format="parquet") | |
schema = pq.read_table(tempdir / "part-0.parquet").schema | |
assert schema.metadata == {b'key': b'value'} | |
def test_write_dataset_s3(s3_example_simple): | |
# write dataset with s3 filesystem | |
_, _, fs, _, host, port, access_key, secret_key = s3_example_simple | |
uri_template = ( | |
"s3://{}:{}@{{}}?scheme=http&endpoint_override={}:{}".format( | |
access_key, secret_key, host, port) | |
) | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10))], | |
names=["f1", "f2", "part"] | |
) | |
part = ds.partitioning(pa.schema([("part", pa.string())]), flavor="hive") | |
# writing with filesystem object | |
ds.write_dataset( | |
table, "mybucket/dataset", filesystem=fs, format="feather", | |
partitioning=part | |
) | |
# check roundtrip | |
result = ds.dataset( | |
"mybucket/dataset", filesystem=fs, format="ipc", partitioning="hive" | |
).to_table() | |
assert result.equals(table) | |
# writing with URI | |
uri = uri_template.format("mybucket/dataset2") | |
ds.write_dataset(table, uri, format="feather", partitioning=part) | |
# check roundtrip | |
result = ds.dataset( | |
"mybucket/dataset2", filesystem=fs, format="ipc", partitioning="hive" | |
).to_table() | |
assert result.equals(table) | |
# writing with path + URI as filesystem | |
uri = uri_template.format("mybucket") | |
ds.write_dataset( | |
table, "dataset3", filesystem=uri, format="feather", partitioning=part | |
) | |
# check roundtrip | |
result = ds.dataset( | |
"mybucket/dataset3", filesystem=fs, format="ipc", partitioning="hive" | |
).to_table() | |
assert result.equals(table) | |
_minio_put_only_policy = """{ | |
"Version": "2012-10-17", | |
"Statement": [ | |
{ | |
"Effect": "Allow", | |
"Action": [ | |
"s3:PutObject", | |
"s3:ListBucket", | |
"s3:GetObjectVersion" | |
], | |
"Resource": [ | |
"arn:aws:s3:::*" | |
] | |
} | |
] | |
}""" | |
def test_write_dataset_s3_put_only(s3_server): | |
# [ARROW-15892] Testing the create_dir flag which will restrict | |
# creating a new directory for writing a dataset. This is | |
# required while writing a dataset in s3 where we have very | |
# limited permissions and thus we can directly write the dataset | |
# without creating a directory. | |
from pyarrow.fs import S3FileSystem | |
# write dataset with s3 filesystem | |
host, port, _, _ = s3_server['connection'] | |
fs = S3FileSystem( | |
access_key='limited', | |
secret_key='limited123', | |
endpoint_override='{}:{}'.format(host, port), | |
scheme='http' | |
) | |
_configure_s3_limited_user(s3_server, _minio_put_only_policy) | |
table = pa.table([ | |
pa.array(range(20)), pa.array(np.random.randn(20)), | |
pa.array(np.repeat(['a', 'b'], 10))], | |
names=["f1", "f2", "part"] | |
) | |
part = ds.partitioning(pa.schema([("part", pa.string())]), flavor="hive") | |
# writing with filesystem object with create_dir flag set to false | |
ds.write_dataset( | |
table, "existing-bucket", filesystem=fs, | |
format="feather", create_dir=False, partitioning=part, | |
existing_data_behavior='overwrite_or_ignore' | |
) | |
# check roundtrip | |
result = ds.dataset( | |
"existing-bucket", filesystem=fs, format="ipc", partitioning="hive" | |
).to_table() | |
assert result.equals(table) | |
# Passing create_dir is fine if the bucket already exists | |
ds.write_dataset( | |
table, "existing-bucket", filesystem=fs, | |
format="feather", create_dir=True, partitioning=part, | |
existing_data_behavior='overwrite_or_ignore' | |
) | |
# check roundtrip | |
result = ds.dataset( | |
"existing-bucket", filesystem=fs, format="ipc", partitioning="hive" | |
