peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_pandas.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import gc | |
import decimal | |
import json | |
import multiprocessing as mp | |
import sys | |
import warnings | |
from collections import OrderedDict | |
from datetime import date, datetime, time, timedelta, timezone | |
import hypothesis as h | |
import hypothesis.strategies as st | |
import numpy as np | |
import numpy.testing as npt | |
import pytest | |
from pyarrow.pandas_compat import get_logical_type, _pandas_api | |
from pyarrow.tests.util import invoke_script, random_ascii, rands | |
import pyarrow.tests.strategies as past | |
import pyarrow.tests.util as test_util | |
from pyarrow.vendored.version import Version | |
import pyarrow as pa | |
try: | |
from pyarrow import parquet as pq | |
except ImportError: | |
pass | |
try: | |
import pandas as pd | |
import pandas.testing as tm | |
from .pandas_examples import dataframe_with_arrays, dataframe_with_lists | |
except ImportError: | |
pass | |
try: | |
_np_VisibleDeprecationWarning = np.VisibleDeprecationWarning | |
except AttributeError: | |
from numpy.exceptions import ( | |
VisibleDeprecationWarning as _np_VisibleDeprecationWarning | |
) | |
# Marks all of the tests in this module | |
pytestmark = pytest.mark.pandas | |
def _alltypes_example(size=100): | |
return pd.DataFrame({ | |
'uint8': np.arange(size, dtype=np.uint8), | |
'uint16': np.arange(size, dtype=np.uint16), | |
'uint32': np.arange(size, dtype=np.uint32), | |
'uint64': np.arange(size, dtype=np.uint64), | |
'int8': np.arange(size, dtype=np.int16), | |
'int16': np.arange(size, dtype=np.int16), | |
'int32': np.arange(size, dtype=np.int32), | |
'int64': np.arange(size, dtype=np.int64), | |
'float32': np.arange(size, dtype=np.float32), | |
'float64': np.arange(size, dtype=np.float64), | |
'bool': np.random.randn(size) > 0, | |
'datetime[s]': np.arange("2016-01-01T00:00:00.001", size, | |
dtype='datetime64[s]'), | |
'datetime[ms]': np.arange("2016-01-01T00:00:00.001", size, | |
dtype='datetime64[ms]'), | |
'datetime[us]': np.arange("2016-01-01T00:00:00.001", size, | |
dtype='datetime64[us]'), | |
'datetime[ns]': np.arange("2016-01-01T00:00:00.001", size, | |
dtype='datetime64[ns]'), | |
'timedelta64[s]': np.arange(0, size, dtype='timedelta64[s]'), | |
'timedelta64[ms]': np.arange(0, size, dtype='timedelta64[ms]'), | |
'timedelta64[us]': np.arange(0, size, dtype='timedelta64[us]'), | |
'timedelta64[ns]': np.arange(0, size, dtype='timedelta64[ns]'), | |
'str': [str(x) for x in range(size)], | |
'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], | |
'empty_str': [''] * size | |
}) | |
def _check_pandas_roundtrip(df, expected=None, use_threads=False, | |
expected_schema=None, | |
check_dtype=True, schema=None, | |
preserve_index=False, | |
as_batch=False): | |
klass = pa.RecordBatch if as_batch else pa.Table | |
table = klass.from_pandas(df, schema=schema, | |
preserve_index=preserve_index, | |
nthreads=2 if use_threads else 1) | |
result = table.to_pandas(use_threads=use_threads) | |
if expected_schema: | |
# all occurrences of _check_pandas_roundtrip passes expected_schema | |
# without the pandas generated key-value metadata | |
assert table.schema.equals(expected_schema) | |
if expected is None: | |
expected = df | |
for col in expected.columns: | |
if expected[col].dtype == 'object': | |
expected[col] = expected[col].replace({np.nan: None}) | |
with warnings.catch_warnings(): | |
warnings.filterwarnings( | |
"ignore", "elementwise comparison failed", DeprecationWarning) | |
tm.assert_frame_equal(result, expected, check_dtype=check_dtype, | |
check_index_type=('equiv' if preserve_index | |
else False)) | |
def _check_series_roundtrip(s, type_=None, expected_pa_type=None): | |
arr = pa.array(s, from_pandas=True, type=type_) | |
if type_ is not None and expected_pa_type is None: | |
expected_pa_type = type_ | |
if expected_pa_type is not None: | |
assert arr.type == expected_pa_type | |
result = pd.Series(arr.to_pandas(), name=s.name) | |
tm.assert_series_equal(s, result) | |
def _check_array_roundtrip(values, expected=None, mask=None, | |
type=None): | |
arr = pa.array(values, from_pandas=True, mask=mask, type=type) | |
result = arr.to_pandas() | |
values_nulls = pd.isnull(values) | |
if mask is None: | |
assert arr.null_count == values_nulls.sum() | |
else: | |
assert arr.null_count == (mask | values_nulls).sum() | |
if expected is None: | |
if mask is None: | |
expected = pd.Series(values) | |
else: | |
expected = pd.Series(values).copy() | |
expected[mask.copy()] = None | |
if expected.dtype == 'object': | |
expected = expected.replace({np.nan: None}) | |
tm.assert_series_equal(pd.Series(result), expected, check_names=False) | |
def _check_array_from_pandas_roundtrip(np_array, type=None): | |
arr = pa.array(np_array, from_pandas=True, type=type) | |
result = arr.to_pandas() | |
npt.assert_array_equal(result, np_array) | |
class TestConvertMetadata: | |
""" | |
Conversion tests for Pandas metadata & indices. | |
""" | |
def test_non_string_columns(self): | |
df = pd.DataFrame({0: [1, 2, 3]}) | |
table = pa.Table.from_pandas(df) | |
assert table.field(0).name == '0' | |
def test_non_string_columns_with_index(self): | |
df = pd.DataFrame({0: [1.0, 2.0, 3.0], 1: [4.0, 5.0, 6.0]}) | |
df = df.set_index(0) | |
# assert that the from_pandas raises the warning | |
with pytest.warns(UserWarning): | |
table = pa.Table.from_pandas(df) | |
assert table.field(0).name == '1' | |
expected = df.copy() | |
# non-str index name will be converted to str | |
expected.index.name = str(expected.index.name) | |
with pytest.warns(UserWarning): | |
_check_pandas_roundtrip(df, expected=expected, | |
preserve_index=True) | |
def test_from_pandas_with_columns(self): | |
df = pd.DataFrame({0: [1, 2, 3], 1: [1, 3, 3], 2: [2, 4, 5]}, | |
columns=[1, 0]) | |
table = pa.Table.from_pandas(df, columns=[0, 1]) | |
expected = pa.Table.from_pandas(df[[0, 1]]) | |
assert expected.equals(table) | |
record_batch_table = pa.RecordBatch.from_pandas(df, columns=[0, 1]) | |
record_batch_expected = pa.RecordBatch.from_pandas(df[[0, 1]]) | |
assert record_batch_expected.equals(record_batch_table) | |
def test_column_index_names_are_preserved(self): | |
df = pd.DataFrame({'data': [1, 2, 3]}) | |
df.columns.names = ['a'] | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_column_index_names_with_tz(self): | |
# ARROW-13756 | |
# Bug if index is timezone aware DataTimeIndex | |
df = pd.DataFrame( | |
np.random.randn(5, 3), | |
columns=pd.date_range("2021-01-01", periods=3, freq="50D", tz="CET") | |
) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_range_index_shortcut(self): | |
# ARROW-1639 | |
index_name = 'foo' | |
df = pd.DataFrame({'a': [1, 2, 3, 4]}, | |
index=pd.RangeIndex(0, 8, step=2, name=index_name)) | |
df2 = pd.DataFrame({'a': [4, 5, 6, 7]}, | |
index=pd.RangeIndex(0, 4)) | |
table = pa.Table.from_pandas(df) | |
table_no_index_name = pa.Table.from_pandas(df2) | |
# The RangeIndex is tracked in the metadata only | |
assert len(table.schema) == 1 | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, df) | |
assert isinstance(result.index, pd.RangeIndex) | |
assert _pandas_api.get_rangeindex_attribute(result.index, 'step') == 2 | |
assert result.index.name == index_name | |
result2 = table_no_index_name.to_pandas() | |
tm.assert_frame_equal(result2, df2) | |
assert isinstance(result2.index, pd.RangeIndex) | |
assert _pandas_api.get_rangeindex_attribute(result2.index, 'step') == 1 | |
assert result2.index.name is None | |
def test_range_index_force_serialization(self): | |
# ARROW-5427: preserve_index=True will force the RangeIndex to | |
# be serialized as a column rather than tracked more | |
# efficiently as metadata | |
df = pd.DataFrame({'a': [1, 2, 3, 4]}, | |
index=pd.RangeIndex(0, 8, step=2, name='foo')) | |
table = pa.Table.from_pandas(df, preserve_index=True) | |
assert table.num_columns == 2 | |
assert 'foo' in table.column_names | |
restored = table.to_pandas() | |
tm.assert_frame_equal(restored, df) | |
def test_rangeindex_doesnt_warn(self): | |
# ARROW-5606: pandas 0.25 deprecated private _start/stop/step | |
# attributes -> can be removed if support < pd 0.25 is dropped | |
df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b']) | |
with warnings.catch_warnings(): | |
warnings.simplefilter(action="error") | |
# make_block deprecation in pandas, still under discussion | |
# https://github.com/pandas-dev/pandas/pull/56422 | |
# https://github.com/pandas-dev/pandas/issues/40226 | |
warnings.filterwarnings( | |
"ignore", "make_block is deprecated", DeprecationWarning | |
) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_multiindex_columns(self): | |
columns = pd.MultiIndex.from_arrays([ | |
['one', 'two'], ['X', 'Y'] | |
]) | |
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_multiindex_columns_with_dtypes(self): | |
columns = pd.MultiIndex.from_arrays( | |
[ | |
['one', 'two'], | |
pd.DatetimeIndex(['2017-08-01', '2017-08-02']), | |
], | |
names=['level_1', 'level_2'], | |
) | |
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_multiindex_with_column_dtype_object(self): | |
# ARROW-3651 & ARROW-9096 | |
# Bug when dtype of the columns is object. | |
# uinderlying dtype: integer | |
df = pd.DataFrame([1], columns=pd.Index([1], dtype=object)) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
# underlying dtype: floating | |
df = pd.DataFrame([1], columns=pd.Index([1.1], dtype=object)) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
# underlying dtype: datetime | |
# ARROW-9096: a simple roundtrip now works | |
df = pd.DataFrame([1], columns=pd.Index( | |
[datetime(2018, 1, 1)], dtype="object")) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_multiindex_columns_unicode(self): | |
columns = pd.MultiIndex.from_arrays([['あ', 'い'], ['X', 'Y']]) | |
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_multiindex_doesnt_warn(self): | |
# ARROW-3953: pandas 0.24 rename of MultiIndex labels to codes | |
columns = pd.MultiIndex.from_arrays([['one', 'two'], ['X', 'Y']]) | |
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) | |
with warnings.catch_warnings(): | |
warnings.simplefilter(action="error") | |
# make_block deprecation in pandas, still under discussion | |
# https://github.com/pandas-dev/pandas/pull/56422 | |
# https://github.com/pandas-dev/pandas/issues/40226 | |
warnings.filterwarnings( | |
"ignore", "make_block is deprecated", DeprecationWarning | |
) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_integer_index_column(self): | |
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')]) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_index_metadata_field_name(self): | |
# test None case, and strangely named non-index columns | |
df = pd.DataFrame( | |
[(1, 'a', 3.1), (2, 'b', 2.2), (3, 'c', 1.3)], | |
index=pd.MultiIndex.from_arrays( | |
[['c', 'b', 'a'], [3, 2, 1]], | |
names=[None, 'foo'] | |
), | |
columns=['a', None, '__index_level_0__'], | |
) | |
with pytest.warns(UserWarning): | |
t = pa.Table.from_pandas(df, preserve_index=True) | |
js = t.schema.pandas_metadata | |
col1, col2, col3, idx0, foo = js['columns'] | |
assert col1['name'] == 'a' | |
assert col1['name'] == col1['field_name'] | |
assert col2['name'] is None | |
assert col2['field_name'] == 'None' | |
assert col3['name'] == '__index_level_0__' | |
assert col3['name'] == col3['field_name'] | |
idx0_descr, foo_descr = js['index_columns'] | |
assert idx0_descr == '__index_level_0__' | |
assert idx0['field_name'] == idx0_descr | |
assert idx0['name'] is None | |
assert foo_descr == 'foo' | |
assert foo['field_name'] == foo_descr | |
assert foo['name'] == foo_descr | |
def test_categorical_column_index(self): | |
df = pd.DataFrame( | |
[(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], | |
columns=pd.Index(list('def'), dtype='category') | |
) | |
t = pa.Table.from_pandas(df, preserve_index=True) | |
js = t.schema.pandas_metadata | |
column_indexes, = js['column_indexes'] | |
assert column_indexes['name'] is None | |
assert column_indexes['pandas_type'] == 'categorical' | |
assert column_indexes['numpy_type'] == 'int8' | |
md = column_indexes['metadata'] | |
assert md['num_categories'] == 3 | |
assert md['ordered'] is False | |
def test_string_column_index(self): | |
df = pd.DataFrame( | |
[(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], | |
columns=pd.Index(list('def'), name='stringz') | |
) | |
t = pa.Table.from_pandas(df, preserve_index=True) | |
js = t.schema.pandas_metadata | |
column_indexes, = js['column_indexes'] | |
assert column_indexes['name'] == 'stringz' | |
assert column_indexes['name'] == column_indexes['field_name'] | |
assert column_indexes['numpy_type'] == 'object' | |
assert column_indexes['pandas_type'] == 'unicode' | |
md = column_indexes['metadata'] | |
assert len(md) == 1 | |
assert md['encoding'] == 'UTF-8' | |
def test_datetimetz_column_index(self): | |
df = pd.DataFrame( | |
[(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], | |
columns=pd.date_range( | |
start='2017-01-01', periods=3, tz='America/New_York' | |
) | |
) | |
t = pa.Table.from_pandas(df, preserve_index=True) | |
js = t.schema.pandas_metadata | |
column_indexes, = js['column_indexes'] | |
assert column_indexes['name'] is None | |
assert column_indexes['pandas_type'] == 'datetimetz' | |
assert column_indexes['numpy_type'] == 'datetime64[ns]' | |
md = column_indexes['metadata'] | |
assert md['timezone'] == 'America/New_York' | |
def test_datetimetz_row_index(self): | |
df = pd.DataFrame({ | |
'a': pd.date_range( | |
start='2017-01-01', periods=3, tz='America/New_York' | |
) | |
}) | |
df = df.set_index('a') | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_categorical_row_index(self): | |
df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}) | |
df['a'] = df.a.astype('category') | |
df = df.set_index('a') | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_duplicate_column_names_does_not_crash(self): | |
df = pd.DataFrame([(1, 'a'), (2, 'b')], columns=list('aa')) | |
with pytest.raises(ValueError): | |
pa.Table.from_pandas(df) | |
def test_dictionary_indices_boundscheck(self): | |
# ARROW-1658. No validation of indices leads to segfaults in pandas | |
indices = [[0, 1], [0, -1]] | |
for inds in indices: | |
arr = pa.DictionaryArray.from_arrays(inds, ['a'], safe=False) | |
batch = pa.RecordBatch.from_arrays([arr], ['foo']) | |
table = pa.Table.from_batches([batch, batch, batch]) | |
with pytest.raises(IndexError): | |
arr.to_pandas() | |
with pytest.raises(IndexError): | |
table.to_pandas() | |
def test_unicode_with_unicode_column_and_index(self): | |
df = pd.DataFrame({'あ': ['い']}, index=['う']) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_mixed_column_names(self): | |
# mixed type column names are not reconstructed exactly | |
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) | |
for cols in [['あ', b'a'], [1, '2'], [1, 1.5]]: | |
df.columns = pd.Index(cols, dtype=object) | |
# assert that the from_pandas raises the warning | |
with pytest.warns(UserWarning): | |
pa.Table.from_pandas(df) | |
expected = df.copy() | |
expected.columns = df.columns.values.astype(str) | |
with pytest.warns(UserWarning): | |
_check_pandas_roundtrip(df, expected=expected, | |
preserve_index=True) | |
def test_binary_column_name(self): | |
if Version("2.0.0") <= Version(pd.__version__) < Version("3.0.0"): | |
# TODO: regression in pandas, hopefully fixed in next version | |
# https://issues.apache.org/jira/browse/ARROW-18394 | |
# https://github.com/pandas-dev/pandas/issues/50127 | |
pytest.skip("Regression in pandas 2.0.0") | |
column_data = ['い'] | |
key = 'あ'.encode() | |
data = {key: column_data} | |
df = pd.DataFrame(data) | |
# we can't use _check_pandas_roundtrip here because our metadata | |
# is always decoded as utf8: even if binary goes in, utf8 comes out | |
t = pa.Table.from_pandas(df, preserve_index=True) | |
df2 = t.to_pandas() | |
assert df.values[0] == df2.values[0] | |
assert df.index.values[0] == df2.index.values[0] | |
assert df.columns[0] == key | |
def test_multiindex_duplicate_values(self): | |
num_rows = 3 | |
numbers = list(range(num_rows)) | |
index = pd.MultiIndex.from_arrays( | |
[['foo', 'foo', 'bar'], numbers], | |
names=['foobar', 'some_numbers'], | |
) | |
df = pd.DataFrame({'numbers': numbers}, index=index) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
def test_metadata_with_mixed_types(self): | |
df = pd.DataFrame({'data': [b'some_bytes', 'some_unicode']}) | |
table = pa.Table.from_pandas(df) | |
js = table.schema.pandas_metadata | |
assert 'mixed' not in js | |
data_column = js['columns'][0] | |
assert data_column['pandas_type'] == 'bytes' | |
assert data_column['numpy_type'] == 'object' | |
def test_ignore_metadata(self): | |
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['foo', 'bar', 'baz']}, | |
index=['one', 'two', 'three']) | |
table = pa.Table.from_pandas(df) | |
result = table.to_pandas(ignore_metadata=True) | |
expected = (table.cast(table.schema.remove_metadata()) | |
.to_pandas()) | |
tm.assert_frame_equal(result, expected) | |
def test_list_metadata(self): | |
df = pd.DataFrame({'data': [[1], [2, 3, 4], [5] * 7]}) | |
schema = pa.schema([pa.field('data', type=pa.list_(pa.int64()))]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
js = table.schema.pandas_metadata | |
assert 'mixed' not in js | |
data_column = js['columns'][0] | |
assert data_column['pandas_type'] == 'list[int64]' | |
assert data_column['numpy_type'] == 'object' | |
def test_struct_metadata(self): | |
df = pd.DataFrame({'dicts': [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]}) | |
table = pa.Table.from_pandas(df) | |
pandas_metadata = table.schema.pandas_metadata | |
assert pandas_metadata['columns'][0]['pandas_type'] == 'object' | |
def test_decimal_metadata(self): | |
expected = pd.DataFrame({ | |
'decimals': [ | |
decimal.Decimal('394092382910493.12341234678'), | |
-decimal.Decimal('314292388910493.12343437128'), | |
] | |
}) | |
table = pa.Table.from_pandas(expected) | |
js = table.schema.pandas_metadata | |
assert 'mixed' not in js | |
data_column = js['columns'][0] | |
assert data_column['pandas_type'] == 'decimal' | |
assert data_column['numpy_type'] == 'object' | |
assert data_column['metadata'] == {'precision': 26, 'scale': 11} | |
def test_table_column_subset_metadata(self): | |
# ARROW-1883 | |
# non-default index | |
for index in [ | |
pd.Index(['a', 'b', 'c'], name='index'), | |
pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')]: | |
df = pd.DataFrame({'a': [1, 2, 3], | |
'b': [.1, .2, .3]}, index=index) | |
table = pa.Table.from_pandas(df) | |
table_subset = table.remove_column(1) | |
result = table_subset.to_pandas() | |
expected = df[['a']] | |
if isinstance(df.index, pd.DatetimeIndex): | |
df.index.freq = None | |
tm.assert_frame_equal(result, expected) | |
table_subset2 = table_subset.remove_column(1) | |
result = table_subset2.to_pandas() | |
tm.assert_frame_equal(result, df[['a']].reset_index(drop=True)) | |
def test_to_pandas_column_subset_multiindex(self): | |
# ARROW-10122 | |
df = pd.DataFrame( | |
{"first": list(range(5)), | |
"second": list(range(5)), | |
"value": np.arange(5)} | |
) | |
table = pa.Table.from_pandas(df.set_index(["first", "second"])) | |
subset = table.select(["first", "value"]) | |
result = subset.to_pandas() | |
expected = df[["first", "value"]].set_index("first") | |
tm.assert_frame_equal(result, expected) | |
def test_empty_list_metadata(self): | |
# Create table with array of empty lists, forced to have type | |
# list(string) in pyarrow | |
c1 = [["test"], ["a", "b"], None] | |
c2 = [[], [], []] | |
arrays = OrderedDict([ | |
('c1', pa.array(c1, type=pa.list_(pa.string()))), | |
('c2', pa.array(c2, type=pa.list_(pa.string()))), | |
]) | |
rb = pa.RecordBatch.from_arrays( | |
list(arrays.values()), | |
list(arrays.keys()) | |
) | |
tbl = pa.Table.from_batches([rb]) | |
# First roundtrip changes schema, because pandas cannot preserve the | |
# type of empty lists | |
df = tbl.to_pandas() | |
