peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/_csv.pyx
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
# cython: profile=False | |
# distutils: language = c++ | |
# cython: language_level = 3 | |
from cython.operator cimport dereference as deref | |
from collections import namedtuple | |
from collections.abc import Mapping | |
from pyarrow.includes.common cimport * | |
from pyarrow.includes.libarrow cimport * | |
from pyarrow.includes.libarrow_python cimport * | |
from pyarrow.lib cimport (check_status, Field, MemoryPool, Schema, | |
RecordBatchReader, ensure_type, | |
maybe_unbox_memory_pool, get_input_stream, | |
get_writer, native_transcoding_input_stream, | |
pyarrow_unwrap_batch, pyarrow_unwrap_schema, | |
pyarrow_unwrap_table, pyarrow_wrap_schema, | |
pyarrow_wrap_table, pyarrow_wrap_data_type, | |
pyarrow_unwrap_data_type, Table, RecordBatch, | |
StopToken, _CRecordBatchWriter) | |
from pyarrow.lib import frombytes, tobytes, SignalStopHandler | |
cdef unsigned char _single_char(s) except 0: | |
val = ord(s) | |
if val == 0 or val > 127: | |
raise ValueError("Expecting an ASCII character") | |
return <unsigned char> val | |
_InvalidRow = namedtuple( | |
"_InvalidRow", ("expected_columns", "actual_columns", "number", "text"), | |
module=__name__) | |
class InvalidRow(_InvalidRow): | |
""" | |
Description of an invalid row in a CSV file. | |
Parameters | |
---------- | |
expected_columns : int | |
The expected number of columns in the row. | |
actual_columns : int | |
The actual number of columns in the row. | |
number : int or None | |
The physical row number if known, otherwise None. | |
text : str | |
The contents of the row. | |
""" | |
__slots__ = () | |
cdef CInvalidRowResult _handle_invalid_row( | |
handler, const CCSVInvalidRow& c_row) except CInvalidRowResult_Error: | |
# A negative row number means undetermined (because of parallel reading) | |
row_number = c_row.number if c_row.number >= 0 else None | |
row = InvalidRow(c_row.expected_columns, c_row.actual_columns, | |
row_number, frombytes(<c_string> c_row.text)) | |
result = handler(row) | |
if result == 'error': | |
return CInvalidRowResult_Error | |
elif result == 'skip': | |
return CInvalidRowResult_Skip | |
else: | |
raise ValueError("Invalid return value for invalid row handler: " | |
f"expected 'error' or 'skip', got {result!r}") | |
cdef class ReadOptions(_Weakrefable): | |
""" | |
Options for reading CSV files. | |
Parameters | |
---------- | |
use_threads : bool, optional (default True) | |
Whether to use multiple threads to accelerate reading | |
block_size : int, optional | |
How much bytes to process at a time from the input stream. | |
This will determine multi-threading granularity as well as | |
the size of individual record batches or table chunks. | |
Minimum valid value for block size is 1 | |
skip_rows : int, optional (default 0) | |
The number of rows to skip before the column names (if any) | |
and the CSV data. | |
skip_rows_after_names : int, optional (default 0) | |
The number of rows to skip after the column names. | |
This number can be larger than the number of rows in one | |
block, and empty rows are counted. | |
The order of application is as follows: | |
- `skip_rows` is applied (if non-zero); | |
- column names are read (unless `column_names` is set); | |
- `skip_rows_after_names` is applied (if non-zero). | |
column_names : list, optional | |
The column names of the target table. If empty, fall back on | |
`autogenerate_column_names`. | |
autogenerate_column_names : bool, optional (default False) | |
Whether to autogenerate column names if `column_names` is empty. | |
If true, column names will be of the form "f0", "f1"... | |
If false, column names will be read from the first CSV row | |
after `skip_rows`. | |
encoding : str, optional (default 'utf8') | |
The character encoding of the CSV data. Columns that cannot | |
decode using this encoding can still be read as Binary. | |
Examples | |
-------- | |
Defining an example data: | |
>>> import io | |
>>> s = "1,2,3\\nFlamingo,2,2022-03-01\\nHorse,4,2022-03-02\\nBrittle stars,5,2022-03-03\\nCentipede,100,2022-03-04" | |