).to_table() | |
assert result.equals(table) | |
# Error enforced by filesystem | |
with pytest.raises(OSError, | |
match="Bucket 'non-existing-bucket' not found"): | |
ds.write_dataset( | |
table, "non-existing-bucket", filesystem=fs, | |
format="feather", create_dir=True, | |
existing_data_behavior='overwrite_or_ignore' | |
) | |
# Error enforced by minio / S3 service | |
fs = S3FileSystem( | |
access_key='limited', | |
secret_key='limited123', | |
endpoint_override='{}:{}'.format(host, port), | |
scheme='http', | |
allow_bucket_creation=True, | |
) | |
with pytest.raises(OSError, match="Access Denied"): | |
ds.write_dataset( | |
table, "non-existing-bucket", filesystem=fs, | |
format="feather", create_dir=True, | |
existing_data_behavior='overwrite_or_ignore' | |
) | |
def test_dataset_null_to_dictionary_cast(tempdir, dataset_reader): | |
# ARROW-12420 | |
table = pa.table({"a": [None, None]}) | |
pq.write_table(table, tempdir / "test.parquet") | |
schema = pa.schema([ | |
pa.field("a", pa.dictionary(pa.int32(), pa.string())) | |
]) | |
fsds = ds.FileSystemDataset.from_paths( | |
paths=[tempdir / "test.parquet"], | |
schema=schema, | |
format=ds.ParquetFileFormat(), | |
filesystem=fs.LocalFileSystem(), | |
) | |
table = dataset_reader.to_table(fsds) | |
assert table.schema == schema | |
def test_dataset_join(tempdir): | |
t1 = pa.table({ | |
"colA": [1, 2, 6], | |
"col2": ["a", "b", "f"] | |
}) | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
t2 = pa.table({ | |
"colB": [99, 2, 1], | |
"col3": ["Z", "B", "A"] | |
}) | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
result = ds1.join(ds2, "colA", "colB") | |
assert result.to_table() == pa.table({ | |
"colA": [1, 2, 6], | |
"col2": ["a", "b", "f"], | |
"col3": ["A", "B", None] | |
}) | |
result = ds1.join(ds2, "colA", "colB", join_type="full outer") | |
assert result.to_table().sort_by("colA") == pa.table({ | |
"colA": [1, 2, 6, 99], | |
"col2": ["a", "b", "f", None], | |
"col3": ["A", "B", None, "Z"] | |
}) | |
def test_dataset_join_unique_key(tempdir): | |
t1 = pa.table({ | |
"colA": [1, 2, 6], | |
"col2": ["a", "b", "f"] | |
}) | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
t2 = pa.table({ | |
"colA": [99, 2, 1], | |
"col3": ["Z", "B", "A"] | |
}) | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
result = ds1.join(ds2, "colA") | |
assert result.to_table() == pa.table({ | |
"colA": [1, 2, 6], | |
"col2": ["a", "b", "f"], | |
"col3": ["A", "B", None] | |
}) | |
result = ds1.join(ds2, "colA", join_type="full outer", right_suffix="_r") | |
assert result.to_table().sort_by("colA") == pa.table({ | |
"colA": [1, 2, 6, 99], | |
"col2": ["a", "b", "f", None], | |
"col3": ["A", "B", None, "Z"] | |
}) | |
def test_dataset_join_collisions(tempdir): | |
t1 = pa.table({ | |
"colA": [1, 2, 6], | |
"colB": [10, 20, 60], | |
"colVals": ["a", "b", "f"] | |
}) | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
t2 = pa.table({ | |
"colA": [99, 2, 1], | |
"colB": [99, 20, 10], | |
"colVals": ["Z", "B", "A"] | |
}) | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
result = ds1.join(ds2, "colA", join_type="full outer", right_suffix="_r") | |
assert result.to_table().sort_by("colA") == pa.table([ | |
[1, 2, 6, 99], | |
[10, 20, 60, None], | |
["a", "b", "f", None], | |
[10, 20, None, 99], | |
["A", "B", None, "Z"], | |
], names=["colA", "colB", "colVals", "colB_r", "colVals_r"]) | |
def test_dataset_join_asof(tempdir): | |
t1 = pa.Table.from_pydict({ | |
"colA": [1, 1, 5, 6, 7], | |