tbl2 = pa.Table.from_pandas(df) | |
md2 = tbl2.schema.pandas_metadata | |
# Second roundtrip | |
df2 = tbl2.to_pandas() | |
expected = pd.DataFrame(OrderedDict([('c1', c1), ('c2', c2)])) | |
tm.assert_frame_equal(df2, expected) | |
assert md2['columns'] == [ | |
{ | |
'name': 'c1', | |
'field_name': 'c1', | |
'metadata': None, | |
'numpy_type': 'object', | |
'pandas_type': 'list[unicode]', | |
}, | |
{ | |
'name': 'c2', | |
'field_name': 'c2', | |
'metadata': None, | |
'numpy_type': 'object', | |
'pandas_type': 'list[empty]', | |
} | |
] | |
def test_metadata_pandas_version(self): | |
df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}) | |
table = pa.Table.from_pandas(df) | |
assert table.schema.pandas_metadata['pandas_version'] is not None | |
def test_mismatch_metadata_schema(self): | |
# ARROW-10511 | |
# It is possible that the metadata and actual schema is not fully | |
# matching (eg no timezone information for tz-aware column) | |
# -> to_pandas() conversion should not fail on that | |
df = pd.DataFrame({"datetime": pd.date_range("2020-01-01", periods=3)}) | |
# OPTION 1: casting after conversion | |
table = pa.Table.from_pandas(df) | |
# cast the "datetime" column to be tz-aware | |
new_col = table["datetime"].cast(pa.timestamp('ns', tz="UTC")) | |
new_table1 = table.set_column( | |
0, pa.field("datetime", new_col.type), new_col | |
) | |
# OPTION 2: specify schema during conversion | |
schema = pa.schema([("datetime", pa.timestamp('ns', tz="UTC"))]) | |
new_table2 = pa.Table.from_pandas(df, schema=schema) | |
expected = df.copy() | |
expected["datetime"] = expected["datetime"].dt.tz_localize("UTC") | |
for new_table in [new_table1, new_table2]: | |
# ensure the new table still has the pandas metadata | |
assert new_table.schema.pandas_metadata is not None | |
# convert to pandas | |
result = new_table.to_pandas() | |
tm.assert_frame_equal(result, expected) | |
class TestConvertPrimitiveTypes: | |
""" | |
Conversion tests for primitive (e.g. numeric) types. | |
""" | |
def test_float_no_nulls(self): | |
data = {} | |
fields = [] | |
dtypes = [('f2', pa.float16()), | |
('f4', pa.float32()), | |
('f8', pa.float64())] | |
num_values = 100 | |
for numpy_dtype, arrow_dtype in dtypes: | |
values = np.random.randn(num_values) | |
data[numpy_dtype] = values.astype(numpy_dtype) | |
fields.append(pa.field(numpy_dtype, arrow_dtype)) | |
df = pd.DataFrame(data) | |
schema = pa.schema(fields) | |
_check_pandas_roundtrip(df, expected_schema=schema) | |
def test_float_nulls(self): | |
num_values = 100 | |
null_mask = np.random.randint(0, 10, size=num_values) < 3 | |
dtypes = [('f2', pa.float16()), | |
('f4', pa.float32()), | |
('f8', pa.float64())] | |
names = ['f2', 'f4', 'f8'] | |
expected_cols = [] | |
arrays = [] | |
fields = [] | |
for name, arrow_dtype in dtypes: | |
values = np.random.randn(num_values).astype(name) | |
arr = pa.array(values, from_pandas=True, mask=null_mask) | |
arrays.append(arr) | |
fields.append(pa.field(name, arrow_dtype)) | |
values[null_mask] = np.nan | |
expected_cols.append(values) | |
ex_frame = pd.DataFrame(dict(zip(names, expected_cols)), | |
columns=names) | |
table = pa.Table.from_arrays(arrays, names) | |
assert table.schema.equals(pa.schema(fields)) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, ex_frame) | |
def test_float_nulls_to_ints(self): | |
# ARROW-2135 | |
df = pd.DataFrame({"a": [1.0, 2.0, np.nan]}) | |
schema = pa.schema([pa.field("a", pa.int16(), nullable=True)]) | |
table = pa.Table.from_pandas(df, schema=schema, safe=False) | |
assert table[0].to_pylist() == [1, 2, None] | |
tm.assert_frame_equal(df, table.to_pandas()) | |
def test_float_nulls_to_boolean(self): | |
s = pd.Series([0.0, 1.0, 2.0, None, -3.0]) | |
expected = pd.Series([False, True, True, None, True]) | |
_check_array_roundtrip(s, expected=expected, type=pa.bool_()) | |
def test_series_from_pandas_false_respected(self): | |
# Check that explicit from_pandas=False is respected | |
s = pd.Series([0.0, np.nan]) | |
arr = pa.array(s, from_pandas=False) | |
assert arr.null_count == 0 | |
assert np.isnan(arr[1].as_py()) | |
def test_integer_no_nulls(self): | |
data = OrderedDict() | |
fields = [] | |
numpy_dtypes = [ | |
('i1', pa.int8()), ('i2', pa.int16()), | |
('i4', pa.int32()), ('i8', pa.int64()), | |
('u1', pa.uint8()), ('u2', pa.uint16()), | |
('u4', pa.uint32()), ('u8', pa.uint64()), | |
('longlong', pa.int64()), ('ulonglong', pa.uint64()) | |
] | |
num_values = 100 | |
for dtype, arrow_dtype in numpy_dtypes: | |
info = np.iinfo(dtype) | |
values = np.random.randint(max(info.min, np.iinfo(np.int_).min), | |
min(info.max, np.iinfo(np.int_).max), | |
size=num_values) | |
data[dtype] = values.astype(dtype) | |
fields.append(pa.field(dtype, arrow_dtype)) | |
df = pd.DataFrame(data) | |
schema = pa.schema(fields) | |
_check_pandas_roundtrip(df, expected_schema=schema) | |
def test_all_integer_types(self): | |
# Test all Numpy integer aliases | |
data = OrderedDict() | |
numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', | |
'byte', 'ubyte', 'short', 'ushort', 'intc', 'uintc', | |
'int_', 'uint', 'longlong', 'ulonglong'] | |
for dtype in numpy_dtypes: | |
data[dtype] = np.arange(12, dtype=dtype) | |
df = pd.DataFrame(data) | |
_check_pandas_roundtrip(df) | |
# Do the same with pa.array() | |
# (for some reason, it doesn't use the same code paths at all) | |
for np_arr in data.values(): | |
arr = pa.array(np_arr) | |
assert arr.to_pylist() == np_arr.tolist() | |
def test_integer_byteorder(self): | |
# Byteswapped arrays are not supported yet | |
int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] | |
for dt in int_dtypes: | |
for order in '=<>': | |
data = np.array([1, 2, 42], dtype=order + dt) | |
for np_arr in (data, data[::2]): | |
if data.dtype.isnative: | |
arr = pa.array(data) | |
assert arr.to_pylist() == data.tolist() | |
else: | |
with pytest.raises(NotImplementedError): | |
arr = pa.array(data) | |
def test_integer_with_nulls(self): | |
# pandas requires upcast to float dtype | |
int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] | |
num_values = 100 | |
null_mask = np.random.randint(0, 10, size=num_values) < 3 | |
expected_cols = [] | |
arrays = [] | |
for name in int_dtypes: | |
values = np.random.randint(0, 100, size=num_values) | |
arr = pa.array(values, mask=null_mask) | |
arrays.append(arr) | |
expected = values.astype('f8') | |
expected[null_mask] = np.nan | |
expected_cols.append(expected) | |
ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)), | |
columns=int_dtypes) | |
table = pa.Table.from_arrays(arrays, int_dtypes) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, ex_frame) | |
def test_array_from_pandas_type_cast(self): | |
arr = np.arange(10, dtype='int64') | |
target_type = pa.int8() | |
result = pa.array(arr, type=target_type) | |
expected = pa.array(arr.astype('int8')) | |
assert result.equals(expected) | |
def test_boolean_no_nulls(self): | |
num_values = 100 | |
np.random.seed(0) | |
df = pd.DataFrame({'bools': np.random.randn(num_values) > 0}) | |
field = pa.field('bools', pa.bool_()) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip(df, expected_schema=schema) | |
def test_boolean_nulls(self): | |
# pandas requires upcast to object dtype | |
num_values = 100 | |
np.random.seed(0) | |
mask = np.random.randint(0, 10, size=num_values) < 3 | |
values = np.random.randint(0, 10, size=num_values) < 5 | |
arr = pa.array(values, mask=mask) | |
expected = values.astype(object) | |
expected[mask] = None | |
field = pa.field('bools', pa.bool_()) | |
schema = pa.schema([field]) | |
ex_frame = pd.DataFrame({'bools': expected}) | |
table = pa.Table.from_arrays([arr], ['bools']) | |
assert table.schema.equals(schema) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, ex_frame) | |
def test_boolean_to_int(self): | |
# test from dtype=bool | |
s = pd.Series([True, True, False, True, True] * 2) | |
expected = pd.Series([1, 1, 0, 1, 1] * 2) | |
_check_array_roundtrip(s, expected=expected, type=pa.int64()) | |
def test_boolean_objects_to_int(self): | |
# test from dtype=object | |
s = pd.Series([True, True, False, True, True] * 2, dtype=object) | |
expected = pd.Series([1, 1, 0, 1, 1] * 2) | |
expected_msg = 'Expected integer, got bool' | |
with pytest.raises(pa.ArrowTypeError, match=expected_msg): | |
_check_array_roundtrip(s, expected=expected, type=pa.int64()) | |
def test_boolean_nulls_to_float(self): | |
# test from dtype=object | |
s = pd.Series([True, True, False, None, True] * 2) | |
expected = pd.Series([1.0, 1.0, 0.0, None, 1.0] * 2) | |
_check_array_roundtrip(s, expected=expected, type=pa.float64()) | |
def test_boolean_multiple_columns(self): | |
# ARROW-6325 (multiple columns resulting in strided conversion) | |
df = pd.DataFrame(np.ones((3, 2), dtype='bool'), columns=['a', 'b']) | |
_check_pandas_roundtrip(df) | |
def test_float_object_nulls(self): | |
arr = np.array([None, 1.5, np.float64(3.5)] * 5, dtype=object) | |
df = pd.DataFrame({'floats': arr}) | |
expected = pd.DataFrame({'floats': pd.to_numeric(arr)}) | |
field = pa.field('floats', pa.float64()) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip(df, expected=expected, | |
expected_schema=schema) | |
def test_float_with_null_as_integer(self): | |
# ARROW-2298 | |
s = pd.Series([np.nan, 1., 2., np.nan]) | |
types = [pa.int8(), pa.int16(), pa.int32(), pa.int64(), | |
pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()] | |
for ty in types: | |
result = pa.array(s, type=ty) | |
expected = pa.array([None, 1, 2, None], type=ty) | |
assert result.equals(expected) | |
df = pd.DataFrame({'has_nulls': s}) | |
schema = pa.schema([pa.field('has_nulls', ty)]) | |
result = pa.Table.from_pandas(df, schema=schema, | |
preserve_index=False) | |
assert result[0].chunk(0).equals(expected) | |
def test_int_object_nulls(self): | |
arr = np.array([None, 1, np.int64(3)] * 5, dtype=object) | |
df = pd.DataFrame({'ints': arr}) | |
expected = pd.DataFrame({'ints': pd.to_numeric(arr)}) | |
field = pa.field('ints', pa.int64()) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip(df, expected=expected, | |
expected_schema=schema) | |
def test_boolean_object_nulls(self): | |
arr = np.array([False, None, True] * 100, dtype=object) | |
df = pd.DataFrame({'bools': arr}) | |
field = pa.field('bools', pa.bool_()) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip(df, expected_schema=schema) | |
def test_all_nulls_cast_numeric(self): | |
arr = np.array([None], dtype=object) | |
def _check_type(t): | |
a2 = pa.array(arr, type=t) | |
assert a2.type == t | |
assert a2[0].as_py() is None | |
_check_type(pa.int32()) | |
_check_type(pa.float64()) | |
def test_half_floats_from_numpy(self): | |
arr = np.array([1.5, np.nan], dtype=np.float16) | |
a = pa.array(arr, type=pa.float16()) | |
x, y = a.to_pylist() | |
assert isinstance(x, np.float16) | |
assert x == 1.5 | |
assert isinstance(y, np.float16) | |
assert np.isnan(y) | |
a = pa.array(arr, type=pa.float16(), from_pandas=True) | |
x, y = a.to_pylist() | |
assert isinstance(x, np.float16) | |
assert x == 1.5 | |
assert y is None | |
def test_array_integer_object_nulls_option(dtype): | |
num_values = 100 | |
null_mask = np.random.randint(0, 10, size=num_values) < 3 | |
values = np.random.randint(0, 100, size=num_values, dtype=dtype) | |
array = pa.array(values, mask=null_mask) | |
if null_mask.any(): | |
expected = values.astype('O') | |
expected[null_mask] = None | |
else: | |
expected = values | |
result = array.to_pandas(integer_object_nulls=True) | |
np.testing.assert_equal(result, expected) | |
def test_table_integer_object_nulls_option(dtype): | |
num_values = 100 | |
null_mask = np.random.randint(0, 10, size=num_values) < 3 | |
values = np.random.randint(0, 100, size=num_values, dtype=dtype) | |
array = pa.array(values, mask=null_mask) | |
if null_mask.any(): | |
expected = values.astype('O') | |
expected[null_mask] = None | |
else: | |
expected = values | |
expected = pd.DataFrame({dtype: expected}) | |
table = pa.Table.from_arrays([array], [dtype]) | |
result = table.to_pandas(integer_object_nulls=True) | |
tm.assert_frame_equal(result, expected) | |
class TestConvertDateTimeLikeTypes: | |
""" | |
Conversion tests for datetime- and timestamp-like types (date64, etc.). | |
""" | |
def test_timestamps_notimezone_no_nulls(self): | |
df = pd.DataFrame({ | |
'datetime64': np.array([ | |
'2007-07-13T01:23:34.123456789', | |
'2006-01-13T12:34:56.432539784', | |
'2010-08-13T05:46:57.437699912'], | |
dtype='datetime64[ns]') | |
}) | |
field = pa.field('datetime64', pa.timestamp('ns')) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip( | |
df, | |
expected_schema=schema, | |
) | |
def test_timestamps_notimezone_nulls(self): | |
df = pd.DataFrame({ | |
'datetime64': np.array([ | |
'2007-07-13T01:23:34.123456789', | |
None, | |
'2010-08-13T05:46:57.437699912'], | |
dtype='datetime64[ns]') | |
}) | |
field = pa.field('datetime64', pa.timestamp('ns')) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip( | |
df, | |
expected_schema=schema, | |
) | |
def test_timestamps_with_timezone(self, unit): | |
if Version(pd.__version__) < Version("2.0.0") and unit != 'ns': | |
pytest.skip("pandas < 2.0 only supports nanosecond datetime64") | |
df = pd.DataFrame({ | |
'datetime64': np.array([ | |
'2007-07-13T01:23:34.123', | |
'2006-01-13T12:34:56.432', | |
'2010-08-13T05:46:57.437'], | |
dtype=f'datetime64[{unit}]') | |
}) | |
df['datetime64'] = df['datetime64'].dt.tz_localize('US/Eastern') | |
_check_pandas_roundtrip(df) | |
_check_series_roundtrip(df['datetime64']) | |
# drop-in a null | |
df = pd.DataFrame({ | |
'datetime64': np.array([ | |
'2007-07-13T01:23:34.123456789', | |
None, | |
'2006-01-13T12:34:56.432539784', | |
'2010-08-13T05:46:57.437699912'], | |
dtype=f'datetime64[{unit}]') | |
}) | |
df['datetime64'] = df['datetime64'].dt.tz_localize('US/Eastern') | |
_check_pandas_roundtrip(df) | |
def test_python_datetime(self): | |
# ARROW-2106 | |
date_array = [datetime.today() + timedelta(days=x) for x in range(10)] | |
df = pd.DataFrame({ | |
'datetime': pd.Series(date_array, dtype=object) | |
}) | |
table = pa.Table.from_pandas(df) | |
assert isinstance(table[0].chunk(0), pa.TimestampArray) | |
result = table.to_pandas() | |
# Pandas v2 defaults to [ns], but Arrow defaults to [us] time units | |
# so we need to cast the pandas dtype. Pandas v1 will always silently | |
# coerce to [ns] due to lack of non-[ns] support. | |
expected_df = pd.DataFrame({ | |
'datetime': pd.Series(date_array, dtype='datetime64[us]') | |
}) | |
tm.assert_frame_equal(expected_df, result) | |
def test_python_datetime_with_pytz_tzinfo(self): | |
pytz = pytest.importorskip("pytz") | |
for tz in [pytz.utc, pytz.timezone('US/Eastern'), pytz.FixedOffset(1)]: | |
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz)] | |
df = pd.DataFrame({'datetime': values}) | |
_check_pandas_roundtrip(df) | |
def test_python_datetime_with_pytz_timezone(self, tz): | |
if str(tz) in ["build/etc/localtime", "Factory"]: | |
pytest.skip("Localtime timezone not supported") | |
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz)] | |
df = pd.DataFrame({'datetime': values}) | |
_check_pandas_roundtrip(df, check_dtype=False) | |
def test_python_datetime_with_timezone_tzinfo(self): | |
pytz = pytest.importorskip("pytz") | |
from datetime import timezone | |
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=timezone.utc)] | |
# also test with index to ensure both paths roundtrip (ARROW-9962) | |
df = pd.DataFrame({'datetime': values}, index=values) | |
_check_pandas_roundtrip(df, preserve_index=True) | |
# datetime.timezone is going to be pytz.FixedOffset | |
hours = 1 | |
tz_timezone = timezone(timedelta(hours=hours)) | |
tz_pytz = pytz.FixedOffset(hours * 60) | |
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz_timezone)] | |
values_exp = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz_pytz)] | |
df = pd.DataFrame({'datetime': values}, index=values) | |
df_exp = pd.DataFrame({'datetime': values_exp}, index=values_exp) | |
_check_pandas_roundtrip(df, expected=df_exp, preserve_index=True) | |
def test_python_datetime_subclass(self): | |
class MyDatetime(datetime): | |
# see https://github.com/pandas-dev/pandas/issues/21142 | |
nanosecond = 0.0 | |
date_array = [MyDatetime(2000, 1, 1, 1, 1, 1)] | |
df = pd.DataFrame({"datetime": pd.Series(date_array, dtype=object)}) | |
table = pa.Table.from_pandas(df) | |
assert isinstance(table[0].chunk(0), pa.TimestampArray) | |
result = table.to_pandas() | |
# Pandas v2 defaults to [ns], but Arrow defaults to [us] time units | |
# so we need to cast the pandas dtype. Pandas v1 will always silently | |
# coerce to [ns] due to lack of non-[ns] support. | |
expected_df = pd.DataFrame( | |
{"datetime": pd.Series(date_array, dtype='datetime64[us]')}) | |
# https://github.com/pandas-dev/pandas/issues/21142 | |
expected_df["datetime"] = pd.to_datetime(expected_df["datetime"]) | |
tm.assert_frame_equal(expected_df, result) | |
def test_python_date_subclass(self): | |
class MyDate(date): | |
pass | |
date_array = [MyDate(2000, 1, 1)] | |
df = pd.DataFrame({"date": pd.Series(date_array, dtype=object)}) | |
table = pa.Table.from_pandas(df) | |
assert isinstance(table[0].chunk(0), pa.Date32Array) | |
result = table.to_pandas() | |
expected_df = pd.DataFrame( | |
{"date": np.array([date(2000, 1, 1)], dtype=object)} | |
) | |
tm.assert_frame_equal(expected_df, result) | |
def test_datetime64_to_date32(self): | |
# ARROW-1718 | |
arr = pa.array([date(2017, 10, 23), None]) | |
c = pa.chunked_array([arr]) | |
s = c.to_pandas() | |
arr2 = pa.Array.from_pandas(s, type=pa.date32()) | |
assert arr2.equals(arr.cast('date32')) | |
def test_pandas_datetime_to_date64(self, mask): | |
s = pd.to_datetime([ | |
'2018-05-10T00:00:00', | |
'2018-05-11T00:00:00', | |
'2018-05-12T00:00:00', | |
'2018-05-10T10:24:01', | |
'2018-05-11T10:24:01', | |
'2018-05-12T10:24:01', | |
]) | |
arr = pa.Array.from_pandas(s, type=pa.date64(), mask=mask) | |
data = np.array([ | |
date(2018, 5, 10), | |
date(2018, 5, 11), | |
date(2018, 5, 12), | |
date(2018, 5, 10), | |
date(2018, 5, 11), | |
date(2018, 5, 12), | |
]) | |
expected = pa.array(data, mask=mask, type=pa.date64()) | |
assert arr.equals(expected) | |
def test_array_types_date_as_object(self, coerce_to_ns, expected_dtype): | |
data = [date(2000, 1, 1), | |
None, | |
date(1970, 1, 1), | |
date(2040, 2, 26)] | |
expected_days = np.array(['2000-01-01', None, '1970-01-01', | |
'2040-02-26'], dtype='datetime64[D]') | |
if Version(pd.__version__) < Version("2.0.0"): | |
# ARROW-3789: Coerce date/timestamp types to datetime64[ns] | |
expected_dtype = 'datetime64[ns]' | |
expected = np.array(['2000-01-01', None, '1970-01-01', | |
'2040-02-26'], dtype=expected_dtype) | |
objects = [pa.array(data), | |
pa.chunked_array([data])] | |
for obj in objects: | |
result = obj.to_pandas(coerce_temporal_nanoseconds=coerce_to_ns) | |
expected_obj = expected_days.astype(object) | |
assert result.dtype == expected_obj.dtype | |
npt.assert_array_equal(result, expected_obj) | |
result = obj.to_pandas(date_as_object=False, | |
coerce_temporal_nanoseconds=coerce_to_ns) | |
assert result.dtype == expected.dtype | |
npt.assert_array_equal(result, expected) | |
def test_table_convert_date_as_object(self, coerce_to_ns, expected_type): | |
df = pd.DataFrame({ | |
'date': [date(2000, 1, 1), | |
None, | |
date(1970, 1, 1), | |
date(2040, 2, 26)]}) | |
table = pa.Table.from_pandas(df, preserve_index=False) | |
df_datetime = table.to_pandas(date_as_object=False, | |
coerce_temporal_nanoseconds=coerce_to_ns) | |
df_object = table.to_pandas() | |
tm.assert_frame_equal(df.astype(expected_type), df_datetime, | |
check_dtype=True) | |
tm.assert_frame_equal(df, df_object, check_dtype=True) | |
def test_array_coerce_temporal_nanoseconds(self, arrow_type): | |
data = [date(2000, 1, 1), datetime(2001, 1, 1)] | |
expected = pd.Series(data) | |
arr = pa.array(data).cast(arrow_type) | |
result = arr.to_pandas( | |