>>> print(s) | |
1,2,3 | |
Flamingo,2,2022-03-01 | |
Horse,4,2022-03-02 | |
Brittle stars,5,2022-03-03 | |
Centipede,100,2022-03-04 | |
Ignore the first numbered row and substitute it with defined | |
or autogenerated column names: | |
>>> from pyarrow import csv | |
>>> read_options = csv.ReadOptions( | |
... column_names=["animals", "n_legs", "entry"], | |
... skip_rows=1) | |
>>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options) | |
pyarrow.Table | |
animals: string | |
n_legs: int64 | |
entry: date32[day] | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede"]] | |
n_legs: [[2,4,5,100]] | |
entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]] | |
>>> read_options = csv.ReadOptions(autogenerate_column_names=True, | |
... skip_rows=1) | |
>>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options) | |
pyarrow.Table | |
f0: string | |
f1: int64 | |
f2: date32[day] | |
---- | |
f0: [["Flamingo","Horse","Brittle stars","Centipede"]] | |
f1: [[2,4,5,100]] | |
f2: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]] | |
Remove the first 2 rows of the data: | |
>>> read_options = csv.ReadOptions(skip_rows_after_names=2) | |
>>> csv.read_csv(io.BytesIO(s.encode()), read_options=read_options) | |
pyarrow.Table | |
1: string | |
2: int64 | |
3: date32[day] | |
---- | |
1: [["Brittle stars","Centipede"]] | |
2: [[5,100]] | |
3: [[2022-03-03,2022-03-04]] | |
""" | |
# Avoid mistakingly creating attributes | |
__slots__ = () | |
# __init__() is not called when unpickling, initialize storage here | |
def __cinit__(self, *argw, **kwargs): | |
self.options.reset(new CCSVReadOptions(CCSVReadOptions.Defaults())) | |
def __init__(self, *, use_threads=None, block_size=None, skip_rows=None, | |
skip_rows_after_names=None, column_names=None, | |
autogenerate_column_names=None, encoding='utf8'): | |
if use_threads is not None: | |
self.use_threads = use_threads | |
if block_size is not None: | |
self.block_size = block_size | |
if skip_rows is not None: | |
self.skip_rows = skip_rows | |
if skip_rows_after_names is not None: | |
self.skip_rows_after_names = skip_rows_after_names | |
if column_names is not None: | |
self.column_names = column_names | |
if autogenerate_column_names is not None: | |
self.autogenerate_column_names= autogenerate_column_names | |
# Python-specific option | |
self.encoding = encoding | |
@property | |
def use_threads(self): | |
""" | |
Whether to use multiple threads to accelerate reading. | |
""" | |
return deref(self.options).use_threads | |
@use_threads.setter | |
def use_threads(self, value): | |
deref(self.options).use_threads = value | |
@property | |
def block_size(self): | |
""" | |
How much bytes to process at a time from the input stream. | |
This will determine multi-threading granularity as well as | |
the size of individual record batches or table chunks. | |
""" | |
return deref(self.options).block_size | |
@block_size.setter | |
def block_size(self, value): | |
deref(self.options).block_size = value | |
@property | |
def skip_rows(self): | |
""" | |
The number of rows to skip before the column names (if any) | |
and the CSV data. | |
See `skip_rows_after_names` for interaction description | |
""" | |
return deref(self.options).skip_rows | |
@skip_rows.setter | |
def skip_rows(self, value): | |
deref(self.options).skip_rows = value | |
@property | |
def skip_rows_after_names(self): | |
""" | |
The number of rows to skip after the column names. | |
This number can be larger than the number of rows in one | |
block, and empty rows are counted. | |
The order of application is as follows: | |
- `skip_rows` is applied (if non-zero); | |
- column names are read (unless `column_names` is set); | |
- `skip_rows_after_names` is applied (if non-zero). | |
""" | |
return deref(self.options).skip_rows_after_names | |
@skip_rows_after_names.setter | |
def skip_rows_after_names(self, value): | |
deref(self.options).skip_rows_after_names = value | |
@property | |
def column_names(self): | |
""" | |
The column names of the target table. If empty, fall back on | |