"col2": ["a", "b", "a", "b", "f"] | |
}) | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
t2 = pa.Table.from_pydict({ | |
"colB": [2, 9, 15], | |
"col3": ["a", "b", "g"], | |
"colC": [1., 3., 5.] | |
}) | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
result = ds1.join_asof( | |
ds2, on="colA", by="col2", tolerance=1, | |
right_on="colB", right_by="col3", | |
) | |
assert result.to_table().sort_by("colA") == pa.table({ | |
"colA": [1, 1, 5, 6, 7], | |
"col2": ["a", "b", "a", "b", "f"], | |
"colC": [1., None, None, None, None], | |
}) | |
def test_dataset_join_asof_multiple_by(tempdir): | |
t1 = pa.table({ | |
"colA": [1, 2, 6], | |
"colB": [10, 20, 60], | |
"on": [1, 2, 3], | |
}) | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
t2 = pa.table({ | |
"colB": [99, 20, 10], | |
"colVals": ["Z", "B", "A"], | |
"colA": [99, 2, 1], | |
"on": [2, 3, 4], | |
}) | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
result = ds1.join_asof( | |
ds2, on="on", by=["colA", "colB"], tolerance=1 | |
) | |
assert result.to_table().sort_by("colA") == pa.table({ | |
"colA": [1, 2, 6], | |
"colB": [10, 20, 60], | |
"on": [1, 2, 3], | |
"colVals": [None, "B", None], | |
}) | |
def test_dataset_join_asof_empty_by(tempdir): | |
t1 = pa.table({ | |
"on": [1, 2, 3], | |
}) | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
t2 = pa.table({ | |
"colVals": ["Z", "B", "A"], | |
"on": [2, 3, 4], | |
}) | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
result = ds1.join_asof( | |
ds2, on="on", by=[], tolerance=1 | |
) | |
assert result.to_table() == pa.table({ | |
"on": [1, 2, 3], | |
"colVals": ["Z", "Z", "B"], | |
}) | |
def test_dataset_join_asof_collisions(tempdir): | |
t1 = pa.table({ | |
"colA": [1, 2, 6], | |
"colB": [10, 20, 60], | |
"on": [1, 2, 3], | |
"colVals": ["a", "b", "f"] | |
}) | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
t2 = pa.table({ | |
"colB": [99, 20, 10], | |
"colVals": ["Z", "B", "A"], | |
"colUniq": [100, 200, 300], | |
"colA": [99, 2, 1], | |
"on": [2, 3, 4], | |
}) | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
msg = ( | |
"Columns {'colVals'} present in both tables. " | |
"AsofJoin does not support column collisions." | |
) | |
with pytest.raises(ValueError, match=msg): | |
ds1.join_asof( | |
ds2, on="on", by=["colA", "colB"], tolerance=1, | |
right_on="on", right_by=["colA", "colB"], | |
) | |
def test_dataset_filter(tempdir, dstype): | |
t1 = pa.table({ | |
"colA": [1, 2, 6, 8], | |
"col2": ["a", "b", "f", "g"] | |
}) | |
if dstype == "fs": | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
elif dstype == "mem": | |
ds1 = ds.dataset(t1) | |
else: | |
raise NotImplementedError | |
# Ensure chained filtering works. | |
result = ds1.filter(pc.field("colA") < 3).filter(pc.field("col2") == "a") | |
expected = ds.FileSystemDataset if dstype == "fs" else ds.InMemoryDataset | |
assert isinstance(result, expected) | |
assert result.to_table() == pa.table({ | |
"colA": [1], | |
"col2": ["a"] | |
}) | |
assert result.head(5) == pa.table({ | |
"colA": [1], | |
"col2": ["a"] | |
}) | |
# Ensure that further filtering with scanners works too | |
r2 = ds1.filter(pc.field("colA") < 8).filter( | |
pc.field("colA") > 1).scanner(filter=pc.field("colA") != 6) | |
assert r2.to_table() == pa.table({ | |
"colA": [2], | |
"col2": ["b"] | |
}) | |
# Ensure that writing back to disk works. | |
ds.write_dataset(result, tempdir / "filtered", format="ipc") | |
filtered = ds.dataset(tempdir / "filtered", format="ipc") | |
assert filtered.to_table() == pa.table({ | |