coerce_temporal_nanoseconds=True, date_as_object=False) | |
expected_tz = None | |
if hasattr(arrow_type, 'tz') and arrow_type.tz is not None: | |
expected_tz = 'UTC' | |
expected_type = pa.timestamp('ns', expected_tz).to_pandas_dtype() | |
tm.assert_series_equal(result, expected.astype(expected_type)) | |
def test_table_coerce_temporal_nanoseconds(self, arrow_type): | |
data = [date(2000, 1, 1), datetime(2001, 1, 1)] | |
schema = pa.schema([pa.field('date', arrow_type)]) | |
expected_df = pd.DataFrame({'date': data}) | |
table = pa.table([pa.array(data)], schema=schema) | |
result_df = table.to_pandas( | |
coerce_temporal_nanoseconds=True, date_as_object=False) | |
expected_tz = None | |
if hasattr(arrow_type, 'tz') and arrow_type.tz is not None: | |
expected_tz = 'UTC' | |
expected_type = pa.timestamp('ns', expected_tz).to_pandas_dtype() | |
tm.assert_frame_equal(result_df, expected_df.astype(expected_type)) | |
def test_date_infer(self): | |
df = pd.DataFrame({ | |
'date': [date(2000, 1, 1), | |
None, | |
date(1970, 1, 1), | |
date(2040, 2, 26)]}) | |
table = pa.Table.from_pandas(df, preserve_index=False) | |
field = pa.field('date', pa.date32()) | |
# schema's metadata is generated by from_pandas conversion | |
expected_schema = pa.schema([field], metadata=table.schema.metadata) | |
assert table.schema.equals(expected_schema) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_date_mask(self): | |
arr = np.array([date(2017, 4, 3), date(2017, 4, 4)], | |
dtype='datetime64[D]') | |
mask = [True, False] | |
result = pa.array(arr, mask=np.array(mask)) | |
expected = np.array([None, date(2017, 4, 4)], dtype='datetime64[D]') | |
expected = pa.array(expected, from_pandas=True) | |
assert expected.equals(result) | |
def test_date_objects_typed(self): | |
arr = np.array([ | |
date(2017, 4, 3), | |
None, | |
date(2017, 4, 4), | |
date(2017, 4, 5)], dtype=object) | |
arr_i4 = np.array([17259, -1, 17260, 17261], dtype='int32') | |
arr_i8 = arr_i4.astype('int64') * 86400000 | |
mask = np.array([False, True, False, False]) | |
t32 = pa.date32() | |
t64 = pa.date64() | |
a32 = pa.array(arr, type=t32) | |
a64 = pa.array(arr, type=t64) | |
a32_expected = pa.array(arr_i4, mask=mask, type=t32) | |
a64_expected = pa.array(arr_i8, mask=mask, type=t64) | |
assert a32.equals(a32_expected) | |
assert a64.equals(a64_expected) | |
# Test converting back to pandas | |
colnames = ['date32', 'date64'] | |
table = pa.Table.from_arrays([a32, a64], colnames) | |
ex_values = (np.array(['2017-04-03', '2017-04-04', '2017-04-04', | |
'2017-04-05'], | |
dtype='datetime64[D]')) | |
ex_values[1] = pd.NaT.value | |
# date32 and date64 convert to [ms] in pandas v2, but | |
# in pandas v1 they are silently coerced to [ns] | |
ex_datetime64ms = ex_values.astype('datetime64[ms]') | |
expected_pandas = pd.DataFrame({'date32': ex_datetime64ms, | |
'date64': ex_datetime64ms}, | |
columns=colnames) | |
table_pandas = table.to_pandas(date_as_object=False) | |
tm.assert_frame_equal(table_pandas, expected_pandas) | |
table_pandas_objects = table.to_pandas() | |
ex_objects = ex_values.astype('object') | |
expected_pandas_objects = pd.DataFrame({'date32': ex_objects, | |
'date64': ex_objects}, | |
columns=colnames) | |
tm.assert_frame_equal(table_pandas_objects, | |
expected_pandas_objects) | |
def test_pandas_null_values(self): | |
# ARROW-842 | |
pd_NA = getattr(pd, 'NA', None) | |
values = np.array([datetime(2000, 1, 1), pd.NaT, pd_NA], dtype=object) | |
values_with_none = np.array([datetime(2000, 1, 1), None, None], | |
dtype=object) | |
result = pa.array(values, from_pandas=True) | |
expected = pa.array(values_with_none, from_pandas=True) | |
assert result.equals(expected) | |
assert result.null_count == 2 | |
# ARROW-9407 | |
assert pa.array([pd.NaT], from_pandas=True).type == pa.null() | |
assert pa.array([pd_NA], from_pandas=True).type == pa.null() | |
def test_dates_from_integers(self): | |
t1 = pa.date32() | |
t2 = pa.date64() | |
arr = np.array([17259, 17260, 17261], dtype='int32') | |
arr2 = arr.astype('int64') * 86400000 | |
a1 = pa.array(arr, type=t1) | |
a2 = pa.array(arr2, type=t2) | |
expected = date(2017, 4, 3) | |
assert a1[0].as_py() == expected | |
assert a2[0].as_py() == expected | |
def test_pytime_from_pandas(self): | |
pytimes = [time(1, 2, 3, 1356), | |
time(4, 5, 6, 1356)] | |
# microseconds | |
t1 = pa.time64('us') | |
aobjs = np.array(pytimes + [None], dtype=object) | |
parr = pa.array(aobjs) | |
assert parr.type == t1 | |
assert parr[0].as_py() == pytimes[0] | |
assert parr[1].as_py() == pytimes[1] | |
assert parr[2].as_py() is None | |
# DataFrame | |
df = pd.DataFrame({'times': aobjs}) | |
batch = pa.RecordBatch.from_pandas(df) | |
assert batch[0].equals(parr) | |
# Test ndarray of int64 values | |
arr = np.array([_pytime_to_micros(v) for v in pytimes], | |
dtype='int64') | |
a1 = pa.array(arr, type=pa.time64('us')) | |
assert a1[0].as_py() == pytimes[0] | |
a2 = pa.array(arr * 1000, type=pa.time64('ns')) | |
assert a2[0].as_py() == pytimes[0] | |
a3 = pa.array((arr / 1000).astype('i4'), | |
type=pa.time32('ms')) | |
assert a3[0].as_py() == pytimes[0].replace(microsecond=1000) | |
a4 = pa.array((arr / 1000000).astype('i4'), | |
type=pa.time32('s')) | |
assert a4[0].as_py() == pytimes[0].replace(microsecond=0) | |
def test_arrow_time_to_pandas(self): | |
pytimes = [time(1, 2, 3, 1356), | |
time(4, 5, 6, 1356), | |
time(0, 0, 0)] | |
expected = np.array(pytimes[:2] + [None]) | |
expected_ms = np.array([x.replace(microsecond=1000) | |
for x in pytimes[:2]] + | |
[None]) | |
expected_s = np.array([x.replace(microsecond=0) | |
for x in pytimes[:2]] + | |
[None]) | |
arr = np.array([_pytime_to_micros(v) for v in pytimes], | |
dtype='int64') | |
arr = np.array([_pytime_to_micros(v) for v in pytimes], | |
dtype='int64') | |
null_mask = np.array([False, False, True], dtype=bool) | |
a1 = pa.array(arr, mask=null_mask, type=pa.time64('us')) | |
a2 = pa.array(arr * 1000, mask=null_mask, | |
type=pa.time64('ns')) | |
a3 = pa.array((arr / 1000).astype('i4'), mask=null_mask, | |
type=pa.time32('ms')) | |
a4 = pa.array((arr / 1000000).astype('i4'), mask=null_mask, | |
type=pa.time32('s')) | |
names = ['time64[us]', 'time64[ns]', 'time32[ms]', 'time32[s]'] | |
batch = pa.RecordBatch.from_arrays([a1, a2, a3, a4], names) | |
for arr, expected_values in [(a1, expected), | |
(a2, expected), | |
(a3, expected_ms), | |
(a4, expected_s)]: | |
result_pandas = arr.to_pandas() | |
assert (result_pandas.values == expected_values).all() | |
df = batch.to_pandas() | |
expected_df = pd.DataFrame({'time64[us]': expected, | |
'time64[ns]': expected, | |
'time32[ms]': expected_ms, | |
'time32[s]': expected_s}, | |
columns=names) | |
tm.assert_frame_equal(df, expected_df) | |
def test_numpy_datetime64_columns(self): | |
datetime64_ns = np.array([ | |
'2007-07-13T01:23:34.123456789', | |
None, | |
'2006-01-13T12:34:56.432539784', | |
'2010-08-13T05:46:57.437699912'], | |
dtype='datetime64[ns]') | |
_check_array_from_pandas_roundtrip(datetime64_ns) | |
datetime64_us = np.array([ | |
'2007-07-13T01:23:34.123456', | |
None, | |
'2006-01-13T12:34:56.432539', | |
'2010-08-13T05:46:57.437699'], | |
dtype='datetime64[us]') | |
_check_array_from_pandas_roundtrip(datetime64_us) | |
datetime64_ms = np.array([ | |
'2007-07-13T01:23:34.123', | |
None, | |
'2006-01-13T12:34:56.432', | |
'2010-08-13T05:46:57.437'], | |
dtype='datetime64[ms]') | |
_check_array_from_pandas_roundtrip(datetime64_ms) | |
datetime64_s = np.array([ | |
'2007-07-13T01:23:34', | |
None, | |
'2006-01-13T12:34:56', | |
'2010-08-13T05:46:57'], | |
dtype='datetime64[s]') | |
_check_array_from_pandas_roundtrip(datetime64_s) | |
def test_timestamp_to_pandas_coerces_to_ns(self): | |
# non-ns timestamp gets cast to ns on conversion to pandas | |
if Version(pd.__version__) >= Version("2.0.0"): | |
pytest.skip("pandas >= 2.0 supports non-nanosecond datetime64") | |
arr = pa.array([1, 2, 3], pa.timestamp('ms')) | |
expected = pd.Series(pd.to_datetime([1, 2, 3], unit='ms')) | |
s = arr.to_pandas() | |
tm.assert_series_equal(s, expected) | |
arr = pa.chunked_array([arr]) | |
s = arr.to_pandas() | |
tm.assert_series_equal(s, expected) | |
def test_timestamp_to_pandas_out_of_bounds(self): | |
# ARROW-7758 check for out of bounds timestamps for non-ns timestamps | |
# that end up getting coerced into ns timestamps. | |
for unit in ['s', 'ms', 'us']: | |
for tz in [None, 'America/New_York']: | |
arr = pa.array([datetime(1, 1, 1)], pa.timestamp(unit, tz=tz)) | |
table = pa.table({'a': arr}) | |
msg = "would result in out of bounds timestamp" | |
with pytest.raises(ValueError, match=msg): | |
arr.to_pandas(coerce_temporal_nanoseconds=True) | |
with pytest.raises(ValueError, match=msg): | |
table.to_pandas(coerce_temporal_nanoseconds=True) | |
with pytest.raises(ValueError, match=msg): | |
# chunked array | |
table.column('a').to_pandas(coerce_temporal_nanoseconds=True) | |
# just ensure those don't give an error, but do not | |
# check actual garbage output | |
arr.to_pandas(safe=False, coerce_temporal_nanoseconds=True) | |
table.to_pandas(safe=False, coerce_temporal_nanoseconds=True) | |
table.column('a').to_pandas( | |
safe=False, coerce_temporal_nanoseconds=True) | |
def test_timestamp_to_pandas_empty_chunked(self): | |
# ARROW-7907 table with chunked array with 0 chunks | |
table = pa.table({'a': pa.chunked_array([], type=pa.timestamp('us'))}) | |
result = table.to_pandas() | |
expected = pd.DataFrame({'a': pd.Series([], dtype="datetime64[us]")}) | |
tm.assert_frame_equal(result, expected) | |
def test_numpy_datetime64_day_unit(self, dtype): | |
datetime64_d = np.array([ | |
'2007-07-13', | |
None, | |
'2006-01-15', | |
'2010-08-19'], | |
dtype='datetime64[D]') | |
_check_array_from_pandas_roundtrip(datetime64_d, type=dtype) | |
def test_array_from_pandas_date_with_mask(self): | |
m = np.array([True, False, True]) | |
data = pd.Series([ | |
date(1990, 1, 1), | |
date(1991, 1, 1), | |
date(1992, 1, 1) | |
]) | |
result = pa.Array.from_pandas(data, mask=m) | |
expected = pd.Series([None, date(1991, 1, 1), None]) | |
assert pa.Array.from_pandas(expected).equals(result) | |
def test_fixed_offset_timezone(self): | |
df = pd.DataFrame({ | |
'a': [ | |
pd.Timestamp('2012-11-11 00:00:00+01:00'), | |
pd.NaT | |
] | |
}) | |
# 'check_dtype=False' because pandas >= 2 uses datetime.timezone | |
# instead of pytz.FixedOffset, and thus the dtype is not exactly | |
# identical (pyarrow still defaults to pytz) | |
# TODO remove if https://github.com/apache/arrow/issues/15047 is fixed | |
_check_pandas_roundtrip(df, check_dtype=False) | |
def test_timedeltas_no_nulls(self, unit): | |
if Version(pd.__version__) < Version("2.0.0"): | |
unit = 'ns' | |
df = pd.DataFrame({ | |
'timedelta64': np.array([0, 3600000000000, 7200000000000], | |
dtype=f'timedelta64[{unit}]') | |
}) | |
field = pa.field('timedelta64', pa.duration(unit)) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip( | |
df, | |
expected_schema=schema, | |
) | |
def test_timedeltas_nulls(self, unit): | |
if Version(pd.__version__) < Version("2.0.0"): | |
unit = 'ns' | |
df = pd.DataFrame({ | |
'timedelta64': np.array([0, None, 7200000000000], | |
dtype=f'timedelta64[{unit}]') | |
}) | |
field = pa.field('timedelta64', pa.duration(unit)) | |
schema = pa.schema([field]) | |
_check_pandas_roundtrip( | |
df, | |
expected_schema=schema, | |
) | |
def test_month_day_nano_interval(self): | |
from pandas.tseries.offsets import DateOffset | |
df = pd.DataFrame({ | |
'date_offset': [None, | |
DateOffset(days=3600, months=3600, microseconds=3, | |
nanoseconds=600)] | |
}) | |
schema = pa.schema([('date_offset', pa.month_day_nano_interval())]) | |
_check_pandas_roundtrip( | |
df, | |
expected_schema=schema) | |
# ---------------------------------------------------------------------- | |
# Conversion tests for string and binary types. | |
class TestConvertStringLikeTypes: | |
def test_pandas_unicode(self): | |
repeats = 1000 | |
values = ['foo', None, 'bar', 'mañana', np.nan] | |
df = pd.DataFrame({'strings': values * repeats}) | |
field = pa.field('strings', pa.string()) | |
schema = pa.schema([field]) | |
ex_values = ['foo', None, 'bar', 'mañana', None] | |
expected = pd.DataFrame({'strings': ex_values * repeats}) | |
_check_pandas_roundtrip(df, expected=expected, expected_schema=schema) | |
def test_bytes_to_binary(self): | |
values = ['qux', b'foo', None, bytearray(b'barz'), 'qux', np.nan] | |
df = pd.DataFrame({'strings': values}) | |
table = pa.Table.from_pandas(df) | |
assert table[0].type == pa.binary() | |
values2 = [b'qux', b'foo', None, b'barz', b'qux', None] | |
expected = pd.DataFrame({'strings': values2}) | |
_check_pandas_roundtrip(df, expected) | |
def test_bytes_exceed_2gb(self): | |
v1 = b'x' * 100000000 | |
v2 = b'x' * 147483646 | |
# ARROW-2227, hit exactly 2GB on the nose | |
df = pd.DataFrame({ | |
'strings': [v1] * 20 + [v2] + ['x'] * 20 | |
}) | |
arr = pa.array(df['strings']) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert arr.num_chunks == 2 | |
arr = None | |
table = pa.Table.from_pandas(df) | |
assert table[0].num_chunks == 2 | |
def test_auto_chunking_pandas_series_of_strings(self, char): | |
# ARROW-2367 | |
v1 = char * 100000000 | |
v2 = char * 147483646 | |
df = pd.DataFrame({ | |
'strings': [[v1]] * 20 + [[v2]] + [[b'x']] | |
}) | |
arr = pa.array(df['strings'], from_pandas=True) | |
arr.validate(full=True) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert arr.num_chunks == 2 | |
assert len(arr.chunk(0)) == 21 | |
assert len(arr.chunk(1)) == 1 | |
def test_fixed_size_bytes(self): | |
values = [b'foo', None, bytearray(b'bar'), None, None, b'hey'] | |
df = pd.DataFrame({'strings': values}) | |
schema = pa.schema([pa.field('strings', pa.binary(3))]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
assert table.schema[0].type == schema[0].type | |
assert table.schema[0].name == schema[0].name | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_fixed_size_bytes_does_not_accept_varying_lengths(self): | |
values = [b'foo', None, b'ba', None, None, b'hey'] | |
df = pd.DataFrame({'strings': values}) | |
schema = pa.schema([pa.field('strings', pa.binary(3))]) | |
with pytest.raises(pa.ArrowInvalid): | |
pa.Table.from_pandas(df, schema=schema) | |
def test_variable_size_bytes(self): | |
s = pd.Series([b'123', b'', b'a', None]) | |
_check_series_roundtrip(s, type_=pa.binary()) | |
def test_binary_from_bytearray(self): | |
s = pd.Series([bytearray(b'123'), bytearray(b''), bytearray(b'a'), | |
None]) | |
# Explicitly set type | |
_check_series_roundtrip(s, type_=pa.binary()) | |
# Infer type from bytearrays | |
_check_series_roundtrip(s, expected_pa_type=pa.binary()) | |
def test_large_binary(self): | |
s = pd.Series([b'123', b'', b'a', None]) | |
_check_series_roundtrip(s, type_=pa.large_binary()) | |
df = pd.DataFrame({'a': s}) | |
_check_pandas_roundtrip( | |
df, schema=pa.schema([('a', pa.large_binary())])) | |
def test_large_string(self): | |
s = pd.Series(['123', '', 'a', None]) | |
_check_series_roundtrip(s, type_=pa.large_string()) | |
df = pd.DataFrame({'a': s}) | |
_check_pandas_roundtrip( | |
df, schema=pa.schema([('a', pa.large_string())])) | |
def test_binary_view(self): | |
s = pd.Series([b'123', b'', b'a', None]) | |
_check_series_roundtrip(s, type_=pa.binary_view()) | |
df = pd.DataFrame({'a': s}) | |
_check_pandas_roundtrip( | |
df, schema=pa.schema([('a', pa.binary_view())])) | |
def test_string_view(self): | |
s = pd.Series(['123', '', 'a', None]) | |
_check_series_roundtrip(s, type_=pa.string_view()) | |
df = pd.DataFrame({'a': s}) | |
_check_pandas_roundtrip( | |
df, schema=pa.schema([('a', pa.string_view())])) | |
def test_table_empty_str(self): | |
values = ['', '', '', '', ''] | |
df = pd.DataFrame({'strings': values}) | |
field = pa.field('strings', pa.string()) | |
schema = pa.schema([field]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
result1 = table.to_pandas(strings_to_categorical=False) | |
expected1 = pd.DataFrame({'strings': values}) | |
tm.assert_frame_equal(result1, expected1, check_dtype=True) | |
result2 = table.to_pandas(strings_to_categorical=True) | |
expected2 = pd.DataFrame({'strings': pd.Categorical(values)}) | |
tm.assert_frame_equal(result2, expected2, check_dtype=True) | |
def test_selective_categoricals(self): | |
values = ['', '', '', '', ''] | |
df = pd.DataFrame({'strings': values}) | |
field = pa.field('strings', pa.string()) | |
schema = pa.schema([field]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
expected_str = pd.DataFrame({'strings': values}) | |
expected_cat = pd.DataFrame({'strings': pd.Categorical(values)}) | |
result1 = table.to_pandas(categories=['strings']) | |
tm.assert_frame_equal(result1, expected_cat, check_dtype=True) | |
result2 = table.to_pandas(categories=[]) | |
tm.assert_frame_equal(result2, expected_str, check_dtype=True) | |
result3 = table.to_pandas(categories=('strings',)) | |
tm.assert_frame_equal(result3, expected_cat, check_dtype=True) | |
result4 = table.to_pandas(categories=tuple()) | |
tm.assert_frame_equal(result4, expected_str, check_dtype=True) | |
def test_to_pandas_categorical_zero_length(self): | |
# ARROW-3586 | |
array = pa.array([], type=pa.int32()) | |
table = pa.Table.from_arrays(arrays=[array], names=['col']) | |
# This would segfault under 0.11.0 | |
table.to_pandas(categories=['col']) | |
def test_to_pandas_categories_already_dictionary(self): | |
# Showed up in ARROW-6434, ARROW-6435 | |
array = pa.array(['foo', 'foo', 'foo', 'bar']).dictionary_encode() | |
table = pa.Table.from_arrays(arrays=[array], names=['col']) | |
result = table.to_pandas(categories=['col']) | |
assert table.to_pandas().equals(result) | |
def test_table_str_to_categorical_without_na(self): | |
values = ['a', 'a', 'b', 'b', 'c'] | |
df = pd.DataFrame({'strings': values}) | |
field = pa.field('strings', pa.string()) | |
schema = pa.schema([field]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
result = table.to_pandas(strings_to_categorical=True) | |
expected = pd.DataFrame({'strings': pd.Categorical(values)}) | |
tm.assert_frame_equal(result, expected, check_dtype=True) | |
with pytest.raises(pa.ArrowInvalid): | |
table.to_pandas(strings_to_categorical=True, | |
zero_copy_only=True) | |
def test_table_str_to_categorical_with_na(self): | |
values = [None, 'a', 'b', np.nan] | |
df = pd.DataFrame({'strings': values}) | |
field = pa.field('strings', pa.string()) | |
schema = pa.schema([field]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
result = table.to_pandas(strings_to_categorical=True) | |
expected = pd.DataFrame({'strings': pd.Categorical(values)}) | |
tm.assert_frame_equal(result, expected, check_dtype=True) | |
with pytest.raises(pa.ArrowInvalid): | |
table.to_pandas(strings_to_categorical=True, | |
zero_copy_only=True) | |
# Regression test for ARROW-2101 | |
def test_array_of_bytes_to_strings(self): | |
converted = pa.array(np.array([b'x'], dtype=object), pa.string()) | |
assert converted.type == pa.string() | |
# Make sure that if an ndarray of bytes is passed to the array | |
# constructor and the type is string, it will fail if those bytes | |
# cannot be converted to utf-8 | |
def test_array_of_bytes_to_strings_bad_data(self): | |
with pytest.raises( | |
pa.lib.ArrowInvalid, | |
match="was not a utf8 string"): | |
pa.array(np.array([b'\x80\x81'], dtype=object), pa.string()) | |
def test_numpy_string_array_to_fixed_size_binary(self): | |
arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') | |
converted = pa.array(arr, type=pa.binary(3)) | |
expected = pa.array(list(arr), type=pa.binary(3)) | |
assert converted.equals(expected) | |
mask = np.array([False, True, False]) | |
converted = pa.array(arr, type=pa.binary(3), mask=mask) | |
expected = pa.array([b'foo', None, b'baz'], type=pa.binary(3)) | |
assert converted.equals(expected) | |
with pytest.raises(pa.lib.ArrowInvalid, | |
match=r'Got bytestring of length 3 \(expected 4\)'): | |
arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') | |