`autogenerate_column_names`. | |
""" | |
return [frombytes(s) for s in deref(self.options).column_names] | |
@column_names.setter | |
def column_names(self, value): | |
deref(self.options).column_names.clear() | |
for item in value: | |
deref(self.options).column_names.push_back(tobytes(item)) | |
@property | |
def autogenerate_column_names(self): | |
""" | |
Whether to autogenerate column names if `column_names` is empty. | |
If true, column names will be of the form "f0", "f1"... | |
If false, column names will be read from the first CSV row | |
after `skip_rows`. | |
""" | |
return deref(self.options).autogenerate_column_names | |
@autogenerate_column_names.setter | |
def autogenerate_column_names(self, value): | |
deref(self.options).autogenerate_column_names = value | |
def validate(self): | |
check_status(deref(self.options).Validate()) | |
def equals(self, ReadOptions other): | |
""" | |
Parameters | |
---------- | |
other : pyarrow.csv.ReadOptions | |
Returns | |
------- | |
bool | |
""" | |
return ( | |
self.use_threads == other.use_threads and | |
self.block_size == other.block_size and | |
self.skip_rows == other.skip_rows and | |
self.skip_rows_after_names == other.skip_rows_after_names and | |
self.column_names == other.column_names and | |
self.autogenerate_column_names == | |
other.autogenerate_column_names and | |
self.encoding == other.encoding | |
) | |
@staticmethod | |
cdef ReadOptions wrap(CCSVReadOptions options): | |
out = ReadOptions() | |
out.options.reset(new CCSVReadOptions(move(options))) | |
out.encoding = 'utf8' # No way to know this | |
return out | |
def __getstate__(self): | |
return (self.use_threads, self.block_size, self.skip_rows, | |
self.column_names, self.autogenerate_column_names, | |
self.encoding, self.skip_rows_after_names) | |
def __setstate__(self, state): | |
(self.use_threads, self.block_size, self.skip_rows, | |
self.column_names, self.autogenerate_column_names, | |
self.encoding, self.skip_rows_after_names) = state | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return False | |
cdef class ParseOptions(_Weakrefable): | |
""" | |
Options for parsing CSV files. | |
Parameters | |
---------- | |
delimiter : 1-character string, optional (default ',') | |
The character delimiting individual cells in the CSV data. | |
quote_char : 1-character string or False, optional (default '"') | |
The character used optionally for quoting CSV values | |
(False if quoting is not allowed). | |
double_quote : bool, optional (default True) | |
Whether two quotes in a quoted CSV value denote a single quote | |
in the data. | |
escape_char : 1-character string or False, optional (default False) | |
The character used optionally for escaping special characters | |
(False if escaping is not allowed). | |
newlines_in_values : bool, optional (default False) | |
Whether newline characters are allowed in CSV values. | |
Setting this to True reduces the performance of multi-threaded | |
CSV reading. | |
ignore_empty_lines : bool, optional (default True) | |
Whether empty lines are ignored in CSV input. | |
If False, an empty line is interpreted as containing a single empty | |
value (assuming a one-column CSV file). | |
invalid_row_handler : callable, optional (default None) | |
If not None, this object is called for each CSV row that fails | |
parsing (because of a mismatching number of columns). | |
It should accept a single InvalidRow argument and return either | |
"skip" or "error" depending on the desired outcome. | |
Examples | |
-------- | |
Defining an example file from bytes object: | |
>>> import io | |
>>> s = ( | |
... "animals;n_legs;entry\\n" | |
... "Flamingo;2;2022-03-01\\n" | |
... "# Comment here:\\n" | |
... "Horse;4;2022-03-02\\n" | |
... "Brittle stars;5;2022-03-03\\n" | |
... "Centipede;100;2022-03-04" | |
... ) | |
>>> print(s) | |
animals;n_legs;entry | |
Flamingo;2;2022-03-01 | |
# Comment here: | |
Horse;4;2022-03-02 | |
Brittle stars;5;2022-03-03 | |
Centipede;100;2022-03-04 | |
>>> source = io.BytesIO(s.encode()) | |
Read the data from a file skipping rows with comments | |