"colA": [1], | |
"col2": ["a"] | |
}) | |
# Ensure that joining to a filtered Dataset works. | |
joined = result.join(ds.dataset(pa.table({ | |
"colB": [10, 20], | |
"col2": ["a", "b"] | |
})), keys="col2", join_type="right outer") | |
assert joined.to_table().sort_by("colB") == pa.table({ | |
"colA": [1, None], | |
"colB": [10, 20], | |
"col2": ["a", "b"] | |
}) | |
# Filter with None doesn't work for now | |
with pytest.raises(TypeError): | |
ds1.filter(None) | |
# Can't get fragments of a filtered dataset | |
with pytest.raises(ValueError): | |
result.get_fragments() | |
# Ensure replacing schema preserves the filter. | |
schema_without_col2 = ds1.schema.remove(1) | |
newschema = ds1.filter( | |
pc.field("colA") < 3 | |
).replace_schema(schema_without_col2) | |
assert newschema.to_table() == pa.table({ | |
"colA": [1, 2], | |
}) | |
with pytest.raises(pa.ArrowInvalid): | |
# The schema might end up being replaced with | |
# something that makes the filter invalid. | |
# Let's make sure we error nicely. | |
result.replace_schema(schema_without_col2).to_table() | |
def test_union_dataset_filter(tempdir, dstype): | |
t1 = pa.table({ | |
"colA": [1, 2, 6, 8], | |
"col2": ["a", "b", "f", "g"] | |
}) | |
t2 = pa.table({ | |
"colA": [9, 10, 11], | |
"col2": ["h", "i", "l"] | |
}) | |
if dstype == "fs": | |
ds.write_dataset(t1, tempdir / "t1", format="ipc") | |
ds1 = ds.dataset(tempdir / "t1", format="ipc") | |
ds.write_dataset(t2, tempdir / "t2", format="ipc") | |
ds2 = ds.dataset(tempdir / "t2", format="ipc") | |
elif dstype == "mem": | |
ds1 = ds.dataset(t1) | |
ds2 = ds.dataset(t2) | |
else: | |
raise NotImplementedError | |
filtered_union_ds = ds.dataset((ds1, ds2)).filter( | |
(pc.field("colA") < 3) | (pc.field("colA") == 9) | |
) | |
assert filtered_union_ds.to_table() == pa.table({ | |
"colA": [1, 2, 9], | |
"col2": ["a", "b", "h"] | |
}) | |
joined = filtered_union_ds.join(ds.dataset(pa.table({ | |
"colB": [10, 20], | |
"col2": ["a", "b"] | |
})), keys="col2", join_type="left outer") | |
assert joined.to_table().sort_by("colA") == pa.table({ | |
"colA": [1, 2, 9], | |
"col2": ["a", "b", "h"], | |
"colB": [10, 20, None] | |
}) | |
filtered_ds1 = ds1.filter(pc.field("colA") < 3) | |
filtered_ds2 = ds2.filter(pc.field("colA") < 10) | |
with pytest.raises(ValueError, match="currently not supported"): | |
ds.dataset((filtered_ds1, filtered_ds2)) | |
def test_parquet_dataset_filter(tempdir): | |
root_path = tempdir / "test_parquet_dataset_filter" | |
metadata_path, _ = _create_parquet_dataset_simple(root_path) | |
dataset = ds.parquet_dataset(metadata_path) | |
result = dataset.to_table() | |
assert result.num_rows == 40 | |
filtered_ds = dataset.filter(pc.field("f1") < 2) | |
assert filtered_ds.to_table().num_rows == 20 | |
with pytest.raises(ValueError): | |
filtered_ds.get_fragments() | |
def test_write_dataset_with_scanner_use_projected_schema(tempdir): | |
""" | |
Ensure the projected schema is used to validate partitions for scanner | |
https://issues.apache.org/jira/browse/ARROW-17228 | |
""" | |
table = pa.table([pa.array(range(20))], names=["original_column"]) | |
table_dataset = ds.dataset(table) | |
columns = { | |
"renamed_column": ds.field("original_column"), | |
} | |
scanner = table_dataset.scanner(columns=columns) | |
ds.write_dataset( | |
scanner, tempdir, partitioning=["renamed_column"], format="ipc") | |
with ( | |
pytest.raises( | |
KeyError, match=r"'Column original_column does not exist in schema" | |
) | |
): | |
ds.write_dataset( | |