pa.array(arr, type=pa.binary(4)) | |
with pytest.raises( | |
pa.lib.ArrowInvalid, | |
match=r'Got bytestring of length 12 \(expected 3\)'): | |
arr = np.array([b'foo', b'bar', b'baz'], dtype='|U3') | |
pa.array(arr, type=pa.binary(3)) | |
class TestConvertDecimalTypes: | |
""" | |
Conversion test for decimal types. | |
""" | |
decimal32 = [ | |
decimal.Decimal('-1234.123'), | |
decimal.Decimal('1234.439') | |
] | |
decimal64 = [ | |
decimal.Decimal('-129934.123331'), | |
decimal.Decimal('129534.123731') | |
] | |
decimal128 = [ | |
decimal.Decimal('394092382910493.12341234678'), | |
decimal.Decimal('-314292388910493.12343437128') | |
] | |
def test_decimal_from_pandas(self, values, expected_type): | |
expected = pd.DataFrame({'decimals': values}) | |
table = pa.Table.from_pandas(expected, preserve_index=False) | |
field = pa.field('decimals', expected_type) | |
# schema's metadata is generated by from_pandas conversion | |
expected_schema = pa.schema([field], metadata=table.schema.metadata) | |
assert table.schema.equals(expected_schema) | |
def test_decimal_to_pandas(self, values): | |
expected = pd.DataFrame({'decimals': values}) | |
converted = pa.Table.from_pandas(expected) | |
df = converted.to_pandas() | |
tm.assert_frame_equal(df, expected) | |
def test_decimal_fails_with_truncation(self): | |
data1 = [decimal.Decimal('1.234')] | |
type1 = pa.decimal128(10, 2) | |
with pytest.raises(pa.ArrowInvalid): | |
pa.array(data1, type=type1) | |
data2 = [decimal.Decimal('1.2345')] | |
type2 = pa.decimal128(10, 3) | |
with pytest.raises(pa.ArrowInvalid): | |
pa.array(data2, type=type2) | |
def test_decimal_with_different_precisions(self): | |
data = [ | |
decimal.Decimal('0.01'), | |
decimal.Decimal('0.001'), | |
] | |
series = pd.Series(data) | |
array = pa.array(series) | |
assert array.to_pylist() == data | |
assert array.type == pa.decimal128(3, 3) | |
array = pa.array(data, type=pa.decimal128(12, 5)) | |
expected = [decimal.Decimal('0.01000'), decimal.Decimal('0.00100')] | |
assert array.to_pylist() == expected | |
def test_decimal_with_None_explicit_type(self): | |
series = pd.Series([decimal.Decimal('3.14'), None]) | |
_check_series_roundtrip(series, type_=pa.decimal128(12, 5)) | |
# Test that having all None values still produces decimal array | |
series = pd.Series([None] * 2) | |
_check_series_roundtrip(series, type_=pa.decimal128(12, 5)) | |
def test_decimal_with_None_infer_type(self): | |
series = pd.Series([decimal.Decimal('3.14'), None]) | |
_check_series_roundtrip(series, expected_pa_type=pa.decimal128(3, 2)) | |
def test_strided_objects(self, tmpdir): | |
# see ARROW-3053 | |
data = { | |
'a': {0: 'a'}, | |
'b': {0: decimal.Decimal('0.0')} | |
} | |
# This yields strided objects | |
df = pd.DataFrame.from_dict(data) | |
_check_pandas_roundtrip(df) | |
class TestConvertListTypes: | |
""" | |
Conversion tests for list<> types. | |
""" | |
def test_column_of_arrays(self): | |
df, schema = dataframe_with_arrays() | |
_check_pandas_roundtrip(df, schema=schema, expected_schema=schema) | |
table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) | |
# schema's metadata is generated by from_pandas conversion | |
expected_schema = schema.with_metadata(table.schema.metadata) | |
assert table.schema.equals(expected_schema) | |
for column in df.columns: | |
field = schema.field(column) | |
_check_array_roundtrip(df[column], type=field.type) | |
def test_column_of_arrays_to_py(self): | |
# Test regression in ARROW-1199 not caught in above test | |
dtype = 'i1' | |
arr = np.array([ | |
np.arange(10, dtype=dtype), | |
np.arange(5, dtype=dtype), | |
None, | |
np.arange(1, dtype=dtype) | |
], dtype=object) | |
type_ = pa.list_(pa.int8()) | |
parr = pa.array(arr, type=type_) | |
assert parr[0].as_py() == list(range(10)) | |
assert parr[1].as_py() == list(range(5)) | |
assert parr[2].as_py() is None | |
assert parr[3].as_py() == [0] | |
def test_column_of_boolean_list(self): | |
# ARROW-4370: Table to pandas conversion fails for list of bool | |
array = pa.array([[True, False], [True]], type=pa.list_(pa.bool_())) | |
table = pa.Table.from_arrays([array], names=['col1']) | |
df = table.to_pandas() | |
expected_df = pd.DataFrame({'col1': [[True, False], [True]]}) | |
tm.assert_frame_equal(df, expected_df) | |
s = table[0].to_pandas() | |
tm.assert_series_equal(pd.Series(s), df['col1'], check_names=False) | |
def test_column_of_decimal_list(self): | |
array = pa.array([[decimal.Decimal('1'), decimal.Decimal('2')], | |
[decimal.Decimal('3.3')]], | |
type=pa.list_(pa.decimal128(2, 1))) | |
table = pa.Table.from_arrays([array], names=['col1']) | |
df = table.to_pandas() | |
expected_df = pd.DataFrame( | |
{'col1': [[decimal.Decimal('1'), decimal.Decimal('2')], | |
[decimal.Decimal('3.3')]]}) | |
tm.assert_frame_equal(df, expected_df) | |
def test_nested_types_from_ndarray_null_entries(self): | |
# Root cause of ARROW-6435 | |
s = pd.Series(np.array([np.nan, np.nan], dtype=object)) | |
for ty in [pa.list_(pa.int64()), | |
pa.large_list(pa.int64()), | |
pa.struct([pa.field('f0', 'int32')])]: | |
result = pa.array(s, type=ty) | |
expected = pa.array([None, None], type=ty) | |
assert result.equals(expected) | |
with pytest.raises(TypeError): | |
pa.array(s.values, type=ty) | |
def test_column_of_lists(self): | |
df, schema = dataframe_with_lists() | |
_check_pandas_roundtrip(df, schema=schema, expected_schema=schema) | |
table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) | |
# schema's metadata is generated by from_pandas conversion | |
expected_schema = schema.with_metadata(table.schema.metadata) | |
assert table.schema.equals(expected_schema) | |
for column in df.columns: | |
field = schema.field(column) | |
_check_array_roundtrip(df[column], type=field.type) | |
def test_column_of_lists_first_empty(self): | |
# ARROW-2124 | |
num_lists = [[], [2, 3, 4], [3, 6, 7, 8], [], [2]] | |
series = pd.Series([np.array(s, dtype=float) for s in num_lists]) | |
arr = pa.array(series) | |
result = pd.Series(arr.to_pandas()) | |
tm.assert_series_equal(result, series) | |
def test_column_of_lists_chunked(self): | |
# ARROW-1357 | |
df = pd.DataFrame({ | |
'lists': np.array([ | |
[1, 2], | |
None, | |
[2, 3], | |
[4, 5], | |
[6, 7], | |
[8, 9] | |
], dtype=object) | |
}) | |
schema = pa.schema([ | |
pa.field('lists', pa.list_(pa.int64())) | |
]) | |
t1 = pa.Table.from_pandas(df[:2], schema=schema) | |
t2 = pa.Table.from_pandas(df[2:], schema=schema) | |
table = pa.concat_tables([t1, t2]) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_empty_column_of_lists_chunked(self): | |
df = pd.DataFrame({ | |
'lists': np.array([], dtype=object) | |
}) | |
schema = pa.schema([ | |
pa.field('lists', pa.list_(pa.int64())) | |
]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_column_of_lists_chunked2(self): | |
data1 = [[0, 1], [2, 3], [4, 5], [6, 7], [10, 11], | |
[12, 13], [14, 15], [16, 17]] | |
data2 = [[8, 9], [18, 19]] | |
a1 = pa.array(data1) | |
a2 = pa.array(data2) | |
t1 = pa.Table.from_arrays([a1], names=['a']) | |
t2 = pa.Table.from_arrays([a2], names=['a']) | |
concatenated = pa.concat_tables([t1, t2]) | |
result = concatenated.to_pandas() | |
expected = pd.DataFrame({'a': data1 + data2}) | |
tm.assert_frame_equal(result, expected) | |
def test_column_of_lists_strided(self): | |
df, schema = dataframe_with_lists() | |
df = pd.concat([df] * 6, ignore_index=True) | |
arr = df['int64'].values[::3] | |
assert arr.strides[0] != 8 | |
_check_array_roundtrip(arr) | |
def test_nested_lists_all_none(self): | |
data = np.array([[None, None], None], dtype=object) | |
arr = pa.array(data) | |
expected = pa.array(list(data)) | |
assert arr.equals(expected) | |
assert arr.type == pa.list_(pa.null()) | |
data2 = np.array([None, None, [None, None], | |
np.array([None, None], dtype=object)], | |
dtype=object) | |
arr = pa.array(data2) | |
expected = pa.array([None, None, [None, None], [None, None]]) | |
assert arr.equals(expected) | |
def test_nested_lists_all_empty(self): | |
# ARROW-2128 | |
data = pd.Series([[], [], []]) | |
arr = pa.array(data) | |
expected = pa.array(list(data)) | |
assert arr.equals(expected) | |
assert arr.type == pa.list_(pa.null()) | |
def test_nested_list_first_empty(self): | |
# ARROW-2711 | |
data = pd.Series([[], ["a"]]) | |
arr = pa.array(data) | |
expected = pa.array(list(data)) | |
assert arr.equals(expected) | |
assert arr.type == pa.list_(pa.string()) | |
def test_nested_smaller_ints(self): | |
# ARROW-1345, ARROW-2008, there were some type inference bugs happening | |
# before | |
data = pd.Series([np.array([1, 2, 3], dtype='i1'), None]) | |
result = pa.array(data) | |
result2 = pa.array(data.values) | |
expected = pa.array([[1, 2, 3], None], type=pa.list_(pa.int8())) | |
assert result.equals(expected) | |
assert result2.equals(expected) | |
data3 = pd.Series([np.array([1, 2, 3], dtype='f4'), None]) | |
result3 = pa.array(data3) | |
expected3 = pa.array([[1, 2, 3], None], type=pa.list_(pa.float32())) | |
assert result3.equals(expected3) | |
def test_infer_lists(self): | |
data = OrderedDict([ | |
('nan_ints', [[np.nan, 1], [2, 3]]), | |
('ints', [[0, 1], [2, 3]]), | |
('strs', [[None, 'b'], ['c', 'd']]), | |
('nested_strs', [[[None, 'b'], ['c', 'd']], None]) | |
]) | |
df = pd.DataFrame(data) | |
expected_schema = pa.schema([ | |
pa.field('nan_ints', pa.list_(pa.int64())), | |
pa.field('ints', pa.list_(pa.int64())), | |
pa.field('strs', pa.list_(pa.string())), | |
pa.field('nested_strs', pa.list_(pa.list_(pa.string()))) | |
]) | |
_check_pandas_roundtrip(df, expected_schema=expected_schema) | |
def test_fixed_size_list(self): | |
# ARROW-7365 | |
fixed_ty = pa.list_(pa.int64(), list_size=4) | |
variable_ty = pa.list_(pa.int64()) | |
data = [[0, 1, 2, 3], None, [4, 5, 6, 7], [8, 9, 10, 11]] | |
fixed_arr = pa.array(data, type=fixed_ty) | |
variable_arr = pa.array(data, type=variable_ty) | |
result = fixed_arr.to_pandas() | |
expected = variable_arr.to_pandas() | |
for left, right in zip(result, expected): | |
if left is None: | |
assert right is None | |
npt.assert_array_equal(left, right) | |
def test_infer_numpy_array(self): | |
data = OrderedDict([ | |
('ints', [ | |
np.array([0, 1], dtype=np.int64), | |
np.array([2, 3], dtype=np.int64) | |
]) | |
]) | |
df = pd.DataFrame(data) | |
expected_schema = pa.schema([ | |
pa.field('ints', pa.list_(pa.int64())) | |
]) | |
_check_pandas_roundtrip(df, expected_schema=expected_schema) | |
def test_to_list_of_structs_pandas(self): | |
ints = pa.array([1, 2, 3], pa.int32()) | |
strings = pa.array([['a', 'b'], ['c', 'd'], ['e', 'f']], | |
pa.list_(pa.string())) | |
structs = pa.StructArray.from_arrays([ints, strings], ['f1', 'f2']) | |
data = pa.ListArray.from_arrays([0, 1, 3], structs) | |
expected = pd.Series([ | |
[{'f1': 1, 'f2': ['a', 'b']}], | |
[{'f1': 2, 'f2': ['c', 'd']}, | |
{'f1': 3, 'f2': ['e', 'f']}] | |
]) | |
series = pd.Series(data.to_pandas()) | |
# pandas.testing generates a | |
# DeprecationWarning: elementwise comparison failed | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("ignore", "elementwise comparison failed", | |
DeprecationWarning) | |
tm.assert_series_equal(series, expected) | |
def test_to_list_of_maps_pandas(self): | |
if ((Version(np.__version__) >= Version("1.25.0.dev0")) and | |
(Version(pd.__version__) < Version("2.0.0"))): | |
# TODO: regression in pandas with numpy 1.25dev | |
# https://github.com/pandas-dev/pandas/issues/50360 | |
pytest.skip("Regression in pandas with numpy 1.25") | |
data = [ | |
[[('foo', ['a', 'b']), ('bar', ['c', 'd'])]], | |
[[('baz', []), ('qux', None), ('quux', [None, 'e'])], [('quz', ['f', 'g'])]] | |
] | |
arr = pa.array(data, pa.list_(pa.map_(pa.utf8(), pa.list_(pa.utf8())))) | |
series = arr.to_pandas() | |
expected = pd.Series(data) | |
# pandas.testing generates a | |
# DeprecationWarning: elementwise comparison failed | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("ignore", "elementwise comparison failed", | |
DeprecationWarning) | |
tm.assert_series_equal(series, expected) | |
def test_to_list_of_maps_pandas_sliced(self): | |
""" | |
A slightly more rigorous test for chunk/slice combinations | |
""" | |
if ((Version(np.__version__) >= Version("1.25.0.dev0")) and | |
(Version(pd.__version__) < Version("2.0.0"))): | |
# TODO: regression in pandas with numpy 1.25dev | |
# https://github.com/pandas-dev/pandas/issues/50360 | |
pytest.skip("Regression in pandas with numpy 1.25") | |
keys = pa.array(['ignore', 'foo', 'bar', 'baz', | |
'qux', 'quux', 'ignore']).slice(1, 5) | |
items = pa.array( | |
[['ignore'], ['ignore'], ['a', 'b'], ['c', 'd'], [], None, [None, 'e']], | |
pa.list_(pa.string()), | |
).slice(2, 5) | |
map = pa.MapArray.from_arrays([0, 2, 4], keys, items) | |
arr = pa.ListArray.from_arrays([0, 1, 2], map) | |
series = arr.to_pandas() | |
expected = pd.Series([ | |
[[('foo', ['a', 'b']), ('bar', ['c', 'd'])]], | |
[[('baz', []), ('qux', None)]], | |
]) | |
series_sliced = arr.slice(1, 2).to_pandas() | |
expected_sliced = pd.Series([ | |
[[('baz', []), ('qux', None)]], | |
]) | |
# pandas.testing generates a | |
# DeprecationWarning: elementwise comparison failed | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("ignore", "elementwise comparison failed", | |
DeprecationWarning) | |
tm.assert_series_equal(series, expected) | |
tm.assert_series_equal(series_sliced, expected_sliced) | |
def test_array_from_pandas_typed_array_with_mask(self, t, data, expected): | |
m = np.array([True, False, True]) | |
s = pd.Series(data) | |
result = pa.Array.from_pandas(s, mask=m, type=pa.list_(t())) | |
assert pa.Array.from_pandas(expected, | |
type=pa.list_(t())).equals(result) | |
def test_empty_list_roundtrip(self): | |
empty_list_array = np.empty((3,), dtype=object) | |
empty_list_array.fill([]) | |
df = pd.DataFrame({'a': np.array(['1', '2', '3']), | |
'b': empty_list_array}) | |
tbl = pa.Table.from_pandas(df) | |
result = tbl.to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_array_from_nested_arrays(self): | |
df, schema = dataframe_with_arrays() | |
for field in schema: | |
arr = df[field.name].values | |
expected = pa.array(list(arr), type=field.type) | |
result = pa.array(arr) | |
assert result.type == field.type # == list<scalar> | |
assert result.equals(expected) | |
def test_nested_large_list(self): | |
s = (pa.array([[[1, 2, 3], [4]], None], | |
type=pa.large_list(pa.large_list(pa.int64()))) | |
.to_pandas()) | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("ignore", | |
"Creating an ndarray from ragged nested", | |
_np_VisibleDeprecationWarning) | |
warnings.filterwarnings("ignore", "elementwise comparison failed", | |
DeprecationWarning) | |
tm.assert_series_equal( | |
s, pd.Series([[[1, 2, 3], [4]], None], dtype=object), | |
check_names=False) | |
def test_large_binary_list(self): | |
for list_type_factory in (pa.list_, pa.large_list): | |
s = (pa.array([["aa", "bb"], None, ["cc"], []], | |
type=list_type_factory(pa.large_binary())) | |
.to_pandas()) | |
tm.assert_series_equal( | |
s, pd.Series([[b"aa", b"bb"], None, [b"cc"], []]), | |
check_names=False) | |
s = (pa.array([["aa", "bb"], None, ["cc"], []], | |
type=list_type_factory(pa.large_string())) | |
.to_pandas()) | |
tm.assert_series_equal( | |
s, pd.Series([["aa", "bb"], None, ["cc"], []]), | |
check_names=False) | |
def test_list_of_dictionary(self): | |
child = pa.array(["foo", "bar", None, "foo"]).dictionary_encode() | |
arr = pa.ListArray.from_arrays([0, 1, 3, 3, 4], child) | |
# Expected a Series of lists | |
expected = pd.Series(arr.to_pylist()) | |
tm.assert_series_equal(arr.to_pandas(), expected) | |
# Same but with nulls | |
arr = arr.take([0, 1, None, 3]) | |
expected[2] = None | |
tm.assert_series_equal(arr.to_pandas(), expected) | |
def test_auto_chunking_on_list_overflow(self): | |
# ARROW-9976 | |
n = 2**21 | |
df = pd.DataFrame.from_dict({ | |
"a": list(np.zeros((n, 2**10), dtype='uint8')), | |
"b": range(n) | |
}) | |
table = pa.Table.from_pandas(df) | |
table.validate(full=True) | |
column_a = table[0] | |
assert column_a.num_chunks == 2 | |
assert len(column_a.chunk(0)) == 2**21 - 1 | |
assert len(column_a.chunk(1)) == 1 | |
def test_map_array_roundtrip(self): | |
data = [[(b'a', 1), (b'b', 2)], | |
[(b'c', 3)], | |
[(b'd', 4), (b'e', 5), (b'f', 6)], | |
[(b'g', 7)]] | |
df = pd.DataFrame({"map": data}) | |
schema = pa.schema([("map", pa.map_(pa.binary(), pa.int32()))]) | |
_check_pandas_roundtrip(df, schema=schema) | |
def test_map_array_chunked(self): | |
data1 = [[(b'a', 1), (b'b', 2)], | |
[(b'c', 3)], | |
[(b'd', 4), (b'e', 5), (b'f', 6)], | |
[(b'g', 7)]] | |
data2 = [[(k, v * 2) for k, v in row] for row in data1] | |
arr1 = pa.array(data1, type=pa.map_(pa.binary(), pa.int32())) | |
arr2 = pa.array(data2, type=pa.map_(pa.binary(), pa.int32())) | |
arr = pa.chunked_array([arr1, arr2]) | |
expected = pd.Series(data1 + data2) | |
actual = arr.to_pandas() | |
tm.assert_series_equal(actual, expected, check_names=False) | |
def test_map_array_with_nulls(self): | |
data = [[(b'a', 1), (b'b', 2)], | |
None, | |
[(b'd', 4), (b'e', 5), (b'f', None)], | |
[(b'g', 7)]] | |
# None value in item array causes upcast to float | |
expected = [[(k, float(v) if v is not None else None) for k, v in row] | |
if row is not None else None for row in data] | |
expected = pd.Series(expected) | |
arr = pa.array(data, type=pa.map_(pa.binary(), pa.int32())) | |
actual = arr.to_pandas() | |
tm.assert_series_equal(actual, expected, check_names=False) | |
def test_map_array_dictionary_encoded(self): | |
offsets = pa.array([0, 3, 5]) | |
items = pa.array(['a', 'b', 'c', 'a', 'd']).dictionary_encode() | |
keys = pa.array(list(range(len(items)))) | |
arr = pa.MapArray.from_arrays(offsets, keys, items) | |
# Dictionary encoded values converted to dense | |
expected = pd.Series( | |
[[(0, 'a'), (1, 'b'), (2, 'c')], [(3, 'a'), (4, 'd')]]) | |
actual = arr.to_pandas() | |
tm.assert_series_equal(actual, expected, check_names=False) | |
def test_list_no_duplicate_base(self): | |
# ARROW-18400 | |
arr = pa.array([[1, 2], [3, 4, 5], None, [6, None], [7, 8]]) | |
chunked_arr = pa.chunked_array([arr.slice(0, 3), arr.slice(3, 1)]) | |
np_arr = chunked_arr.to_numpy() | |
expected = np.array([[1., 2.], [3., 4., 5.], None, | |
[6., np.nan]], dtype="object") | |
for left, right in zip(np_arr, expected): | |
if right is None: | |
assert left == right | |
else: | |
npt.assert_array_equal(left, right) | |
expected_base = np.array([[1., 2., 3., 4., 5., 6., np.nan]]) | |
npt.assert_array_equal(np_arr[0].base, expected_base) | |
np_arr_sliced = chunked_arr.slice(1, 3).to_numpy() | |
expected = np.array([[3, 4, 5], None, [6, np.nan]], dtype="object") | |
for left, right in zip(np_arr_sliced, expected): | |
if right is None: | |
assert left == right | |
else: | |
npt.assert_array_equal(left, right) | |
expected_base = np.array([[3., 4., 5., 6., np.nan]]) | |
npt.assert_array_equal(np_arr_sliced[0].base, expected_base) | |
def test_list_values_behind_null(self): | |
arr = pa.ListArray.from_arrays( | |
offsets=pa.array([0, 2, 4, 6]), | |
values=pa.array([1, 2, 99, 99, 3, None]), | |
mask=pa.array([False, True, False]) | |
) | |
np_arr = arr.to_numpy(zero_copy_only=False) | |
expected = np.array([[1., 2.], None, [3., np.nan]], dtype="object") | |
for left, right in zip(np_arr, expected): | |
if right is None: | |
assert left == right | |
else: | |
npt.assert_array_equal(left, right) | |
def test_list_view_to_pandas_with_in_order_offsets(self, klass): | |
arr = klass.from_arrays( | |
offsets=pa.array([0, 2, 4]), | |
sizes=pa.array([2, 2, 2]), | |
values=pa.array([1, 2, 3, 4, 5, 6]), | |
) | |
actual = arr.to_pandas() | |
expected = pd.Series([[1, 2], [3, 4], [5, 6]]) | |
tm.assert_series_equal(actual, expected) | |
def test_list_view_to_pandas_with_out_of_order_offsets(self, klass): | |
arr = klass.from_arrays( | |
offsets=pa.array([2, 4, 0]), | |
sizes=pa.array([2, 2, 2]), | |
values=pa.array([1, 2, 3, 4, 5, 6]), | |
) | |
actual = arr.to_pandas() | |
expected = pd.Series([[3, 4], [5, 6], [1, 2]]) | |