and defining the delimiter: | |
>>> from pyarrow import csv | |
>>> def skip_comment(row): | |
... if row.text.startswith("# "): | |
... return 'skip' | |
... else: | |
... return 'error' | |
... | |
>>> parse_options = csv.ParseOptions(delimiter=";", invalid_row_handler=skip_comment) | |
>>> csv.read_csv(source, parse_options=parse_options) | |
pyarrow.Table | |
animals: string | |
n_legs: int64 | |
entry: date32[day] | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede"]] | |
n_legs: [[2,4,5,100]] | |
entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]] | |
""" | |
__slots__ = () | |
def __cinit__(self, *argw, **kwargs): | |
self._invalid_row_handler = None | |
self.options.reset(new CCSVParseOptions(CCSVParseOptions.Defaults())) | |
def __init__(self, *, delimiter=None, quote_char=None, double_quote=None, | |
escape_char=None, newlines_in_values=None, | |
ignore_empty_lines=None, invalid_row_handler=None): | |
if delimiter is not None: | |
self.delimiter = delimiter | |
if quote_char is not None: | |
self.quote_char = quote_char | |
if double_quote is not None: | |
self.double_quote = double_quote | |
if escape_char is not None: | |
self.escape_char = escape_char | |
if newlines_in_values is not None: | |
self.newlines_in_values = newlines_in_values | |
if ignore_empty_lines is not None: | |
self.ignore_empty_lines = ignore_empty_lines | |
if invalid_row_handler is not None: | |
self.invalid_row_handler = invalid_row_handler | |
@property | |
def delimiter(self): | |
""" | |
The character delimiting individual cells in the CSV data. | |
""" | |
return chr(deref(self.options).delimiter) | |
@delimiter.setter | |
def delimiter(self, value): | |
deref(self.options).delimiter = _single_char(value) | |
@property | |
def quote_char(self): | |
""" | |
The character used optionally for quoting CSV values | |
(False if quoting is not allowed). | |
""" | |
if deref(self.options).quoting: | |
return chr(deref(self.options).quote_char) | |
else: | |
return False | |
@quote_char.setter | |
def quote_char(self, value): | |
if value is False: | |
deref(self.options).quoting = False | |
else: | |
deref(self.options).quote_char = _single_char(value) | |
deref(self.options).quoting = True | |
@property | |
def double_quote(self): | |
""" | |
Whether two quotes in a quoted CSV value denote a single quote | |
in the data. | |
""" | |
return deref(self.options).double_quote | |
@double_quote.setter | |
def double_quote(self, value): | |
deref(self.options).double_quote = value | |
@property | |
def escape_char(self): | |
""" | |
The character used optionally for escaping special characters | |
(False if escaping is not allowed). | |
""" | |
if deref(self.options).escaping: | |
return chr(deref(self.options).escape_char) | |
else: | |
return False | |
@escape_char.setter | |
def escape_char(self, value): | |
if value is False: | |
deref(self.options).escaping = False | |
else: | |
deref(self.options).escape_char = _single_char(value) | |
deref(self.options).escaping = True | |
@property | |
def newlines_in_values(self): | |
""" | |
Whether newline characters are allowed in CSV values. | |
Setting this to True reduces the performance of multi-threaded | |
CSV reading. | |
""" | |
return deref(self.options).newlines_in_values | |
@newlines_in_values.setter | |
def newlines_in_values(self, value): | |
deref(self.options).newlines_in_values = value | |
@property | |
def ignore_empty_lines(self): | |
""" | |
Whether empty lines are ignored in CSV input. | |
If False, an empty line is interpreted as containing a single empty | |
value (assuming a one-column CSV file). | |
""" | |
return deref(self.options).ignore_empty_lines | |
@property | |
def invalid_row_handler(self): | |
""" | |
Optional handler for invalid rows. | |
If not None, this object is called for each CSV row that fails | |
parsing (because of a mismatching number of columns). | |
It should accept a single InvalidRow argument and return either | |
"skip" or "error" depending on the desired outcome. | |
""" | |
return self._invalid_row_handler | |
@invalid_row_handler.setter | |