scanner, tempdir, partitioning=["original_column"], format="ipc" | |
) | |
def test_read_table_nested_columns(tempdir, format): | |
if format == "parquet": | |
pytest.importorskip("pyarrow.parquet") | |
table = pa.table({"user_id": ["abc123", "qrs456"], | |
"a.dotted.field": [1, 2], | |
"interaction": [ | |
{"type": None, "element": "button", | |
"values": [1, 2], "structs": [{"foo": "bar"}, None]}, | |
{"type": "scroll", "element": "window", | |
"values": [None, 3, 4], "structs": [{"fizz": "buzz"}]} | |
]}) | |
ds.write_dataset(table, tempdir / "table", format=format) | |
ds1 = ds.dataset(tempdir / "table", format=format) | |
# Dot path to read subsets of nested data | |
table = ds1.to_table( | |
columns=["user_id", "interaction.type", "interaction.values", | |
"interaction.structs", "a.dotted.field"]) | |
assert table.to_pylist() == [ | |
{'user_id': 'abc123', 'type': None, 'values': [1, 2], | |
'structs': [{'fizz': None, 'foo': 'bar'}, None], 'a.dotted.field': 1}, | |
{'user_id': 'qrs456', 'type': 'scroll', 'values': [None, 3, 4], | |
'structs': [{'fizz': 'buzz', 'foo': None}], 'a.dotted.field': 2} | |
] | |
def test_dataset_partition_with_slash(tmpdir): | |
from pyarrow import dataset as ds | |
path = tmpdir / "slash-writer-x" | |
dt_table = pa.Table.from_arrays([ | |
pa.array([1, 2, 3, 4, 5], pa.int32()), | |
pa.array(["experiment/A/f.csv", "experiment/B/f.csv", | |
"experiment/A/f.csv", "experiment/C/k.csv", | |
"experiment/M/i.csv"], pa.utf8())], ["exp_id", "exp_meta"]) | |
ds.write_dataset( | |
data=dt_table, | |
base_dir=path, | |
format='ipc', | |
partitioning=['exp_meta'], | |
partitioning_flavor='hive', | |
) | |
read_table = ds.dataset( | |
source=path, | |
format='ipc', | |
partitioning='hive', | |
schema=pa.schema([pa.field("exp_id", pa.int32()), | |
pa.field("exp_meta", pa.utf8())]) | |
).to_table().combine_chunks() | |
assert dt_table == read_table.sort_by("exp_id") | |
exp_meta = dt_table.column(1).to_pylist() | |
exp_meta = sorted(set(exp_meta)) # take unique | |
encoded_paths = ["exp_meta=" + quote(path, safe='') for path in exp_meta] | |
file_paths = sorted(os.listdir(path)) | |
assert encoded_paths == file_paths | |
def test_write_dataset_preserve_nullability(tempdir): | |
# GH-35730 | |
schema_nullable = pa.schema([ | |
pa.field("x", pa.int64(), nullable=False), | |
pa.field("y", pa.int64(), nullable=True)]) | |
arrays = [[1, 2, 3], [None, 5, None]] | |
table = pa.Table.from_arrays(arrays, schema=schema_nullable) | |
pq.write_to_dataset(table, tempdir / "nulltest1") | |
dataset = ds.dataset(tempdir / "nulltest1", format="parquet") | |
# nullability of field is preserved | |
assert dataset.to_table().schema.equals(schema_nullable) | |
ds.write_dataset(table, tempdir / "nulltest2", format="parquet") | |
dataset = ds.dataset(tempdir / "nulltest2", format="parquet") | |
assert dataset.to_table().schema.equals(schema_nullable) | |
ds.write_dataset([table, table], tempdir / "nulltest3", format="parquet") | |
dataset = ds.dataset(tempdir / "nulltest3", format="parquet") | |
assert dataset.to_table().schema.equals(schema_nullable) | |
def test_write_dataset_preserve_field_metadata(tempdir): | |
schema_metadata = pa.schema([ | |
pa.field("x", pa.int64(), metadata={b'foo': b'bar'}), | |
pa.field("y", pa.int64())]) | |
schema_no_meta = pa.schema([ | |
pa.field("x", pa.int64()), | |
pa.field("y", pa.int64())]) | |
arrays = [[1, 2, 3], [None, 5, None]] | |
table = pa.Table.from_arrays(arrays, schema=schema_metadata) | |
table_no_meta = pa.Table.from_arrays(arrays, schema=schema_no_meta) | |