tm.assert_series_equal(actual, expected) | |
def test_list_view_to_pandas_with_overlapping_offsets(self, klass): | |
arr = klass.from_arrays( | |
offsets=pa.array([0, 1, 2]), | |
sizes=pa.array([4, 4, 4]), | |
values=pa.array([1, 2, 3, 4, 5, 6]), | |
) | |
actual = arr.to_pandas() | |
expected = pd.Series([[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]]) | |
tm.assert_series_equal(actual, expected) | |
def test_list_view_to_pandas_with_null_values(self, klass): | |
arr = klass.from_arrays( | |
offsets=pa.array([0, 2, 2]), | |
sizes=pa.array([2, 0, 0]), | |
values=pa.array([1, None]), | |
mask=pa.array([False, False, True]) | |
) | |
actual = arr.to_pandas() | |
expected = pd.Series([[1, np.nan], [], None]) | |
tm.assert_series_equal(actual, expected) | |
def test_list_view_to_pandas_multiple_chunks(self, klass): | |
gc.collect() | |
bytes_start = pa.total_allocated_bytes() | |
arr1 = klass.from_arrays( | |
offsets=pa.array([2, 1, 0]), | |
sizes=pa.array([2, 2, 2]), | |
values=pa.array([1, 2, 3, 4]) | |
) | |
arr2 = klass.from_arrays( | |
offsets=pa.array([0, 1, 1]), | |
sizes=pa.array([3, 3, 0]), | |
values=pa.array([5, 6, 7, None]), | |
mask=pa.array([False, False, True]) | |
) | |
arr = pa.chunked_array([arr1, arr2]) | |
actual = arr.to_pandas() | |
expected = pd.Series([[3, 4], [2, 3], [1, 2], [5, 6, 7], [6, 7, np.nan], None]) | |
tm.assert_series_equal(actual, expected) | |
del actual | |
del arr | |
del arr1 | |
del arr2 | |
bytes_end = pa.total_allocated_bytes() | |
assert bytes_end == bytes_start | |
class TestConvertStructTypes: | |
""" | |
Conversion tests for struct types. | |
""" | |
def test_pandas_roundtrip(self): | |
df = pd.DataFrame({'dicts': [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]}) | |
expected_schema = pa.schema([ | |
('dicts', pa.struct([('a', pa.int64()), ('b', pa.int64())])), | |
]) | |
_check_pandas_roundtrip(df, expected_schema=expected_schema) | |
# specifying schema explicitly in from_pandas | |
_check_pandas_roundtrip( | |
df, schema=expected_schema, expected_schema=expected_schema) | |
def test_to_pandas(self): | |
ints = pa.array([None, 2, 3], type=pa.int64()) | |
strs = pa.array(['a', None, 'c'], type=pa.string()) | |
bools = pa.array([True, False, None], type=pa.bool_()) | |
arr = pa.StructArray.from_arrays( | |
[ints, strs, bools], | |
['ints', 'strs', 'bools']) | |
expected = pd.Series([ | |
{'ints': None, 'strs': 'a', 'bools': True}, | |
{'ints': 2, 'strs': None, 'bools': False}, | |
{'ints': 3, 'strs': 'c', 'bools': None}, | |
]) | |
series = pd.Series(arr.to_pandas()) | |
tm.assert_series_equal(series, expected) | |
def test_to_pandas_multiple_chunks(self): | |
# ARROW-11855 | |
gc.collect() | |
bytes_start = pa.total_allocated_bytes() | |
ints1 = pa.array([1], type=pa.int64()) | |
ints2 = pa.array([2], type=pa.int64()) | |
arr1 = pa.StructArray.from_arrays([ints1], ['ints']) | |
arr2 = pa.StructArray.from_arrays([ints2], ['ints']) | |
arr = pa.chunked_array([arr1, arr2]) | |
expected = pd.Series([ | |
{'ints': 1}, | |
{'ints': 2} | |
]) | |
series = pd.Series(arr.to_pandas()) | |
tm.assert_series_equal(series, expected) | |
del series | |
del arr | |
del arr1 | |
del arr2 | |
del ints1 | |
del ints2 | |
bytes_end = pa.total_allocated_bytes() | |
assert bytes_end == bytes_start | |
def test_from_numpy(self): | |
dt = np.dtype([('x', np.int32), | |
(('y_title', 'y'), np.bool_)]) | |
ty = pa.struct([pa.field('x', pa.int32()), | |
pa.field('y', pa.bool_())]) | |
data = np.array([], dtype=dt) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [] | |
data = np.array([(42, True), (43, False)], dtype=dt) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [{'x': 42, 'y': True}, | |
{'x': 43, 'y': False}] | |
# With mask | |
arr = pa.array(data, mask=np.bool_([False, True]), type=ty) | |
assert arr.to_pylist() == [{'x': 42, 'y': True}, None] | |
# Trivial struct type | |
dt = np.dtype([]) | |
ty = pa.struct([]) | |
data = np.array([], dtype=dt) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [] | |
data = np.array([(), ()], dtype=dt) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [{}, {}] | |
def test_from_numpy_nested(self): | |
# Note: an object field inside a struct | |
dt = np.dtype([('x', np.dtype([('xx', np.int8), | |
('yy', np.bool_)])), | |
('y', np.int16), | |
('z', np.object_)]) | |
# Note: itemsize is not necessarily a multiple of sizeof(object) | |
# object_ is 8 bytes on 64-bit systems, 4 bytes on 32-bit systems | |
assert dt.itemsize == (12 if sys.maxsize > 2**32 else 8) | |
ty = pa.struct([pa.field('x', pa.struct([pa.field('xx', pa.int8()), | |
pa.field('yy', pa.bool_())])), | |
pa.field('y', pa.int16()), | |
pa.field('z', pa.string())]) | |
data = np.array([], dtype=dt) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [] | |
data = np.array([ | |
((1, True), 2, 'foo'), | |
((3, False), 4, 'bar')], dtype=dt) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [ | |
{'x': {'xx': 1, 'yy': True}, 'y': 2, 'z': 'foo'}, | |
{'x': {'xx': 3, 'yy': False}, 'y': 4, 'z': 'bar'}] | |
def test_from_numpy_large(self): | |
# Exercise rechunking + nulls | |
target_size = 3 * 1024**3 # 4GB | |
dt = np.dtype([('x', np.float64), ('y', 'object')]) | |
bs = 65536 - dt.itemsize | |
block = b'.' * bs | |
n = target_size // (bs + dt.itemsize) | |
data = np.zeros(n, dtype=dt) | |
data['x'] = np.random.random_sample(n) | |
data['y'] = block | |
# Add implicit nulls | |
data['x'][data['x'] < 0.2] = np.nan | |
ty = pa.struct([pa.field('x', pa.float64()), | |
pa.field('y', pa.binary())]) | |
arr = pa.array(data, type=ty, from_pandas=True) | |
arr.validate(full=True) | |
assert arr.num_chunks == 2 | |
def iter_chunked_array(arr): | |
for chunk in arr.iterchunks(): | |
yield from chunk | |
def check(arr, data, mask=None): | |
assert len(arr) == len(data) | |
xs = data['x'] | |
ys = data['y'] | |
for i, obj in enumerate(iter_chunked_array(arr)): | |
try: | |
d = obj.as_py() | |
if mask is not None and mask[i]: | |
assert d is None | |
else: | |
x = xs[i] | |
if np.isnan(x): | |
assert d['x'] is None | |
else: | |
assert d['x'] == x | |
assert d['y'] == ys[i] | |
except Exception: | |
print("Failed at index", i) | |
raise | |
check(arr, data) | |
del arr | |
# Now with explicit mask | |
mask = np.random.random_sample(n) < 0.2 | |
arr = pa.array(data, type=ty, mask=mask, from_pandas=True) | |
arr.validate(full=True) | |
assert arr.num_chunks == 2 | |
check(arr, data, mask) | |
del arr | |
def test_from_numpy_bad_input(self): | |
ty = pa.struct([pa.field('x', pa.int32()), | |
pa.field('y', pa.bool_())]) | |
dt = np.dtype([('x', np.int32), | |
('z', np.bool_)]) | |
data = np.array([], dtype=dt) | |
with pytest.raises(ValueError, | |
match="Missing field 'y'"): | |
pa.array(data, type=ty) | |
data = np.int32([]) | |
with pytest.raises(TypeError, | |
match="Expected struct array"): | |
pa.array(data, type=ty) | |
def test_from_tuples(self): | |
df = pd.DataFrame({'tuples': [(1, 2), (3, 4)]}) | |
expected_df = pd.DataFrame( | |
{'tuples': [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]}) | |
# conversion from tuples works when specifying expected struct type | |
struct_type = pa.struct([('a', pa.int64()), ('b', pa.int64())]) | |
arr = np.asarray(df['tuples']) | |
_check_array_roundtrip( | |
arr, expected=expected_df['tuples'], type=struct_type) | |
expected_schema = pa.schema([('tuples', struct_type)]) | |
_check_pandas_roundtrip( | |
df, expected=expected_df, schema=expected_schema, | |
expected_schema=expected_schema) | |
def test_struct_of_dictionary(self): | |
names = ['ints', 'strs'] | |
children = [pa.array([456, 789, 456]).dictionary_encode(), | |
pa.array(["foo", "foo", None]).dictionary_encode()] | |
arr = pa.StructArray.from_arrays(children, names=names) | |
# Expected a Series of {field name: field value} dicts | |
rows_as_tuples = zip(*(child.to_pylist() for child in children)) | |
rows_as_dicts = [dict(zip(names, row)) for row in rows_as_tuples] | |
expected = pd.Series(rows_as_dicts) | |
tm.assert_series_equal(arr.to_pandas(), expected) | |
# Same but with nulls | |
arr = arr.take([0, None, 2]) | |
expected[1] = None | |
tm.assert_series_equal(arr.to_pandas(), expected) | |
class TestZeroCopyConversion: | |
""" | |
Tests that zero-copy conversion works with some types. | |
""" | |
def test_zero_copy_success(self): | |
result = pa.array([0, 1, 2]).to_pandas(zero_copy_only=True) | |
npt.assert_array_equal(result, [0, 1, 2]) | |
def test_zero_copy_dictionaries(self): | |
arr = pa.DictionaryArray.from_arrays( | |
np.array([0, 0]), | |
np.array([5], dtype="int64"), | |
) | |
result = arr.to_pandas(zero_copy_only=True) | |
values = pd.Categorical([5, 5]) | |
tm.assert_series_equal(pd.Series(result), pd.Series(values), | |
check_names=False) | |
def test_zero_copy_timestamp(self): | |
arr = np.array(['2007-07-13'], dtype='datetime64[ns]') | |
result = pa.array(arr).to_pandas(zero_copy_only=True) | |
npt.assert_array_equal(result, arr) | |
def test_zero_copy_duration(self): | |
arr = np.array([1], dtype='timedelta64[ns]') | |
result = pa.array(arr).to_pandas(zero_copy_only=True) | |
npt.assert_array_equal(result, arr) | |
def check_zero_copy_failure(self, arr): | |
with pytest.raises(pa.ArrowInvalid): | |
arr.to_pandas(zero_copy_only=True) | |
def test_zero_copy_failure_on_object_types(self): | |
self.check_zero_copy_failure(pa.array(['A', 'B', 'C'])) | |
def test_zero_copy_failure_with_int_when_nulls(self): | |
self.check_zero_copy_failure(pa.array([0, 1, None])) | |
def test_zero_copy_failure_with_float_when_nulls(self): | |
self.check_zero_copy_failure(pa.array([0.0, 1.0, None])) | |
def test_zero_copy_failure_on_bool_types(self): | |
self.check_zero_copy_failure(pa.array([True, False])) | |
def test_zero_copy_failure_on_list_types(self): | |
arr = pa.array([[1, 2], [8, 9]], type=pa.list_(pa.int64())) | |
self.check_zero_copy_failure(arr) | |
def test_zero_copy_failure_on_timestamp_with_nulls(self): | |
arr = np.array([1, None], dtype='datetime64[ns]') | |
self.check_zero_copy_failure(pa.array(arr)) | |
def test_zero_copy_failure_on_duration_with_nulls(self): | |
arr = np.array([1, None], dtype='timedelta64[ns]') | |
self.check_zero_copy_failure(pa.array(arr)) | |
def _non_threaded_conversion(): | |
df = _alltypes_example() | |
_check_pandas_roundtrip(df, use_threads=False) | |
_check_pandas_roundtrip(df, use_threads=False, as_batch=True) | |
def _threaded_conversion(): | |
df = _alltypes_example() | |
_check_pandas_roundtrip(df, use_threads=True) | |
_check_pandas_roundtrip(df, use_threads=True, as_batch=True) | |
class TestConvertMisc: | |
""" | |
Miscellaneous conversion tests. | |
""" | |
type_pairs = [ | |
(np.int8, pa.int8()), | |
(np.int16, pa.int16()), | |
(np.int32, pa.int32()), | |
(np.int64, pa.int64()), | |
(np.uint8, pa.uint8()), | |
(np.uint16, pa.uint16()), | |
(np.uint32, pa.uint32()), | |
(np.uint64, pa.uint64()), | |
(np.float16, pa.float16()), | |
(np.float32, pa.float32()), | |
(np.float64, pa.float64()), | |
# XXX unsupported | |
# (np.dtype([('a', 'i2')]), pa.struct([pa.field('a', pa.int16())])), | |
(np.object_, pa.string()), | |
(np.object_, pa.binary()), | |
(np.object_, pa.binary(10)), | |
(np.object_, pa.list_(pa.int64())), | |
] | |
def test_all_none_objects(self): | |
df = pd.DataFrame({'a': [None, None, None]}) | |
_check_pandas_roundtrip(df) | |
def test_all_none_category(self): | |
df = pd.DataFrame({'a': [None, None, None]}) | |
df['a'] = df['a'].astype('category') | |
_check_pandas_roundtrip(df) | |
def test_empty_arrays(self): | |
for dtype, pa_type in self.type_pairs: | |
arr = np.array([], dtype=dtype) | |
_check_array_roundtrip(arr, type=pa_type) | |
def test_non_threaded_conversion(self): | |
_non_threaded_conversion() | |
def test_threaded_conversion_multiprocess(self): | |
# Parallel conversion should work from child processes too (ARROW-2963) | |
pool = mp.Pool(2) | |
try: | |
pool.apply(_threaded_conversion) | |
finally: | |
pool.close() | |
pool.join() | |
def test_category(self): | |
repeats = 5 | |
v1 = ['foo', None, 'bar', 'qux', np.nan] | |
v2 = [4, 5, 6, 7, 8] | |
v3 = [b'foo', None, b'bar', b'qux', np.nan] | |
arrays = { | |
'cat_strings': pd.Categorical(v1 * repeats), | |
'cat_strings_with_na': pd.Categorical(v1 * repeats, | |
categories=['foo', 'bar']), | |
'cat_ints': pd.Categorical(v2 * repeats), | |
'cat_binary': pd.Categorical(v3 * repeats), | |
'cat_strings_ordered': pd.Categorical( | |
v1 * repeats, categories=['bar', 'qux', 'foo'], | |
ordered=True), | |
'ints': v2 * repeats, | |
'ints2': v2 * repeats, | |
'strings': v1 * repeats, | |
'strings2': v1 * repeats, | |
'strings3': v3 * repeats} | |
df = pd.DataFrame(arrays) | |
_check_pandas_roundtrip(df) | |
for k in arrays: | |
_check_array_roundtrip(arrays[k]) | |
def test_category_implicit_from_pandas(self): | |
# ARROW-3374 | |
def _check(v): | |
arr = pa.array(v) | |
result = arr.to_pandas() | |
tm.assert_series_equal(pd.Series(result), pd.Series(v)) | |
arrays = [ | |
pd.Categorical(['a', 'b', 'c'], categories=['a', 'b']), | |
pd.Categorical(['a', 'b', 'c'], categories=['a', 'b'], | |
ordered=True) | |
] | |
for arr in arrays: | |
_check(arr) | |
def test_empty_category(self): | |
# ARROW-2443 | |
df = pd.DataFrame({'cat': pd.Categorical([])}) | |
_check_pandas_roundtrip(df) | |
def test_category_zero_chunks(self): | |
# ARROW-5952 | |
for pa_type, dtype in [(pa.string(), 'object'), (pa.int64(), 'int64')]: | |
a = pa.chunked_array([], pa.dictionary(pa.int8(), pa_type)) | |
result = a.to_pandas() | |
expected = pd.Categorical([], categories=np.array([], dtype=dtype)) | |
tm.assert_series_equal(pd.Series(result), pd.Series(expected)) | |
table = pa.table({'a': a}) | |
result = table.to_pandas() | |
expected = pd.DataFrame({'a': expected}) | |
tm.assert_frame_equal(result, expected) | |
def test_mixed_types_fails(self, data, error_type): | |
df = pd.DataFrame(data) | |
msg = "Conversion failed for column a with type object" | |
with pytest.raises(error_type, match=msg): | |
pa.Table.from_pandas(df) | |
def test_strided_data_import(self): | |
cases = [] | |
columns = ['a', 'b', 'c'] | |
N, K = 100, 3 | |
random_numbers = np.random.randn(N, K).copy() * 100 | |
numeric_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', | |
'f4', 'f8'] | |
for type_name in numeric_dtypes: | |
# Casting np.float64 -> uint32 or uint64 throws a RuntimeWarning | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
cases.append(random_numbers.astype(type_name)) | |
# strings | |
cases.append(np.array([random_ascii(10) for i in range(N * K)], | |
dtype=object) | |
.reshape(N, K).copy()) | |
# booleans | |
boolean_objects = (np.array([True, False, True] * N, dtype=object) | |
.reshape(N, K).copy()) | |
# add some nulls, so dtype comes back as objects | |
boolean_objects[5] = None | |
cases.append(boolean_objects) | |
cases.append(np.arange("2016-01-01T00:00:00.001", N * K, | |
dtype='datetime64[ms]') | |
.reshape(N, K).copy()) | |
strided_mask = (random_numbers > 0).astype(bool)[:, 0] | |
for case in cases: | |
df = pd.DataFrame(case, columns=columns) | |
col = df['a'] | |
_check_pandas_roundtrip(df) | |
_check_array_roundtrip(col) | |
_check_array_roundtrip(col, mask=strided_mask) | |
def test_all_nones(self): | |
def _check_series(s): | |
converted = pa.array(s) | |
assert isinstance(converted, pa.NullArray) | |
assert len(converted) == 3 | |
assert converted.null_count == 3 | |
for item in converted: | |
assert item is pa.NA | |
_check_series(pd.Series([None] * 3, dtype=object)) | |
_check_series(pd.Series([np.nan] * 3, dtype=object)) | |
_check_series(pd.Series([None, np.nan, None], dtype=object)) | |
def test_partial_schema(self): | |
data = OrderedDict([ | |
('a', [0, 1, 2, 3, 4]), | |
('b', np.array([-10, -5, 0, 5, 10], dtype=np.int32)), | |
('c', [-10, -5, 0, 5, 10]) | |
]) | |
df = pd.DataFrame(data) | |
partial_schema = pa.schema([ | |
pa.field('c', pa.int64()), | |
pa.field('a', pa.int64()) | |
]) | |
_check_pandas_roundtrip(df, schema=partial_schema, | |
expected=df[['c', 'a']], | |
expected_schema=partial_schema) | |
def test_table_batch_empty_dataframe(self): | |
df = pd.DataFrame({}) | |
_check_pandas_roundtrip(df, preserve_index=None) | |
_check_pandas_roundtrip(df, preserve_index=None, as_batch=True) | |
expected = pd.DataFrame(columns=pd.Index([])) | |
_check_pandas_roundtrip(df, expected, preserve_index=False) | |
_check_pandas_roundtrip(df, expected, preserve_index=False, as_batch=True) | |
df2 = pd.DataFrame({}, index=[0, 1, 2]) | |
_check_pandas_roundtrip(df2, preserve_index=True) | |
_check_pandas_roundtrip(df2, as_batch=True, preserve_index=True) | |
def test_convert_empty_table(self): | |
arr = pa.array([], type=pa.int64()) | |
empty_objects = pd.Series(np.array([], dtype=object)) | |
tm.assert_series_equal(arr.to_pandas(), | |
pd.Series(np.array([], dtype=np.int64))) | |
arr = pa.array([], type=pa.string()) | |
tm.assert_series_equal(arr.to_pandas(), empty_objects) | |
arr = pa.array([], type=pa.list_(pa.int64())) | |
tm.assert_series_equal(arr.to_pandas(), empty_objects) | |
arr = pa.array([], type=pa.struct([pa.field('a', pa.int64())])) | |
tm.assert_series_equal(arr.to_pandas(), empty_objects) | |
def test_non_natural_stride(self): | |
""" | |
ARROW-2172: converting from a Numpy array with a stride that's | |
not a multiple of itemsize. | |
""" | |
dtype = np.dtype([('x', np.int32), ('y', np.int16)]) | |
data = np.array([(42, -1), (-43, 2)], dtype=dtype) | |
assert data.strides == (6,) | |
arr = pa.array(data['x'], type=pa.int32()) | |
assert arr.to_pylist() == [42, -43] | |
arr = pa.array(data['y'], type=pa.int16()) | |
assert arr.to_pylist() == [-1, 2] | |
def test_array_from_strided_numpy_array(self): | |
# ARROW-5651 | |
np_arr = np.arange(0, 10, dtype=np.float32)[1:-1:2] | |
pa_arr = pa.array(np_arr, type=pa.float64()) | |
expected = pa.array([1.0, 3.0, 5.0, 7.0], type=pa.float64()) | |
pa_arr.equals(expected) | |
def test_safe_unsafe_casts(self): | |
# ARROW-2799 | |
df = pd.DataFrame({ | |
'A': list('abc'), | |
'B': np.linspace(0, 1, 3) | |
}) | |
schema = pa.schema([ | |
pa.field('A', pa.string()), | |
pa.field('B', pa.int32()) | |
]) | |
with pytest.raises(ValueError): | |
pa.Table.from_pandas(df, schema=schema) | |
table = pa.Table.from_pandas(df, schema=schema, safe=False) | |
assert table.column('B').type == pa.int32() | |
def test_error_sparse(self): | |
# ARROW-2818 | |
try: | |
df = pd.DataFrame({'a': pd.arrays.SparseArray([1, np.nan, 3])}) | |
except AttributeError: | |
# pandas.arrays module introduced in pandas 0.24 | |
df = pd.DataFrame({'a': pd.SparseArray([1, np.nan, 3])}) | |
with pytest.raises(TypeError, match="Sparse pandas data"): | |
pa.Table.from_pandas(df) | |
def test_safe_cast_from_float_with_nans_to_int(): | |
# TODO(kszucs): write tests for creating Date32 and Date64 arrays, see | |
# ARROW-4258 and https://github.com/apache/arrow/pull/3395 | |
values = pd.Series([1, 2, None, 4]) | |
arr = pa.Array.from_pandas(values, type=pa.int32(), safe=True) | |
expected = pa.array([1, 2, None, 4], type=pa.int32()) | |
assert arr.equals(expected) | |
def _fully_loaded_dataframe_example(): | |
index = pd.MultiIndex.from_arrays([ | |
pd.date_range('2000-01-01', periods=5).repeat(2), | |
np.tile(np.array(['foo', 'bar'], dtype=object), 5) | |
]) | |
c1 = pd.date_range('2000-01-01', periods=10) | |
data = { | |
0: c1, | |
1: c1.tz_localize('utc'), | |
2: c1.tz_localize('US/Eastern'), | |
3: c1[::2].tz_localize('utc').repeat(2).astype('category'), | |
4: ['foo', 'bar'] * 5, | |
5: pd.Series(['foo', 'bar'] * 5).astype('category').values, | |
6: [True, False] * 5, | |
7: np.random.randn(10), | |
8: np.random.randint(0, 100, size=10), | |
9: pd.period_range('2013', periods=10, freq='M'), | |
10: pd.interval_range(start=1, freq=1, periods=10), | |
} | |
return pd.DataFrame(data, index=index) | |
def test_roundtrip_with_bytes_unicode(columns): | |
if Version("2.0.0") <= Version(pd.__version__) < Version("3.0.0"): | |