def invalid_row_handler(self, value): | |
if value is not None and not callable(value): | |
raise TypeError("Expected callable or None, " | |
f"got instance of {type(value)!r}") | |
self._invalid_row_handler = value | |
deref(self.options).invalid_row_handler = MakeInvalidRowHandler( | |
<function[PyInvalidRowCallback]> &_handle_invalid_row, value) | |
@ignore_empty_lines.setter | |
def ignore_empty_lines(self, value): | |
deref(self.options).ignore_empty_lines = value | |
def validate(self): | |
check_status(deref(self.options).Validate()) | |
def equals(self, ParseOptions other): | |
""" | |
Parameters | |
---------- | |
other : pyarrow.csv.ParseOptions | |
Returns | |
------- | |
bool | |
""" | |
return ( | |
self.delimiter == other.delimiter and | |
self.quote_char == other.quote_char and | |
self.double_quote == other.double_quote and | |
self.escape_char == other.escape_char and | |
self.newlines_in_values == other.newlines_in_values and | |
self.ignore_empty_lines == other.ignore_empty_lines and | |
self._invalid_row_handler == other._invalid_row_handler | |
) | |
@staticmethod | |
cdef ParseOptions wrap(CCSVParseOptions options): | |
out = ParseOptions() | |
out.options.reset(new CCSVParseOptions(move(options))) | |
return out | |
def __getstate__(self): | |
return (self.delimiter, self.quote_char, self.double_quote, | |
self.escape_char, self.newlines_in_values, | |
self.ignore_empty_lines, self.invalid_row_handler) | |
def __setstate__(self, state): | |
(self.delimiter, self.quote_char, self.double_quote, | |
self.escape_char, self.newlines_in_values, | |
self.ignore_empty_lines, self.invalid_row_handler) = state | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return False | |
cdef class _ISO8601(_Weakrefable): | |
""" | |
A special object indicating ISO-8601 parsing. | |
""" | |
__slots__ = () | |
def __str__(self): | |
return 'ISO8601' | |
def __eq__(self, other): | |
return isinstance(other, _ISO8601) | |
ISO8601 = _ISO8601() | |
cdef class ConvertOptions(_Weakrefable): | |
""" | |
Options for converting CSV data. | |
Parameters | |
---------- | |
check_utf8 : bool, optional (default True) | |
Whether to check UTF8 validity of string columns. | |
column_types : pyarrow.Schema or dict, optional | |
Explicitly map column names to column types. Passing this argument | |
disables type inference on the defined columns. | |
null_values : list, optional | |
A sequence of strings that denote nulls in the data | |
(defaults are appropriate in most cases). Note that by default, | |
string columns are not checked for null values. To enable | |
null checking for those, specify ``strings_can_be_null=True``. | |
true_values : list, optional | |
A sequence of strings that denote true booleans in the data | |
(defaults are appropriate in most cases). | |
false_values : list, optional | |
A sequence of strings that denote false booleans in the data | |
(defaults are appropriate in most cases). | |
decimal_point : 1-character string, optional (default '.') | |
The character used as decimal point in floating-point and decimal | |
data. | |
strings_can_be_null : bool, optional (default False) | |
Whether string / binary columns can have null values. | |
If true, then strings in null_values are considered null for | |
string columns. | |
If false, then all strings are valid string values. | |
quoted_strings_can_be_null : bool, optional (default True) | |
Whether quoted values can be null. | |
If true, then strings in "null_values" are also considered null | |
when they appear quoted in the CSV file. Otherwise, quoted values | |
are never considered null. | |
include_columns : list, optional | |
The names of columns to include in the Table. | |
If empty, the Table will include all columns from the CSV file. | |
If not empty, only these columns will be included, in this order. | |
include_missing_columns : bool, optional (default False) | |
If false, columns in `include_columns` but not in the CSV file will | |
error out. | |
If true, columns in `include_columns` but not in the CSV file will | |
produce a column of nulls (whose type is selected using | |