# If no schema is provided the schema of the first table will be used | |
ds.write_dataset([table, table_no_meta], tempdir / "test1", format="parquet") | |
dataset = ds.dataset(tempdir / "test1", format="parquet") | |
assert dataset.to_table().schema.equals(schema_metadata, check_metadata=True) | |
ds.write_dataset([table_no_meta, table], tempdir / "test2", format="parquet") | |
dataset = ds.dataset(tempdir / "test2", format="parquet") | |
assert dataset.to_table().schema.equals(schema_no_meta, check_metadata=True) | |
# If a schema is provided it will override the schema of the input | |
ds.write_dataset([table_no_meta, table], tempdir / "test3", format="parquet", | |
schema=schema_metadata) | |
dataset = ds.dataset(tempdir / "test3", format="parquet") | |
assert dataset.to_table().schema.equals(schema_metadata, check_metadata=True) | |
def test_write_dataset_write_page_index(tempdir): | |
for write_statistics in [True, False]: | |
for write_page_index in [True, False]: | |
schema = pa.schema([ | |
pa.field("x", pa.int64()), | |
pa.field("y", pa.int64())]) | |
arrays = [[1, 2, 3], [None, 5, None]] | |
table = pa.Table.from_arrays(arrays, schema=schema) | |
file_format = ds.ParquetFileFormat() | |
base_dir = tempdir / f"write_page_index_{write_page_index}" | |
ds.write_dataset( | |
table, | |
base_dir, | |
format="parquet", | |
file_options=file_format.make_write_options( | |
write_statistics=write_statistics, | |
write_page_index=write_page_index, | |
), | |
existing_data_behavior='overwrite_or_ignore', | |
) | |
ds1 = ds.dataset(base_dir, format="parquet") | |
for file in ds1.files: | |
# Can retrieve sorting columns from metadata | |
metadata = pq.read_metadata(file) | |
cc = metadata.row_group(0).column(0) | |
assert cc.has_offset_index is write_page_index | |
assert cc.has_column_index is write_page_index & write_statistics | |
def test_dataset_sort_by(tempdir, dstype): | |
table = pa.table([ | |
pa.array([3, 1, 4, 2, 5]), | |
pa.array(["b", "a", "b", "a", "c"]), | |
], names=["values", "keys"]) | |
if dstype == "fs": | |
ds.write_dataset(table, tempdir / "t1", format="ipc") | |
dt = ds.dataset(tempdir / "t1", format="ipc") | |
elif dstype == "mem": | |
dt = ds.dataset(table) | |
else: | |
raise NotImplementedError | |
assert dt.sort_by("values").to_table().to_pydict() == { | |
"keys": ["a", "a", "b", "b", "c"], | |
"values": [1, 2, 3, 4, 5] | |
} | |
assert dt.sort_by([("values", "descending")]).to_table().to_pydict() == { | |
"keys": ["c", "b", "b", "a", "a"], | |
"values": [5, 4, 3, 2, 1] | |
} | |
assert dt.filter((pc.field("values") < 4)).sort_by( | |
"values" | |
).to_table().to_pydict() == { | |
"keys": ["a", "a", "b"], | |
"values": [1, 2, 3] | |
} | |
table = pa.Table.from_arrays([ | |
pa.array([5, 7, 7, 35], type=pa.int64()), | |
pa.array(["foo", "car", "bar", "foobar"]) | |
], names=["a", "b"]) | |
dt = ds.dataset(table) | |
sorted_tab = dt.sort_by([("a", "descending")]) | |
sorted_tab_dict = sorted_tab.to_table().to_pydict() | |
assert sorted_tab_dict["a"] == [35, 7, 7, 5] | |
assert sorted_tab_dict["b"] == ["foobar", "car", "bar", "foo"] | |
sorted_tab = dt.sort_by([("a", "ascending")]) | |
sorted_tab_dict = sorted_tab.to_table().to_pydict() | |
assert sorted_tab_dict["a"] == [5, 7, 7, 35] | |
assert sorted_tab_dict["b"] == ["foo", "car", "bar", "foobar"] | |
def test_checksum_write_dataset_read_dataset_to_table(tempdir): | |
"""Check that checksum verification works for datasets created with | |
ds.write_dataset and read with ds.dataset.to_table""" | |