# TODO: regression in pandas, hopefully fixed in next version | |
# https://issues.apache.org/jira/browse/ARROW-18394 | |
# https://github.com/pandas-dev/pandas/issues/50127 | |
pytest.skip("Regression in pandas 2.0.0") | |
df = pd.DataFrame(columns=columns) | |
table1 = pa.Table.from_pandas(df) | |
table2 = pa.Table.from_pandas(table1.to_pandas()) | |
assert table1.equals(table2) | |
assert table1.schema.equals(table2.schema) | |
assert table1.schema.metadata == table2.schema.metadata | |
def _pytime_from_micros(val): | |
microseconds = val % 1000000 | |
val //= 1000000 | |
seconds = val % 60 | |
val //= 60 | |
minutes = val % 60 | |
hours = val // 60 | |
return time(hours, minutes, seconds, microseconds) | |
def _pytime_to_micros(pytime): | |
return (pytime.hour * 3600000000 + | |
pytime.minute * 60000000 + | |
pytime.second * 1000000 + | |
pytime.microsecond) | |
def test_convert_unsupported_type_error_message(): | |
# ARROW-1454 | |
# custom python objects | |
class A: | |
pass | |
df = pd.DataFrame({'a': [A(), A()]}) | |
msg = 'Conversion failed for column a with type object' | |
with pytest.raises(ValueError, match=msg): | |
pa.Table.from_pandas(df) | |
# ---------------------------------------------------------------------- | |
# Hypothesis tests | |
def test_array_to_pandas_roundtrip(arr): | |
s = arr.to_pandas() | |
restored = pa.array(s, type=arr.type, from_pandas=True) | |
assert restored.equals(arr) | |
# ---------------------------------------------------------------------- | |
# Test object deduplication in to_pandas | |
def _generate_dedup_example(nunique, repeats): | |
unique_values = [rands(10) for i in range(nunique)] | |
return unique_values * repeats | |
def _assert_nunique(obj, expected): | |
assert len({id(x) for x in obj}) == expected | |
def test_to_pandas_deduplicate_strings_array_types(): | |
nunique = 100 | |
repeats = 10 | |
values = _generate_dedup_example(nunique, repeats) | |
for arr in [pa.array(values, type=pa.binary()), | |
pa.array(values, type=pa.utf8()), | |
pa.chunked_array([values, values])]: | |
_assert_nunique(arr.to_pandas(), nunique) | |
_assert_nunique(arr.to_pandas(deduplicate_objects=False), len(arr)) | |
def test_to_pandas_deduplicate_strings_table_types(): | |
nunique = 100 | |
repeats = 10 | |
values = _generate_dedup_example(nunique, repeats) | |
arr = pa.array(values) | |
rb = pa.RecordBatch.from_arrays([arr], ['foo']) | |
tbl = pa.Table.from_batches([rb]) | |
for obj in [rb, tbl]: | |
_assert_nunique(obj.to_pandas()['foo'], nunique) | |
_assert_nunique(obj.to_pandas(deduplicate_objects=False)['foo'], | |
len(obj)) | |
def test_to_pandas_deduplicate_integers_as_objects(): | |
nunique = 100 | |
repeats = 10 | |
# Python automatically interns smaller integers | |
unique_values = list(np.random.randint(10000000, 1000000000, size=nunique)) | |
unique_values[nunique // 2] = None | |
arr = pa.array(unique_values * repeats) | |
_assert_nunique(arr.to_pandas(integer_object_nulls=True), nunique) | |
_assert_nunique(arr.to_pandas(integer_object_nulls=True, | |
deduplicate_objects=False), | |
# Account for None | |
(nunique - 1) * repeats + 1) | |
def test_to_pandas_deduplicate_date_time(): | |
nunique = 100 | |
repeats = 10 | |
unique_values = list(range(nunique)) | |
cases = [ | |
# raw type, array type, to_pandas options | |
('int32', 'date32', {'date_as_object': True}), | |
('int64', 'date64', {'date_as_object': True}), | |
('int32', 'time32[ms]', {}), | |
('int64', 'time64[us]', {}) | |
] | |
for raw_type, array_type, pandas_options in cases: | |
raw_arr = pa.array(unique_values * repeats, type=raw_type) | |
casted_arr = raw_arr.cast(array_type) | |
_assert_nunique(casted_arr.to_pandas(**pandas_options), | |
nunique) | |
_assert_nunique(casted_arr.to_pandas(deduplicate_objects=False, | |
**pandas_options), | |
len(casted_arr)) | |
# --------------------------------------------------------------------- | |
def test_table_from_pandas_checks_field_nullability(): | |
# ARROW-2136 | |
df = pd.DataFrame({'a': [1.2, 2.1, 3.1], | |
'b': [np.nan, 'string', 'foo']}) | |
schema = pa.schema([pa.field('a', pa.float64(), nullable=False), | |
pa.field('b', pa.utf8(), nullable=False)]) | |
with pytest.raises(ValueError): | |
pa.Table.from_pandas(df, schema=schema) | |
def test_table_from_pandas_keeps_column_order_of_dataframe(): | |
df1 = pd.DataFrame(OrderedDict([ | |
('partition', [0, 0, 1, 1]), | |
('arrays', [[0, 1, 2], [3, 4], None, None]), | |
('floats', [None, None, 1.1, 3.3]) | |
])) | |
df2 = df1[['floats', 'partition', 'arrays']] | |
schema1 = pa.schema([ | |
('partition', pa.int64()), | |
('arrays', pa.list_(pa.int64())), | |
('floats', pa.float64()), | |
]) | |
schema2 = pa.schema([ | |
('floats', pa.float64()), | |
('partition', pa.int64()), | |
('arrays', pa.list_(pa.int64())) | |
]) | |
table1 = pa.Table.from_pandas(df1, preserve_index=False) | |
table2 = pa.Table.from_pandas(df2, preserve_index=False) | |
assert table1.schema.equals(schema1) | |
assert table2.schema.equals(schema2) | |
def test_table_from_pandas_keeps_column_order_of_schema(): | |
# ARROW-3766 | |
df = pd.DataFrame(OrderedDict([ | |
('partition', [0, 0, 1, 1]), | |
('arrays', [[0, 1, 2], [3, 4], None, None]), | |
('floats', [None, None, 1.1, 3.3]) | |
])) | |
schema = pa.schema([ | |
('floats', pa.float64()), | |
('arrays', pa.list_(pa.int32())), | |
('partition', pa.int32()) | |
]) | |
df1 = df[df.partition == 0] | |
df2 = df[df.partition == 1][['floats', 'partition', 'arrays']] | |
table1 = pa.Table.from_pandas(df1, schema=schema, preserve_index=False) | |
table2 = pa.Table.from_pandas(df2, schema=schema, preserve_index=False) | |
assert table1.schema.equals(schema) | |
assert table1.schema.equals(table2.schema) | |
def test_table_from_pandas_columns_argument_only_does_filtering(): | |
df = pd.DataFrame(OrderedDict([ | |
('partition', [0, 0, 1, 1]), | |
('arrays', [[0, 1, 2], [3, 4], None, None]), | |
('floats', [None, None, 1.1, 3.3]) | |
])) | |
columns1 = ['arrays', 'floats', 'partition'] | |
schema1 = pa.schema([ | |
('arrays', pa.list_(pa.int64())), | |
('floats', pa.float64()), | |
('partition', pa.int64()) | |
]) | |
columns2 = ['floats', 'partition'] | |
schema2 = pa.schema([ | |
('floats', pa.float64()), | |
('partition', pa.int64()) | |
]) | |
table1 = pa.Table.from_pandas(df, columns=columns1, preserve_index=False) | |
table2 = pa.Table.from_pandas(df, columns=columns2, preserve_index=False) | |
assert table1.schema.equals(schema1) | |
assert table2.schema.equals(schema2) | |
def test_table_from_pandas_columns_and_schema_are_mutually_exclusive(): | |
df = pd.DataFrame(OrderedDict([ | |
('partition', [0, 0, 1, 1]), | |
('arrays', [[0, 1, 2], [3, 4], None, None]), | |
('floats', [None, None, 1.1, 3.3]) | |
])) | |
schema = pa.schema([ | |
('partition', pa.int32()), | |
('arrays', pa.list_(pa.int32())), | |
('floats', pa.float64()), | |
]) | |
columns = ['arrays', 'floats'] | |
with pytest.raises(ValueError): | |
pa.Table.from_pandas(df, schema=schema, columns=columns) | |
def test_table_from_pandas_keeps_schema_nullability(): | |
# ARROW-5169 | |
df = pd.DataFrame({'a': [1, 2, 3, 4]}) | |
schema = pa.schema([ | |
pa.field('a', pa.int64(), nullable=False), | |
]) | |
table = pa.Table.from_pandas(df) | |
assert table.schema.field('a').nullable is True | |
table = pa.Table.from_pandas(df, schema=schema) | |
assert table.schema.field('a').nullable is False | |
def test_table_from_pandas_schema_index_columns(): | |
# ARROW-5220 | |
df = pd.DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]}) | |
schema = pa.schema([ | |
('a', pa.int64()), | |
('b', pa.float64()), | |
('index', pa.int64()), | |
]) | |
# schema includes index with name not in dataframe | |
with pytest.raises(KeyError, match="name 'index' present in the"): | |
pa.Table.from_pandas(df, schema=schema) | |
df.index.name = 'index' | |
# schema includes correct index name -> roundtrip works | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=True, | |
expected_schema=schema) | |
# schema includes correct index name but preserve_index=False | |
with pytest.raises(ValueError, match="'preserve_index=False' was"): | |
pa.Table.from_pandas(df, schema=schema, preserve_index=False) | |
# in case of preserve_index=None -> RangeIndex serialized as metadata | |
# clashes with the index in the schema | |
with pytest.raises(ValueError, match="name 'index' is present in the " | |
"schema, but it is a RangeIndex"): | |
pa.Table.from_pandas(df, schema=schema, preserve_index=None) | |
df.index = pd.Index([0, 1, 2], name='index') | |
# for non-RangeIndex, both preserve_index=None and True work | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=None, | |
expected_schema=schema) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=True, | |
expected_schema=schema) | |
# schema has different order (index column not at the end) | |
schema = pa.schema([ | |
('index', pa.int64()), | |
('a', pa.int64()), | |
('b', pa.float64()), | |
]) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=None, | |
expected_schema=schema) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=True, | |
expected_schema=schema) | |
# schema does not include the index -> index is not included as column | |
# even though preserve_index=True/None | |
schema = pa.schema([ | |
('a', pa.int64()), | |
('b', pa.float64()), | |
]) | |
expected = df.copy() | |
expected = expected.reset_index(drop=True) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=None, | |
expected_schema=schema, expected=expected) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=True, | |
expected_schema=schema, expected=expected) | |
# dataframe with a MultiIndex | |
df.index = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], | |
names=['level1', 'level2']) | |
schema = pa.schema([ | |
('level1', pa.string()), | |
('level2', pa.int64()), | |
('a', pa.int64()), | |
('b', pa.float64()), | |
]) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=True, | |
expected_schema=schema) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=None, | |
expected_schema=schema) | |
# only one of the levels of the MultiIndex is included | |
schema = pa.schema([ | |
('level2', pa.int64()), | |
('a', pa.int64()), | |
('b', pa.float64()), | |
]) | |
expected = df.copy() | |
expected = expected.reset_index('level1', drop=True) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=True, | |
expected_schema=schema, expected=expected) | |
_check_pandas_roundtrip(df, schema=schema, preserve_index=None, | |
expected_schema=schema, expected=expected) | |
def test_table_from_pandas_schema_index_columns__unnamed_index(): | |
# ARROW-6999 - unnamed indices in specified schema | |
df = pd.DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]}) | |
expected_schema = pa.schema([ | |
('a', pa.int64()), | |
('b', pa.float64()), | |
('__index_level_0__', pa.int64()), | |
]) | |
schema = pa.Schema.from_pandas(df, preserve_index=True) | |
table = pa.Table.from_pandas(df, preserve_index=True, schema=schema) | |
assert table.schema.remove_metadata().equals(expected_schema) | |
# non-RangeIndex (preserved by default) | |
df = pd.DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]}, index=[0, 1, 2]) | |
schema = pa.Schema.from_pandas(df) | |
table = pa.Table.from_pandas(df, schema=schema) | |
assert table.schema.remove_metadata().equals(expected_schema) | |
def test_table_from_pandas_schema_with_custom_metadata(): | |
# ARROW-7087 - metadata disappear from pandas | |
df = pd.DataFrame() | |
schema = pa.Schema.from_pandas(df).with_metadata({'meta': 'True'}) | |
table = pa.Table.from_pandas(df, schema=schema) | |
assert table.schema.metadata.get(b'meta') == b'True' | |
def test_table_from_pandas_schema_field_order_metadata(): | |
# ARROW-10532 | |
# ensure that a different field order in specified schema doesn't | |
# mangle metadata | |
df = pd.DataFrame({ | |
"datetime": pd.date_range("2020-01-01T00:00:00Z", freq="h", periods=2), | |
"float": np.random.randn(2) | |
}) | |
schema = pa.schema([ | |
pa.field("float", pa.float32(), nullable=True), | |
pa.field("datetime", pa.timestamp("s", tz="UTC"), nullable=False) | |
]) | |
table = pa.Table.from_pandas(df, schema=schema) | |
assert table.schema.equals(schema) | |
metadata_float = table.schema.pandas_metadata["columns"][0] | |
assert metadata_float["name"] == "float" | |
assert metadata_float["metadata"] is None | |
metadata_datetime = table.schema.pandas_metadata["columns"][1] | |
assert metadata_datetime["name"] == "datetime" | |
assert metadata_datetime["metadata"] == {'timezone': 'UTC'} | |
result = table.to_pandas() | |
coerce_cols_to_types = {"float": "float32"} | |
if Version(pd.__version__) >= Version("2.0.0"): | |
# Pandas v2 now support non-nanosecond time units | |
coerce_cols_to_types["datetime"] = "datetime64[s, UTC]" | |
expected = df[["float", "datetime"]].astype(coerce_cols_to_types) | |
tm.assert_frame_equal(result, expected) | |
# ---------------------------------------------------------------------- | |
# RecordBatch, Table | |
def test_recordbatch_from_to_pandas(): | |
data = pd.DataFrame({ | |
'c1': np.array([1, 2, 3, 4, 5], dtype='int64'), | |
'c2': np.array([1, 2, 3, 4, 5], dtype='uint32'), | |
'c3': np.random.randn(5), | |
'c4': ['foo', 'bar', None, 'baz', 'qux'], | |
'c5': [False, True, False, True, False] | |
}) | |
batch = pa.RecordBatch.from_pandas(data) | |
result = batch.to_pandas() | |
tm.assert_frame_equal(data, result) | |
def test_recordbatchlist_to_pandas(): | |
data1 = pd.DataFrame({ | |
'c1': np.array([1, 1, 2], dtype='uint32'), | |
'c2': np.array([1.0, 2.0, 3.0], dtype='float64'), | |
'c3': [True, None, False], | |
'c4': ['foo', 'bar', None] | |
}) | |
data2 = pd.DataFrame({ | |
'c1': np.array([3, 5], dtype='uint32'), | |
'c2': np.array([4.0, 5.0], dtype='float64'), | |
'c3': [True, True], | |
'c4': ['baz', 'qux'] | |
}) | |
batch1 = pa.RecordBatch.from_pandas(data1) | |
batch2 = pa.RecordBatch.from_pandas(data2) | |
table = pa.Table.from_batches([batch1, batch2]) | |
result = table.to_pandas() | |
data = pd.concat([data1, data2]).reset_index(drop=True) | |
tm.assert_frame_equal(data, result) | |
def test_recordbatch_table_pass_name_to_pandas(): | |
rb = pa.record_batch([pa.array([1, 2, 3, 4])], names=['a0']) | |
t = pa.table([pa.array([1, 2, 3, 4])], names=['a0']) | |
assert rb[0].to_pandas().name == 'a0' | |
assert t[0].to_pandas().name == 'a0' | |
# ---------------------------------------------------------------------- | |
# Metadata serialization | |
def test_logical_type(type, expected): | |
assert get_logical_type(type) == expected | |
# ---------------------------------------------------------------------- | |
# to_pandas uses MemoryPool | |
def test_array_uses_memory_pool(): | |
# ARROW-6570 | |
N = 10000 | |
arr = pa.array(np.arange(N, dtype=np.int64), | |
mask=np.random.randint(0, 2, size=N).astype(np.bool_)) | |
# In the case the gc is caught loading | |
gc.collect() | |
prior_allocation = pa.total_allocated_bytes() | |
x = arr.to_pandas() | |
assert pa.total_allocated_bytes() == (prior_allocation + N * 8) | |
x = None # noqa | |
gc.collect() | |
assert pa.total_allocated_bytes() == prior_allocation | |
# zero copy does not allocate memory | |
arr = pa.array(np.arange(N, dtype=np.int64)) | |
prior_allocation = pa.total_allocated_bytes() | |
x = arr.to_pandas() # noqa | |
assert pa.total_allocated_bytes() == prior_allocation | |
def test_singleton_blocks_zero_copy(): | |
# Part of ARROW-3789 | |
t = pa.table([pa.array(np.arange(1000, dtype=np.int64))], ['f0']) | |
# Zero copy if split_blocks=True | |
_check_to_pandas_memory_unchanged(t, split_blocks=True) | |
prior_allocation = pa.total_allocated_bytes() | |
result = t.to_pandas() | |
# access private `_values` because the public `values` is made read-only by pandas | |
assert result['f0']._values.flags.writeable | |
assert pa.total_allocated_bytes() > prior_allocation | |
def _check_to_pandas_memory_unchanged(obj, **kwargs): | |
prior_allocation = pa.total_allocated_bytes() | |
x = obj.to_pandas(**kwargs) # noqa | |
# Memory allocation unchanged -- either zero copy or self-destructing | |
assert pa.total_allocated_bytes() == prior_allocation | |
def test_to_pandas_split_blocks(): | |
# ARROW-3789 | |
t = pa.table([ | |
pa.array([1, 2, 3, 4, 5], type='i1'), | |
pa.array([1, 2, 3, 4, 5], type='i4'), | |
pa.array([1, 2, 3, 4, 5], type='i8'), | |
pa.array([1, 2, 3, 4, 5], type='f4'), | |
pa.array([1, 2, 3, 4, 5], type='f8'), | |
pa.array([1, 2, 3, 4, 5], type='f8'), | |
pa.array([1, 2, 3, 4, 5], type='f8'), | |
pa.array([1, 2, 3, 4, 5], type='f8'), | |
], ['f{}'.format(i) for i in range(8)]) | |
_check_blocks_created(t, 8) | |
_check_to_pandas_memory_unchanged(t, split_blocks=True) | |
def _get_mgr(df): | |
if Version(pd.__version__) < Version("1.1.0"): | |
return df._data | |
else: | |
return df._mgr | |
def _check_blocks_created(t, number): | |
x = t.to_pandas(split_blocks=True) | |
assert len(_get_mgr(x).blocks) == number | |
def test_to_pandas_self_destruct(): | |
K = 50 | |
def _make_table(): | |
return pa.table([ | |
# Slice to force a copy | |
pa.array(np.random.randn(10000)[::2]) | |
for i in range(K) | |
], ['f{}'.format(i) for i in range(K)]) | |
t = _make_table() | |
_check_to_pandas_memory_unchanged(t, split_blocks=True, self_destruct=True) | |
# Check non-split-block behavior | |
t = _make_table() | |
_check_to_pandas_memory_unchanged(t, self_destruct=True) | |
def test_table_uses_memory_pool(): | |
N = 10000 | |
arr = pa.array(np.arange(N, dtype=np.int64)) | |
t = pa.table([arr, arr, arr], ['f0', 'f1', 'f2']) | |
prior_allocation = pa.total_allocated_bytes() | |
x = t.to_pandas() | |
assert pa.total_allocated_bytes() == (prior_allocation + 3 * N * 8) | |
# Check successful garbage collection | |
x = None # noqa | |
gc.collect() | |
assert pa.total_allocated_bytes() == prior_allocation | |
def test_object_leak_in_numpy_array(): | |
# ARROW-6876 | |
arr = pa.array([{'a': 1}]) | |
np_arr = arr.to_pandas() | |
assert np_arr.dtype == np.dtype('object') | |
obj = np_arr[0] | |
refcount = sys.getrefcount(obj) | |
assert sys.getrefcount(obj) == refcount | |
del np_arr | |
assert sys.getrefcount(obj) == refcount - 1 | |
def test_object_leak_in_dataframe(): | |
# ARROW-6876 | |
arr = pa.array([{'a': 1}]) | |
table = pa.table([arr], ['f0']) | |
col = table.to_pandas()['f0'] | |
assert col.dtype == np.dtype('object') | |
obj = col[0] | |
refcount = sys.getrefcount(obj) | |
assert sys.getrefcount(obj) == refcount | |
del col | |
assert sys.getrefcount(obj) == refcount - 1 | |
# ---------------------------------------------------------------------- | |
# Some nested array tests array tests | |
def test_array_from_py_float32(): | |
data = [[1.2, 3.4], [9.0, 42.0]] | |
t = pa.float32() | |
arr1 = pa.array(data[0], type=t) | |
arr2 = pa.array(data, type=pa.list_(t)) | |
expected1 = np.array(data[0], dtype=np.float32) | |
expected2 = pd.Series([np.array(data[0], dtype=np.float32), | |
np.array(data[1], dtype=np.float32)]) | |
assert arr1.type == t | |
assert arr1.equals(pa.array(expected1)) | |
assert arr2.equals(pa.array(expected2)) | |
# ---------------------------------------------------------------------- | |
# Timestamp tests | |
def test_cast_timestamp_unit(): | |
# ARROW-1680 | |
val = datetime.now() | |
s = pd.Series([val]) | |
s_nyc = s.dt.tz_localize('tzlocal()').dt.tz_convert('America/New_York') | |
us_with_tz = pa.timestamp('us', tz='America/New_York') | |
arr = pa.Array.from_pandas(s_nyc, type=us_with_tz) | |
# ARROW-1906 | |
assert arr.type == us_with_tz | |
arr2 = pa.Array.from_pandas(s, type=pa.timestamp('us')) | |
assert arr[0].as_py() == s_nyc[0].to_pydatetime() | |
assert arr2[0].as_py() == s[0].to_pydatetime() | |
# Disallow truncation | |
arr = pa.array([123123], type='int64').cast(pa.timestamp('ms')) | |
expected = pa.array([123], type='int64').cast(pa.timestamp('s')) | |
# sanity check that the cast worked right | |
assert arr.type == pa.timestamp('ms') | |
target = pa.timestamp('s') | |
with pytest.raises(ValueError): | |
arr.cast(target) | |
result = arr.cast(target, safe=False) | |
assert result.equals(expected) | |
# ARROW-1949 | |
series = pd.Series([pd.Timestamp(1), pd.Timestamp(10), pd.Timestamp(1000)]) | |
expected = pa.array([0, 0, 1], type=pa.timestamp('us')) | |
with pytest.raises(ValueError): | |
pa.array(series, type=pa.timestamp('us')) | |
with pytest.raises(ValueError): | |
pa.Array.from_pandas(series, type=pa.timestamp('us')) | |
result = pa.Array.from_pandas(series, type=pa.timestamp('us'), safe=False) | |
assert result.equals(expected) | |
result = pa.array(series, type=pa.timestamp('us'), safe=False) | |
assert result.equals(expected) | |
def test_nested_with_timestamp_tz_round_trip(): | |
ts = pd.Timestamp.now() | |
ts_dt = ts.to_pydatetime() | |
arr = pa.array([ts_dt], type=pa.timestamp('us', tz='America/New_York')) | |
struct = pa.StructArray.from_arrays([arr, arr], ['start', 'stop']) | |
result = struct.to_pandas() | |
restored = pa.array(result) | |
assert restored.equals(struct) | |
def test_nested_with_timestamp_tz(): | |
# ARROW-7723 | |
ts = pd.Timestamp.now() | |
ts_dt = ts.to_pydatetime() | |
# XXX: Ensure that this data does not get promoted to nanoseconds (and thus | |
# integers) to preserve behavior in 0.15.1 | |
for unit in ['s', 'ms', 'us']: | |
if unit in ['s', 'ms']: | |
# This is used for verifying timezone conversion to micros are not | |
# important | |
def truncate(x): return x.replace(microsecond=0) | |
else: | |
def truncate(x): return x | |
arr = pa.array([ts], type=pa.timestamp(unit)) | |
arr2 = pa.array([ts], type=pa.timestamp(unit, tz='America/New_York')) | |
arr3 = pa.StructArray.from_arrays([arr, arr], ['start', 'stop']) | |
arr4 = pa.StructArray.from_arrays([arr2, arr2], ['start', 'stop']) | |
result = arr3.to_pandas() | |
assert isinstance(result[0]['start'], datetime) | |
assert result[0]['start'].tzinfo is None | |
assert isinstance(result[0]['stop'], datetime) | |
assert result[0]['stop'].tzinfo is None | |
result = arr4.to_pandas() | |
assert isinstance(result[0]['start'], datetime) | |
assert result[0]['start'].tzinfo is not None | |
utc_dt = result[0]['start'].astimezone(timezone.utc) | |
assert truncate(utc_dt).replace(tzinfo=None) == truncate(ts_dt) | |
assert isinstance(result[0]['stop'], datetime) | |
assert result[0]['stop'].tzinfo is not None | |
# same conversion for table | |
result = pa.table({'a': arr3}).to_pandas() | |
assert isinstance(result['a'][0]['start'], datetime) | |
assert result['a'][0]['start'].tzinfo is None | |
assert isinstance(result['a'][0]['stop'], datetime) | |
assert result['a'][0]['stop'].tzinfo is None | |
result = pa.table({'a': arr4}).to_pandas() | |
assert isinstance(result['a'][0]['start'], datetime) | |
assert result['a'][0]['start'].tzinfo is not None | |
assert isinstance(result['a'][0]['stop'], datetime) | |
assert result['a'][0]['stop'].tzinfo is not None | |
# ---------------------------------------------------------------------- | |
# DictionaryArray tests | |
def test_dictionary_with_pandas(): | |
src_indices = np.repeat([0, 1, 2], 2) | |
dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) | |
mask = np.array([False, False, True, False, False, False]) | |
for index_type in ['uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', | |
'uint64', 'int64']: | |
indices = src_indices.astype(index_type) | |
d1 = pa.DictionaryArray.from_arrays(indices, dictionary) | |
d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) | |
if index_type[0] == 'u': | |
# TODO: unsigned dictionary indices to pandas | |
with pytest.raises(TypeError): | |
d1.to_pandas() | |
continue | |
pandas1 = d1.to_pandas() | |
ex_pandas1 = pd.Categorical.from_codes(indices, categories=dictionary) | |
tm.assert_series_equal(pd.Series(pandas1), pd.Series(ex_pandas1)) | |
pandas2 = d2.to_pandas() | |
assert pandas2.isnull().sum() == 1 | |
# Unsigned integers converted to signed | |
signed_indices = indices | |
if index_type[0] == 'u': | |
signed_indices = indices.astype(index_type[1:]) | |
ex_pandas2 = pd.Categorical.from_codes(np.where(mask, -1, | |
signed_indices), | |
categories=dictionary) | |
tm.assert_series_equal(pd.Series(pandas2), pd.Series(ex_pandas2)) | |
def random_strings(n, item_size, pct_null=0, dictionary=None): | |
if dictionary is not None: | |
result = dictionary[np.random.randint(0, len(dictionary), size=n)] | |
else: | |
result = np.array([random_ascii(item_size) for i in range(n)], | |
dtype=object) | |
if pct_null > 0: | |
result[np.random.rand(n) < pct_null] = None | |
return result | |
def test_variable_dictionary_to_pandas(): | |
np.random.seed(12345) | |
d1 = pa.array(random_strings(100, 32), type='string') | |
d2 = pa.array(random_strings(100, 16), type='string') | |
d3 = pa.array(random_strings(10000, 10), type='string') | |
a1 = pa.DictionaryArray.from_arrays( | |
np.random.randint(0, len(d1), size=1000, dtype='i4'), | |
d1 | |
) | |
a2 = pa.DictionaryArray.from_arrays( | |
np.random.randint(0, len(d2), size=1000, dtype='i4'), | |
d2 | |
) | |
# With some nulls | |
a3 = pa.DictionaryArray.from_arrays( | |
np.random.randint(0, len(d3), size=1000, dtype='i4'), d3) | |
i4 = pa.array( | |
np.random.randint(0, len(d3), size=1000, dtype='i4'), | |
mask=np.random.rand(1000) < 0.1 | |
) | |
a4 = pa.DictionaryArray.from_arrays(i4, d3) | |
expected_dict = pa.concat_arrays([d1, d2, d3]) | |
a = pa.chunked_array([a1, a2, a3, a4]) | |
a_dense = pa.chunked_array([a1.cast('string'), | |
a2.cast('string'), | |
a3.cast('string'), | |
a4.cast('string')]) | |
result = a.to_pandas() | |
result_dense = a_dense.to_pandas() | |
assert (result.cat.categories == expected_dict.to_pandas()).all() | |
expected_dense = result.astype('str') | |
expected_dense[result_dense.isnull()] = None | |
tm.assert_series_equal(result_dense, expected_dense) | |
def test_dictionary_encoded_nested_to_pandas(): | |
# ARROW-6899 | |
child = pa.array(['a', 'a', 'a', 'b', 'b']).dictionary_encode() | |
arr = pa.ListArray.from_arrays([0, 3, 5], child) | |
result = arr.to_pandas() | |
expected = pd.Series([np.array(['a', 'a', 'a'], dtype=object), | |
np.array(['b', 'b'], dtype=object)]) | |
tm.assert_series_equal(result, expected) | |
def test_dictionary_from_pandas(): | |
cat = pd.Categorical(['a', 'b', 'a']) | |
expected_type = pa.dictionary(pa.int8(), pa.string()) | |
result = pa.array(cat) | |
assert result.to_pylist() == ['a', 'b', 'a'] | |
assert result.type.equals(expected_type) | |
# with missing values in categorical | |
cat = pd.Categorical(['a', 'b', None, 'a']) | |
result = pa.array(cat) | |
assert result.to_pylist() == ['a', 'b', None, 'a'] | |
assert result.type.equals(expected_type) | |
# with additional mask | |
result = pa.array(cat, mask=np.array([False, False, False, True])) | |
assert result.to_pylist() == ['a', 'b', None, None] | |
assert result.type.equals(expected_type) | |
def test_dictionary_from_pandas_specified_type(): | |
# ARROW-7168 - ensure specified type is always respected | |
# the same as cat = pd.Categorical(['a', 'b']) but explicit about dtypes | |
cat = pd.Categorical.from_codes( | |
np.array([0, 1], dtype='int8'), np.array(['a', 'b'], dtype=object)) | |
# different index type -> allow this | |
# (the type of the 'codes' in pandas is not part of the data type) | |
typ = pa.dictionary(index_type=pa.int16(), value_type=pa.string()) | |
result = pa.array(cat, type=typ) | |
assert result.type.equals(typ) | |
assert result.to_pylist() == ['a', 'b'] | |
# mismatching values type -> raise error | |
typ = pa.dictionary(index_type=pa.int8(), value_type=pa.int64()) | |
with pytest.raises(pa.ArrowInvalid): | |
result = pa.array(cat, type=typ) | |
# mismatching order -> raise error | |
typ = pa.dictionary( | |
index_type=pa.int8(), value_type=pa.string(), ordered=True) | |
msg = "The 'ordered' flag of the passed categorical values " | |
with pytest.raises(ValueError, match=msg): | |
result = pa.array(cat, type=typ) | |
assert result.to_pylist() == ['a', 'b'] | |
# with mask | |
typ = pa.dictionary(index_type=pa.int16(), value_type=pa.string()) | |
result = pa.array(cat, type=typ, mask=np.array([False, True])) | |
assert result.type.equals(typ) | |
assert result.to_pylist() == ['a', None] | |
# empty categorical -> be flexible in values type to allow | |
cat = pd.Categorical([]) | |
typ = pa.dictionary(index_type=pa.int8(), value_type=pa.string()) | |
result = pa.array(cat, type=typ) | |
assert result.type.equals(typ) | |
assert result.to_pylist() == [] | |
typ = pa.dictionary(index_type=pa.int8(), value_type=pa.int64()) | |
result = pa.array(cat, type=typ) | |
assert result.type.equals(typ) | |
assert result.to_pylist() == [] | |
# passing non-dictionary type | |
cat = pd.Categorical(['a', 'b']) | |
result = pa.array(cat, type=pa.string()) | |
expected = pa.array(['a', 'b'], type=pa.string()) | |
assert result.equals(expected) | |
assert result.to_pylist() == ['a', 'b'] | |
def test_convert_categories_to_array_with_string_pyarrow_dtype(): | |
# gh-33727: categories should be converted to pa.Array | |
if Version(pd.__version__) < Version("1.3.0"): | |
pytest.skip("PyArrow backed string data type introduced in pandas 1.3.0") | |
df = pd.DataFrame({"x": ["foo", "bar", "foo"]}, dtype="string[pyarrow]") | |
df = df.astype("category") | |
indices = pa.array(df['x'].cat.codes) | |
dictionary = pa.array(df["x"].cat.categories.values) | |
assert isinstance(dictionary, pa.Array) | |
expected = pa.Array.from_pandas(df['x']) | |
result = pa.DictionaryArray.from_arrays(indices, dictionary) | |
assert result == expected | |
# ---------------------------------------------------------------------- | |
# Array protocol in pandas conversions tests | |
def test_array_protocol(): | |
df = pd.DataFrame({'a': pd.Series([1, 2, None], dtype='Int64')}) | |
# __arrow_array__ added to pandas IntegerArray in 0.26.0.dev | |
# default conversion | |
result = pa.table(df) | |
expected = pa.array([1, 2, None], pa.int64()) | |
assert result[0].chunk(0).equals(expected) | |
# with specifying schema | |
schema = pa.schema([('a', pa.float64())]) | |
result = pa.table(df, schema=schema) | |
expected2 = pa.array([1, 2, None], pa.float64()) | |
assert result[0].chunk(0).equals(expected2) | |
# pass Series to pa.array | |
result = pa.array(df['a']) | |
assert result.equals(expected) | |
result = pa.array(df['a'], type=pa.float64()) | |
assert result.equals(expected2) | |
# pass actual ExtensionArray to pa.array | |
result = pa.array(df['a'].values) | |
assert result.equals(expected) | |
result = pa.array(df['a'].values, type=pa.float64()) | |
assert result.equals(expected2) | |
class DummyExtensionType(pa.ExtensionType): | |
def __init__(self): | |
super().__init__(pa.int64(), | |
'pyarrow.tests.test_pandas.DummyExtensionType') | |
def __arrow_ext_serialize__(self): | |
return b'' | |
def __arrow_ext_deserialize__(cls, storage_type, serialized): | |
assert serialized == b'' | |
assert storage_type == pa.int64() | |
return cls() | |
def PandasArray__arrow_array__(self, type=None): | |
# hardcode dummy return regardless of self - we only want to check that | |
# this method is correctly called | |
storage = pa.array([1, 2, 3], type=pa.int64()) | |
return pa.ExtensionArray.from_storage(DummyExtensionType(), storage) | |
def test_array_protocol_pandas_extension_types(monkeypatch): | |
# ARROW-7022 - ensure protocol works for Period / Interval extension dtypes | |
storage = pa.array([1, 2, 3], type=pa.int64()) | |
expected = pa.ExtensionArray.from_storage(DummyExtensionType(), storage) | |
monkeypatch.setattr(pd.arrays.PeriodArray, "__arrow_array__", | |
PandasArray__arrow_array__, raising=False) | |
monkeypatch.setattr(pd.arrays.IntervalArray, "__arrow_array__", | |
PandasArray__arrow_array__, raising=False) | |
for arr in [pd.period_range("2012-01-01", periods=3, freq="D").array, | |
pd.interval_range(1, 4).array]: | |
result = pa.array(arr) | |
assert result.equals(expected) | |
result = pa.array(pd.Series(arr)) | |
assert result.equals(expected) | |
result = pa.array(pd.Index(arr)) | |
assert result.equals(expected) | |
result = pa.table(pd.DataFrame({'a': arr})).column('a').chunk(0) | |
assert result.equals(expected) | |
# ---------------------------------------------------------------------- | |
# Pandas ExtensionArray support | |
def _Int64Dtype__from_arrow__(self, array): | |
# for test only deal with single chunk for now | |
# TODO: do we require handling of chunked arrays in the protocol? | |
if isinstance(array, pa.Array): | |
arr = array | |
else: | |
# ChunkedArray - here only deal with a single chunk for the test | |
arr = array.chunk(0) | |
buflist = arr.buffers() | |
data = np.frombuffer(buflist[-1], dtype='int64')[ | |
arr.offset:arr.offset + len(arr)] | |
bitmask = buflist[0] | |
if bitmask is not None: | |
mask = pa.BooleanArray.from_buffers( | |
pa.bool_(), len(arr), [None, bitmask]) | |
mask = np.asarray(mask) | |
else: | |
mask = np.ones(len(arr), dtype=bool) | |
int_arr = pd.arrays.IntegerArray(data.copy(), ~mask, copy=False) | |
return int_arr | |
def test_convert_to_extension_array(monkeypatch): | |
# table converted from dataframe with extension types (so pandas_metadata | |
# has this information) | |
df = pd.DataFrame( | |
{'a': [1, 2, 3], 'b': pd.array([2, 3, 4], dtype='Int64'), | |
'c': [4, 5, 6]}) | |
table = pa.table(df) | |
# Int64Dtype is recognized -> convert to extension block by default | |
# for a proper roundtrip | |
result = table.to_pandas() | |
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64") | |
assert _get_mgr(result).blocks[1].values.dtype == pd.Int64Dtype() | |
tm.assert_frame_equal(result, df) | |
# test with missing values | |
df2 = pd.DataFrame({'a': pd.array([1, 2, None], dtype='Int64')}) | |
table2 = pa.table(df2) | |
result = table2.to_pandas() | |
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype() | |
tm.assert_frame_equal(result, df2) | |
# monkeypatch pandas Int64Dtype to *not* have the protocol method | |
if Version(pd.__version__) < Version("1.3.0.dev"): | |
monkeypatch.delattr( | |
pd.core.arrays.integer._IntegerDtype, "__from_arrow__") | |
else: | |
monkeypatch.delattr( | |
pd.core.arrays.integer.NumericDtype, "__from_arrow__") | |
# Int64Dtype has no __from_arrow__ -> use normal conversion | |
result = table.to_pandas() | |
assert len(_get_mgr(result).blocks) == 1 | |
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64") | |
class MyCustomIntegerType(pa.ExtensionType): | |
def __init__(self): | |
super().__init__(pa.int64(), | |
'pyarrow.tests.test_pandas.MyCustomIntegerType') | |
def __arrow_ext_serialize__(self): | |
return b'' | |
def to_pandas_dtype(self): | |
return pd.Int64Dtype() | |
def test_conversion_extensiontype_to_extensionarray(monkeypatch): | |
# converting extension type to linked pandas ExtensionDtype/Array | |
storage = pa.array([1, 2, 3, 4], pa.int64()) | |
arr = pa.ExtensionArray.from_storage(MyCustomIntegerType(), storage) | |
table = pa.table({'a': arr}) | |
# extension type points to Int64Dtype, which knows how to create a | |
# pandas ExtensionArray | |
result = arr.to_pandas() | |
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype() | |
expected = pd.Series([1, 2, 3, 4], dtype='Int64') | |
tm.assert_series_equal(result, expected) | |
result = table.to_pandas() | |
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype() | |
expected = pd.DataFrame({'a': pd.array([1, 2, 3, 4], dtype='Int64')}) | |
tm.assert_frame_equal(result, expected) | |
# monkeypatch pandas Int64Dtype to *not* have the protocol method | |
# (remove the version added above and the actual version for recent pandas) | |
if Version(pd.__version__) < Version("1.3.0.dev"): | |
monkeypatch.delattr( | |
pd.core.arrays.integer._IntegerDtype, "__from_arrow__") | |
else: | |
monkeypatch.delattr( | |
pd.core.arrays.integer.NumericDtype, "__from_arrow__") | |
result = arr.to_pandas() | |
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64") | |
expected = pd.Series([1, 2, 3, 4]) | |
tm.assert_series_equal(result, expected) | |
with pytest.raises(ValueError): | |
table.to_pandas() | |
def test_to_pandas_extension_dtypes_mapping(): | |
table = pa.table({'a': pa.array([1, 2, 3], pa.int64())}) | |
# default use numpy dtype | |
result = table.to_pandas() | |
assert result['a'].dtype == np.dtype('int64') | |
# specify to override the default | |
result = table.to_pandas(types_mapper={pa.int64(): pd.Int64Dtype()}.get) | |
assert isinstance(result['a'].dtype, pd.Int64Dtype) | |
# types that return None in function get normal conversion | |
table = pa.table({'a': pa.array([1, 2, 3], pa.int32())}) | |
result = table.to_pandas(types_mapper={pa.int64(): pd.Int64Dtype()}.get) | |
assert result['a'].dtype == np.dtype('int32') | |
# `types_mapper` overrules the pandas metadata | |
table = pa.table(pd.DataFrame({'a': pd.array([1, 2, 3], dtype="Int64")})) | |
result = table.to_pandas() | |
assert isinstance(result['a'].dtype, pd.Int64Dtype) | |
result = table.to_pandas( | |
types_mapper={pa.int64(): pd.PeriodDtype('D')}.get) | |
assert isinstance(result['a'].dtype, pd.PeriodDtype) | |
def test_array_to_pandas(): | |
if Version(pd.__version__) < Version("1.1"): | |
pytest.skip("ExtensionDtype to_pandas method missing") | |
for arr in [pd.period_range("2012-01-01", periods=3, freq="D").array, | |
pd.interval_range(1, 4).array]: | |
result = pa.array(arr).to_pandas() | |
expected = pd.Series(arr) | |
tm.assert_series_equal(result, expected) | |
result = pa.table({"col": arr})["col"].to_pandas() | |
expected = pd.Series(arr, name="col") | |
tm.assert_series_equal(result, expected) | |
def test_roundtrip_empty_table_with_extension_dtype_index(): | |
df = pd.DataFrame(index=pd.interval_range(start=0, end=3)) | |
table = pa.table(df) | |
if Version(pd.__version__) > Version("1.0"): | |
tm.assert_index_equal(table.to_pandas().index, df.index) | |
else: | |
tm.assert_index_equal(table.to_pandas().index, | |
pd.Index([{'left': 0, 'right': 1}, | |
{'left': 1, 'right': 2}, | |
{'left': 2, 'right': 3}], | |
dtype='object')) | |
def test_to_pandas_types_mapper_index(index): | |
if Version(pd.__version__) < Version("1.5.0"): | |
pytest.skip("ArrowDtype missing") | |
df = pd.DataFrame( | |
{ | |
"a": [1, 2], | |
"b": [3, 4], | |
"c": [5, 6], | |
}, | |
dtype=pd.ArrowDtype(pa.int64()), | |
).set_index(index) | |
expected = df.copy() | |
table = pa.table(df) | |
result = table.to_pandas(types_mapper=pd.ArrowDtype) | |
tm.assert_frame_equal(result, expected) | |
def test_array_to_pandas_types_mapper(): | |
# https://issues.apache.org/jira/browse/ARROW-9664 | |
if Version(pd.__version__) < Version("1.2.0"): | |
pytest.skip("Float64Dtype extension dtype missing") | |
data = pa.array([1, 2, 3], pa.int64()) | |
# Test with mapper function | |
types_mapper = {pa.int64(): pd.Int64Dtype()}.get | |
result = data.to_pandas(types_mapper=types_mapper) | |
assert result.dtype == pd.Int64Dtype() | |
# Test mapper function returning None | |
types_mapper = {pa.int64(): None}.get | |
result = data.to_pandas(types_mapper=types_mapper) | |
assert result.dtype == np.dtype("int64") | |
# Test mapper function not containing the dtype | |
types_mapper = {pa.float64(): pd.Float64Dtype()}.get | |
result = data.to_pandas(types_mapper=types_mapper) | |
assert result.dtype == np.dtype("int64") | |
def test_chunked_array_to_pandas_types_mapper(): | |
# https://issues.apache.org/jira/browse/ARROW-9664 | |
if Version(pd.__version__) < Version("1.2.0"): | |
pytest.skip("Float64Dtype extension dtype missing") | |
data = pa.chunked_array([pa.array([1, 2, 3], pa.int64())]) | |
assert isinstance(data, pa.ChunkedArray) | |
# Test with mapper function | |
types_mapper = {pa.int64(): pd.Int64Dtype()}.get | |
result = data.to_pandas(types_mapper=types_mapper) | |
assert result.dtype == pd.Int64Dtype() | |
# Test mapper function returning None | |
types_mapper = {pa.int64(): None}.get | |
result = data.to_pandas(types_mapper=types_mapper) | |
assert result.dtype == np.dtype("int64") | |
# Test mapper function not containing the dtype | |
types_mapper = {pa.float64(): pd.Float64Dtype()}.get | |
result = data.to_pandas(types_mapper=types_mapper) | |
assert result.dtype == np.dtype("int64") | |