table_orig = pa.table({'a': [1, 2, 3, 4]}) | |
# Write a sample dataset with page checksum enabled | |
pq_write_format = pa.dataset.ParquetFileFormat() | |
write_options = pq_write_format.make_write_options( | |
write_page_checksum=True) | |
original_dir_path = tempdir / 'correct_dir' | |
ds.write_dataset( | |
data=table_orig, | |
base_dir=original_dir_path, | |
format=pq_write_format, | |
file_options=write_options, | |
) | |
# Open dataset and verify that the data is correct | |
pq_scan_opts_crc = ds.ParquetFragmentScanOptions( | |
page_checksum_verification=True) | |
pq_read_format_crc = pa.dataset.ParquetFileFormat( | |
default_fragment_scan_options=pq_scan_opts_crc) | |
table_check = ds.dataset( | |
original_dir_path, | |
format=pq_read_format_crc | |
).to_table() | |
assert table_orig == table_check | |
# Copy dataset dir (which should be just one file) | |
corrupted_dir_path = tempdir / 'corrupted_dir' | |
copytree(original_dir_path, corrupted_dir_path) | |
# Read the only file in the path as binary and swap the 31-th and 36-th | |
# bytes. This should be equivalent to storing the following data: | |
# pa.table({'a': [1, 3, 2, 4]}) | |
corrupted_file_path_list = list(corrupted_dir_path.iterdir()) | |
assert len(corrupted_file_path_list) == 1 | |
corrupted_file_path = corrupted_file_path_list[0] | |
bin_data = bytearray(corrupted_file_path.read_bytes()) | |
# Swap two bytes to emulate corruption. Also, check that the two bytes are | |
# different, otherwise no corruption occurs | |
assert bin_data[31] != bin_data[36] | |
bin_data[31], bin_data[36] = bin_data[36], bin_data[31] | |
# Write the corrupted data to the parquet file | |
corrupted_file_path.write_bytes(bin_data) | |
# Case 1: Reading the corrupted file with dataset().to_table() and without | |
# page checksum verification succeeds but yields corrupted data | |
pq_scan_opts_no_crc = ds.ParquetFragmentScanOptions( | |
page_checksum_verification=False) | |
pq_read_format_no_crc = pa.dataset.ParquetFileFormat( | |
default_fragment_scan_options=pq_scan_opts_no_crc) | |
table_corrupt = ds.dataset( | |
corrupted_dir_path, format=pq_read_format_no_crc).to_table() | |
# The read should complete without error, but the table has different | |
# content than the original file! | |
assert table_corrupt != table_orig | |
assert table_corrupt == pa.table({'a': [1, 3, 2, 4]}) | |
# Case 2: Reading the corrupted file with read_table() and with page | |
# checksum verification enabled raises an exception | |
with pytest.raises(OSError, match="CRC checksum verification"): | |
_ = ds.dataset( | |
corrupted_dir_path, | |
format=pq_read_format_crc | |
).to_table() | |
def test_make_write_options_error(): | |
# GH-39440: calling make_write_options as a static class method | |
msg_1 = ("make_write_options() should be called on an " | |
"instance of ParquetFileFormat") | |
# GH-41043: In Cython2 all Cython methods were "regular" C extension methods | |
# see: https://github.com/cython/cython/issues/6127#issuecomment-2038153359 | |
msg_2 = ("descriptor 'make_write_options' for " | |
"'pyarrow._dataset_parquet.ParquetFileFormat' objects " | |
"doesn't apply to a 'int'") | |
with pytest.raises(TypeError) as excinfo: | |
pa.dataset.ParquetFileFormat.make_write_options(43) | |
assert msg_1 in str(excinfo.value) or msg_2 in str(excinfo.value) | |
pformat = pa.dataset.ParquetFileFormat() | |
msg = "make_write_options\\(\\) takes exactly 0 positional arguments" | |
with pytest.raises(TypeError, match=msg): | |
pformat.make_write_options(43) | |