# ---------------------------------------------------------------------- | |
# Legacy metadata compatibility tests | |
def test_metadata_compat_range_index_pre_0_12(): | |
# Forward compatibility for metadata created from pandas.RangeIndex | |
# prior to pyarrow 0.13.0 | |
a_values = ['foo', 'bar', None, 'baz'] | |
b_values = ['a', 'a', 'b', 'b'] | |
a_arrow = pa.array(a_values, type='utf8') | |
b_arrow = pa.array(b_values, type='utf8') | |
rng_index_arrow = pa.array([0, 2, 4, 6], type='int64') | |
gen_name_0 = '__index_level_0__' | |
gen_name_1 = '__index_level_1__' | |
# Case 1: named RangeIndex | |
e1 = pd.DataFrame({ | |
'a': a_values | |
}, index=pd.RangeIndex(0, 8, step=2, name='qux')) | |
t1 = pa.Table.from_arrays([a_arrow, rng_index_arrow], | |
names=['a', 'qux']) | |
t1 = t1.replace_schema_metadata({ | |
b'pandas': json.dumps( | |
{'index_columns': ['qux'], | |
'column_indexes': [{'name': None, | |
'field_name': None, | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': {'encoding': 'UTF-8'}}], | |
'columns': [{'name': 'a', | |
'field_name': 'a', | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': None}, | |
{'name': 'qux', | |
'field_name': 'qux', | |
'pandas_type': 'int64', | |
'numpy_type': 'int64', | |
'metadata': None}], | |
'pandas_version': '0.23.4'} | |
)}) | |
r1 = t1.to_pandas() | |
tm.assert_frame_equal(r1, e1) | |
# Case 2: named RangeIndex, but conflicts with an actual column | |
e2 = pd.DataFrame({ | |
'qux': a_values | |
}, index=pd.RangeIndex(0, 8, step=2, name='qux')) | |
t2 = pa.Table.from_arrays([a_arrow, rng_index_arrow], | |
names=['qux', gen_name_0]) | |
t2 = t2.replace_schema_metadata({ | |
b'pandas': json.dumps( | |
{'index_columns': [gen_name_0], | |
'column_indexes': [{'name': None, | |
'field_name': None, | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': {'encoding': 'UTF-8'}}], | |
'columns': [{'name': 'a', | |
'field_name': 'a', | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': None}, | |
{'name': 'qux', | |
'field_name': gen_name_0, | |
'pandas_type': 'int64', | |
'numpy_type': 'int64', | |
'metadata': None}], | |
'pandas_version': '0.23.4'} | |
)}) | |
r2 = t2.to_pandas() | |
tm.assert_frame_equal(r2, e2) | |
# Case 3: unnamed RangeIndex | |
e3 = pd.DataFrame({ | |
'a': a_values | |
}, index=pd.RangeIndex(0, 8, step=2, name=None)) | |
t3 = pa.Table.from_arrays([a_arrow, rng_index_arrow], | |
names=['a', gen_name_0]) | |
t3 = t3.replace_schema_metadata({ | |
b'pandas': json.dumps( | |
{'index_columns': [gen_name_0], | |
'column_indexes': [{'name': None, | |
'field_name': None, | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': {'encoding': 'UTF-8'}}], | |
'columns': [{'name': 'a', | |
'field_name': 'a', | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': None}, | |
{'name': None, | |
'field_name': gen_name_0, | |
'pandas_type': 'int64', | |
'numpy_type': 'int64', | |
'metadata': None}], | |
'pandas_version': '0.23.4'} | |
)}) | |
r3 = t3.to_pandas() | |
tm.assert_frame_equal(r3, e3) | |
# Case 4: MultiIndex with named RangeIndex | |
e4 = pd.DataFrame({ | |
'a': a_values | |
}, index=[pd.RangeIndex(0, 8, step=2, name='qux'), b_values]) | |
t4 = pa.Table.from_arrays([a_arrow, rng_index_arrow, b_arrow], | |
names=['a', 'qux', gen_name_1]) | |
t4 = t4.replace_schema_metadata({ | |
b'pandas': json.dumps( | |
{'index_columns': ['qux', gen_name_1], | |
'column_indexes': [{'name': None, | |
'field_name': None, | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': {'encoding': 'UTF-8'}}], | |
'columns': [{'name': 'a', | |
'field_name': 'a', | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': None}, | |
{'name': 'qux', | |
'field_name': 'qux', | |
'pandas_type': 'int64', | |
'numpy_type': 'int64', | |
'metadata': None}, | |
{'name': None, | |
'field_name': gen_name_1, | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': None}], | |
'pandas_version': '0.23.4'} | |
)}) | |
r4 = t4.to_pandas() | |
tm.assert_frame_equal(r4, e4) | |
# Case 4: MultiIndex with unnamed RangeIndex | |
e5 = pd.DataFrame({ | |
'a': a_values | |
}, index=[pd.RangeIndex(0, 8, step=2, name=None), b_values]) | |
t5 = pa.Table.from_arrays([a_arrow, rng_index_arrow, b_arrow], | |
names=['a', gen_name_0, gen_name_1]) | |
t5 = t5.replace_schema_metadata({ | |
b'pandas': json.dumps( | |
{'index_columns': [gen_name_0, gen_name_1], | |
'column_indexes': [{'name': None, | |
'field_name': None, | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': {'encoding': 'UTF-8'}}], | |
'columns': [{'name': 'a', | |
'field_name': 'a', | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': None}, | |
{'name': None, | |
'field_name': gen_name_0, | |
'pandas_type': 'int64', | |
'numpy_type': 'int64', | |
'metadata': None}, | |
{'name': None, | |
'field_name': gen_name_1, | |
'pandas_type': 'unicode', | |
'numpy_type': 'object', | |
'metadata': None}], | |
'pandas_version': '0.23.4'} | |
)}) | |
r5 = t5.to_pandas() | |
tm.assert_frame_equal(r5, e5) | |
def test_metadata_compat_missing_field_name(): | |
# Combination of missing field name but with index column as metadata. | |
# This combo occurs in the latest versions of fastparquet (0.3.2), but not | |
# in pyarrow itself (since field_name was added in 0.8, index as metadata | |
# only added later) | |
a_values = [1, 2, 3, 4] | |
b_values = ['a', 'b', 'c', 'd'] | |
a_arrow = pa.array(a_values, type='int64') | |
b_arrow = pa.array(b_values, type='utf8') | |
expected = pd.DataFrame({ | |
'a': a_values, | |
'b': b_values, | |
}, index=pd.RangeIndex(0, 8, step=2, name='qux')) | |
table = pa.table({'a': a_arrow, 'b': b_arrow}) | |
# metadata generated by fastparquet 0.3.2 with missing field_names | |
table = table.replace_schema_metadata({ | |
b'pandas': json.dumps({ | |
'column_indexes': [ | |
{'field_name': None, | |
'metadata': None, | |
'name': None, | |
'numpy_type': 'object', | |
'pandas_type': 'mixed-integer'} | |
], | |
'columns': [ | |
{'metadata': None, | |
'name': 'a', | |
'numpy_type': 'int64', | |
'pandas_type': 'int64'}, | |
{'metadata': None, | |
'name': 'b', | |
'numpy_type': 'object', | |
'pandas_type': 'unicode'} | |
], | |
'index_columns': [ | |
{'kind': 'range', | |
'name': 'qux', | |
'start': 0, | |
'step': 2, | |
'stop': 8} | |
], | |
'pandas_version': '0.25.0'} | |
)}) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, expected) | |
def test_metadata_index_name_not_json_serializable(): | |
name = np.int64(6) # not json serializable by default | |
table = pa.table(pd.DataFrame(index=pd.RangeIndex(0, 4, name=name))) | |
metadata = table.schema.pandas_metadata | |
assert metadata['index_columns'][0]['name'] == '6' | |
def test_metadata_index_name_is_json_serializable(): | |
name = 6 # json serializable by default | |
table = pa.table(pd.DataFrame(index=pd.RangeIndex(0, 4, name=name))) | |
metadata = table.schema.pandas_metadata | |
assert metadata['index_columns'][0]['name'] == 6 | |
def make_df_with_timestamps(): | |
# Some of the milliseconds timestamps deliberately don't fit in the range | |
# that is possible with nanosecond timestamps. | |
df = pd.DataFrame({ | |
'dateTimeMs': [ | |
np.datetime64('0001-01-01 00:00', 'ms'), | |
np.datetime64('2012-05-02 12:35', 'ms'), | |
np.datetime64('2012-05-03 15:42', 'ms'), | |
np.datetime64('3000-05-03 15:42', 'ms'), | |
], | |
'dateTimeNs': [ | |
np.datetime64('1991-01-01 00:00', 'ns'), | |
np.datetime64('2012-05-02 12:35', 'ns'), | |
np.datetime64('2012-05-03 15:42', 'ns'), | |
np.datetime64('2050-05-03 15:42', 'ns'), | |
], | |
}) | |
# Not part of what we're testing, just ensuring that the inputs are what we | |
# expect. | |
assert (df.dateTimeMs.dtype, df.dateTimeNs.dtype) == ( | |
# O == object, M8[ns] == timestamp64[ns] | |
np.dtype("O"), np.dtype("M8[ns]") | |
) | |
return df | |
def test_timestamp_as_object_parquet(tempdir): | |
# Timestamps can be stored as Parquet and reloaded into Pandas with no loss | |
# of information if the timestamp_as_object option is True. | |
df = make_df_with_timestamps() | |
table = pa.Table.from_pandas(df) | |
filename = tempdir / "timestamps_from_pandas.parquet" | |
pq.write_table(table, filename, version="2.0") | |
result = pq.read_table(filename) | |
df2 = result.to_pandas(timestamp_as_object=True) | |
tm.assert_frame_equal(df, df2) | |
def test_timestamp_as_object_out_of_range(): | |
# Out of range timestamps can be converted Arrow and reloaded into Pandas | |
# with no loss of information if the timestamp_as_object option is True. | |
df = make_df_with_timestamps() | |
table = pa.Table.from_pandas(df) | |
df2 = table.to_pandas(timestamp_as_object=True) | |
tm.assert_frame_equal(df, df2) | |
# One datetime outside nanosecond range, one inside nanosecond range: | |
def test_timestamp_as_object_non_nanosecond(resolution, tz, dt): | |
# Timestamps can be converted Arrow and reloaded into Pandas with no loss | |
# of information if the timestamp_as_object option is True. | |
arr = pa.array([dt], type=pa.timestamp(resolution, tz=tz)) | |
table = pa.table({'a': arr}) | |
for result in [ | |
arr.to_pandas(timestamp_as_object=True), | |
table.to_pandas(timestamp_as_object=True)['a'] | |
]: | |
assert result.dtype == object | |
assert isinstance(result[0], datetime) | |
if tz: | |
assert result[0].tzinfo is not None | |
expected = result[0].tzinfo.fromutc(dt) | |
else: | |
assert result[0].tzinfo is None | |
expected = dt | |
assert result[0] == expected | |
def test_timestamp_as_object_fixed_offset(): | |
# ARROW-16547 to_pandas with timestamp_as_object=True and FixedOffset | |
pytz = pytest.importorskip("pytz") | |
import datetime | |
timezone = pytz.FixedOffset(120) | |
dt = timezone.localize(datetime.datetime(2022, 5, 12, 16, 57)) | |
table = pa.table({"timestamp_col": pa.array([dt])}) | |
result = table.to_pandas(timestamp_as_object=True) | |
assert pa.table(result) == table | |
def test_threaded_pandas_import(): | |
invoke_script("pandas_threaded_import.py") | |
def test_does_not_mutate_timedelta_dtype(): | |
expected = np.dtype('m8') | |
assert np.dtype(np.timedelta64) == expected | |
df = pd.DataFrame({"a": [np.timedelta64()]}) | |
t = pa.Table.from_pandas(df) | |
t.to_pandas() | |
assert np.dtype(np.timedelta64) == expected | |
def test_does_not_mutate_timedelta_nested(): | |
# ARROW-17893: dataframe with timedelta and a list of dictionary | |
# also with timedelta produces wrong result with to_pandas | |
from datetime import timedelta | |
timedelta_1 = [{"timedelta_1": timedelta(seconds=12, microseconds=1)}] | |
timedelta_2 = [timedelta(hours=3, minutes=40, seconds=23)] | |
table = pa.table({"timedelta_1": timedelta_1, "timedelta_2": timedelta_2}) | |
df = table.to_pandas() | |
assert df["timedelta_2"][0].to_pytimedelta() == timedelta_2[0] | |
def test_roundtrip_nested_map_table_with_pydicts(): | |
schema = pa.schema([ | |
pa.field( | |
"a", | |
pa.list_( | |
pa.map_(pa.int8(), pa.struct([pa.field("b", pa.binary())])) | |
) | |
) | |
]) | |
table = pa.table([[ | |
[[(1, None)]], | |
None, | |
[ | |
[(2, {"b": b"abc"})], | |
[(3, {"b": None}), (4, {"b": b"def"})], | |
] | |
]], | |
schema=schema, | |
) | |
expected_default_df = pd.DataFrame( | |
{"a": [[[(1, None)]], None, [[(2, {"b": b"abc"})], | |
[(3, {"b": None}), (4, {"b": b"def"})]]]} | |
) | |
expected_as_pydicts_df = pd.DataFrame( | |
{"a": [ | |
[{1: None}], | |
None, | |
[{2: {"b": b"abc"}}, {3: {"b": None}, 4: {"b": b"def"}}], | |
]} | |
) | |
default_df = table.to_pandas() | |
as_pydicts_df = table.to_pandas(maps_as_pydicts="strict") | |
tm.assert_frame_equal(default_df, expected_default_df) | |
tm.assert_frame_equal(as_pydicts_df, expected_as_pydicts_df) | |
table_default_roundtrip = pa.Table.from_pandas(default_df, schema=schema) | |
assert table.equals(table_default_roundtrip) | |
table_as_pydicts_roundtrip = pa.Table.from_pandas(as_pydicts_df, schema=schema) | |
assert table.equals(table_as_pydicts_roundtrip) | |
def test_roundtrip_nested_map_array_with_pydicts_sliced(): | |
""" | |
Slightly more robust test with chunking and slicing | |
""" | |
keys_1 = pa.array(['foo', 'bar']) | |
keys_2 = pa.array(['baz', 'qux', 'quux', 'quz']) | |
keys_3 = pa.array([], pa.string()) | |
items_1 = pa.array( | |
[['a', 'b'], ['c', 'd']], | |
pa.list_(pa.string()), | |
) | |
items_2 = pa.array( | |
[[], None, [None, 'e'], ['f', 'g']], | |
pa.list_(pa.string()), | |
) | |
items_3 = pa.array( | |
[], | |
pa.list_(pa.string()), | |
) | |
map_chunk_1 = pa.MapArray.from_arrays([0, 2], keys_1, items_1) | |
map_chunk_2 = pa.MapArray.from_arrays([0, 3, 4], keys_2, items_2) | |
map_chunk_3 = pa.MapArray.from_arrays([0, 0], keys_3, items_3) | |
chunked_array = pa.chunked_array([ | |
pa.ListArray.from_arrays([0, 1], map_chunk_1).slice(0), | |
pa.ListArray.from_arrays([0, 1], map_chunk_2.slice(1)).slice(0), | |
pa.ListArray.from_arrays([0, 0], map_chunk_3).slice(0), | |
]) | |
series_default = chunked_array.to_pandas() | |
expected_series_default = pd.Series([ | |
[[('foo', ['a', 'b']), ('bar', ['c', 'd'])]], | |
[[('quz', ['f', 'g'])]], | |
[], | |
]) | |
series_pydicts = chunked_array.to_pandas(maps_as_pydicts="strict") | |
expected_series_pydicts = pd.Series([ | |
[{'foo': ['a', 'b'], 'bar': ['c', 'd']}], | |
[{'quz': ['f', 'g']}], | |
[], | |
]) | |
sliced = chunked_array.slice(1, 3) | |
series_default_sliced = sliced.to_pandas() | |
expected_series_default_sliced = pd.Series([ | |
[[('quz', ['f', 'g'])]], | |
[], | |
]) | |
series_pydicts_sliced = sliced.to_pandas(maps_as_pydicts="strict") | |
expected_series_pydicts_sliced = pd.Series([ | |
[{'quz': ['f', 'g']}], | |
[], | |
]) | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("ignore", "elementwise comparison failed", | |
DeprecationWarning) | |
tm.assert_series_equal(series_default, expected_series_default) | |
tm.assert_series_equal(series_pydicts, expected_series_pydicts) | |
tm.assert_series_equal(series_default_sliced, expected_series_default_sliced) | |
tm.assert_series_equal(series_pydicts_sliced, expected_series_pydicts_sliced) | |
ty = pa.list_(pa.map_(pa.string(), pa.list_(pa.string()))) | |
def assert_roundtrip(series: pd.Series, data) -> None: | |
array_roundtrip = pa.chunked_array(pa.Array.from_pandas(series, type=ty)) | |
array_roundtrip.validate(full=True) | |
assert data.equals(array_roundtrip) | |
assert_roundtrip(series_default, chunked_array) | |
assert_roundtrip(series_pydicts, chunked_array) | |
assert_roundtrip(series_default_sliced, sliced) | |
assert_roundtrip(series_pydicts_sliced, sliced) | |
def test_roundtrip_map_array_with_pydicts_duplicate_keys(): | |
keys = pa.array(['foo', 'bar', 'foo']) | |
items = pa.array( | |
[['a', 'b'], ['c', 'd'], ['1', '2']], | |
pa.list_(pa.string()), | |
) | |
offsets = [0, 3] | |
maps = pa.MapArray.from_arrays(offsets, keys, items) | |
ty = pa.map_(pa.string(), pa.list_(pa.string())) | |
# ------------------------ | |
# With maps as pydicts | |
with pytest.raises(pa.lib.ArrowException): | |
# raises because of duplicate keys | |
maps.to_pandas(maps_as_pydicts="strict") | |
series_pydicts = maps.to_pandas(maps_as_pydicts="lossy") | |
# some data loss occurs for duplicate keys | |
expected_series_pydicts = pd.Series([ | |
{'foo': ['1', '2'], 'bar': ['c', 'd']}, | |
]) | |
# roundtrip is not possible because of data loss | |
assert not maps.equals(pa.Array.from_pandas(series_pydicts, type=ty)) | |
# ------------------------ | |
# With default assoc list of tuples | |
series_default = maps.to_pandas() | |
expected_series_default = pd.Series([ | |
[('foo', ['a', 'b']), ('bar', ['c', 'd']), ('foo', ['1', '2'])], | |
]) | |
assert maps.equals(pa.Array.from_pandas(series_default, type=ty)) | |
# custom comparison for compatibility w/ Pandas 1.0.0 | |
# would otherwise run: | |
# tm.assert_series_equal(series_pydicts, expected_series_pydicts) | |
assert len(series_pydicts) == len(expected_series_pydicts) | |
for row1, row2 in zip(series_pydicts, expected_series_pydicts): | |
assert len(row1) == len(row2) | |
for tup1, tup2 in zip(row1.items(), row2.items()): | |
assert tup1[0] == tup2[0] | |
assert np.array_equal(tup1[1], tup2[1]) | |
# custom comparison for compatibility w/ Pandas 1.0.0 | |
# would otherwise run: | |
# tm.assert_series_equal(series_default, expected_series_default) | |
assert len(series_default) == len(expected_series_default) | |
for row1, row2 in zip(series_default, expected_series_default): | |
assert len(row1) == len(row2) | |
for tup1, tup2 in zip(row1, row2): | |
assert tup1[0] == tup2[0] | |
assert np.array_equal(tup1[1], tup2[1]) | |
def test_unhashable_map_keys_with_pydicts(): | |
keys = pa.array( | |
[['a', 'b'], ['c', 'd'], [], ['e'], [None, 'f'], ['g', 'h']], | |
pa.list_(pa.string()), | |
) | |
items = pa.array(['foo', 'bar', 'baz', 'qux', 'quux', 'quz']) | |
offsets = [0, 2, 6] | |
maps = pa.MapArray.from_arrays(offsets, keys, items) | |
# ------------------------ | |
# With maps as pydicts | |
with pytest.raises(TypeError): | |
maps.to_pandas(maps_as_pydicts="lossy") | |
# ------------------------ | |
# With default assoc list of tuples | |
series = maps.to_pandas() | |
expected_series_default = pd.Series([ | |
[(['a', 'b'], 'foo'), (['c', 'd'], 'bar')], | |
[([], 'baz'), (['e'], 'qux'), ([None, 'f'], 'quux'), (['g', 'h'], 'quz')], | |
]) | |
# custom comparison for compatibility w/ Pandas 1.0.0 | |
# would otherwise run: | |
# tm.assert_series_equal(series, expected_series_default) | |
assert len(series) == len(expected_series_default) | |
for row1, row2 in zip(series, expected_series_default): | |
assert len(row1) == len(row2) | |
for tup1, tup2 in zip(row1, row2): | |
assert np.array_equal(tup1[0], tup2[0]) | |
assert tup1[1] == tup2[1] | |
def test_table_column_conversion_for_datetime(): | |
# GH-35235 | |
# pandas implemented __from_arrow__ for DatetimeTZDtype, | |
# but we choose to do the conversion in Arrow instead. | |
# https://github.com/pandas-dev/pandas/pull/52201 | |
series = pd.Series(pd.date_range("2012", periods=2, tz="Europe/Brussels"), | |
name="datetime_column") | |
table = pa.table({"datetime_column": pa.array(series)}) | |
table_col = table.column("datetime_column") | |
result = table_col.to_pandas() | |
assert result.name == "datetime_column" | |
tm.assert_series_equal(result, series) | |
def test_array_conversion_for_datetime(): | |
# GH-35235 | |
# pandas implemented __from_arrow__ for DatetimeTZDtype, | |
# but we choose to do the conversion in Arrow instead. | |
# https://github.com/pandas-dev/pandas/pull/52201 | |
series = pd.Series(pd.date_range("2012", periods=2, tz="Europe/Brussels")) | |
arr = pa.array(series) | |
result = arr.to_pandas() | |
tm.assert_series_equal(result, series) | |
def test_nested_chunking_valid(): | |
# GH-32439: Chunking can cause arrays to be in invalid state | |
# when nested types are involved. | |
# Here we simply ensure we validate correctly. | |
def roundtrip(df, schema=None): | |
tab = pa.Table.from_pandas(df, schema=schema) | |
tab.validate(full=True) | |
# we expect to trigger chunking internally | |
# an assertion failure here may just mean this threshold has changed | |
num_chunks = tab.column(0).num_chunks | |
assert num_chunks > 1 | |
tm.assert_frame_equal(tab.to_pandas(self_destruct=True, | |
maps_as_pydicts="strict"), df) | |
x = b"0" * 720000000 | |
roundtrip(pd.DataFrame({"strings": [x, x, x]})) | |
struct = {"struct_field": x} | |
roundtrip(pd.DataFrame({"structs": [struct, struct, struct]})) | |
lists = [x] | |
roundtrip(pd.DataFrame({"lists": [lists, lists, lists]})) | |
los = [struct] | |
roundtrip(pd.DataFrame({"los": [los, los, los]})) | |
sol = {"struct_field": lists} | |
roundtrip(pd.DataFrame({"sol": [sol, sol, sol]})) | |
map_of_los = {"a": los} | |
map_type = pa.map_(pa.string(), | |
pa.list_(pa.struct([("struct_field", pa.binary())]))) | |
schema = pa.schema([("maps", map_type)]) | |
roundtrip(pd.DataFrame({"maps": [map_of_los, map_of_los, map_of_los]}), | |
schema=schema) | |
def test_is_data_frame_race_condition(): | |
# See https://github.com/apache/arrow/issues/39313 | |
test_util.invoke_script('arrow_39313.py') | |