`column_types`, or null by default). | |
This option is ignored if `include_columns` is empty. | |
auto_dict_encode : bool, optional (default False) | |
Whether to try to automatically dict-encode string / binary data. | |
If true, then when type inference detects a string or binary column, | |
it it dict-encoded up to `auto_dict_max_cardinality` distinct values | |
(per chunk), after which it switches to regular encoding. | |
This setting is ignored for non-inferred columns (those in | |
`column_types`). | |
auto_dict_max_cardinality : int, optional | |
The maximum dictionary cardinality for `auto_dict_encode`. | |
This value is per chunk. | |
timestamp_parsers : list, optional | |
A sequence of strptime()-compatible format strings, tried in order | |
when attempting to infer or convert timestamp values (the special | |
value ISO8601() can also be given). By default, a fast built-in | |
ISO-8601 parser is used. | |
Examples | |
-------- | |
Defining an example data: | |
>>> import io | |
>>> s = ( | |
... "animals,n_legs,entry,fast\\n" | |
... "Flamingo,2,01/03/2022,Yes\\n" | |
... "Horse,4,02/03/2022,Yes\\n" | |
... "Brittle stars,5,03/03/2022,No\\n" | |
... "Centipede,100,04/03/2022,No\\n" | |
... ",6,05/03/2022," | |
... ) | |
>>> print(s) | |
animals,n_legs,entry,fast | |
Flamingo,2,01/03/2022,Yes | |
Horse,4,02/03/2022,Yes | |
Brittle stars,5,03/03/2022,No | |
Centipede,100,04/03/2022,No | |
,6,05/03/2022, | |
Change the type of a column: | |
>>> import pyarrow as pa | |
>>> from pyarrow import csv | |
>>> convert_options = csv.ConvertOptions(column_types={"n_legs": pa.float64()}) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
animals: string | |
n_legs: double | |
entry: string | |
fast: string | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]] | |
n_legs: [[2,4,5,100,6]] | |
entry: [["01/03/2022","02/03/2022","03/03/2022","04/03/2022","05/03/2022"]] | |
fast: [["Yes","Yes","No","No",""]] | |
Define a date parsing format to get a timestamp type column | |
(in case dates are not in ISO format and not converted by default): | |
>>> convert_options = csv.ConvertOptions( | |
... timestamp_parsers=["%m/%d/%Y", "%m-%d-%Y"]) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
animals: string | |
n_legs: int64 | |
entry: timestamp[s] | |
fast: string | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]] | |
n_legs: [[2,4,5,100,6]] | |
entry: [[2022-01-03 00:00:00,2022-02-03 00:00:00,2022-03-03 00:00:00,2022-04-03 00:00:00,2022-05-03 00:00:00]] | |
fast: [["Yes","Yes","No","No",""]] | |
Specify a subset of columns to be read: | |
>>> convert_options = csv.ConvertOptions( | |
... include_columns=["animals", "n_legs"]) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
animals: string | |
n_legs: int64 | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]] | |
n_legs: [[2,4,5,100,6]] | |
List additional column to be included as a null typed column: | |
>>> convert_options = csv.ConvertOptions( | |
... include_columns=["animals", "n_legs", "location"], | |
... include_missing_columns=True) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
animals: string | |
n_legs: int64 | |
location: null | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]] | |
n_legs: [[2,4,5,100,6]] | |
location: [5 nulls] | |
Define columns as dictionary type (by default only the | |
string/binary columns are dictionary encoded): | |
>>> convert_options = csv.ConvertOptions( | |
... timestamp_parsers=["%m/%d/%Y", "%m-%d-%Y"], | |
... auto_dict_encode=True) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
animals: dictionary<values=string, indices=int32, ordered=0> | |
n_legs: int64 | |
entry: timestamp[s] | |
fast: dictionary<values=string, indices=int32, ordered=0> | |
---- | |
animals: [ -- dictionary: | |
["Flamingo","Horse","Brittle stars","Centipede",""] -- indices: | |
[0,1,2,3,4]] | |
n_legs: [[2,4,5,100,6]] | |
entry: [[2022-01-03 00:00:00,2022-02-03 00:00:00,2022-03-03 00:00:00,2022-04-03 00:00:00,2022-05-03 00:00:00]] | |
fast: [ -- dictionary: | |
["Yes","No",""] -- indices: | |
[0,0,1,1,2]] | |
Set upper limit for the number of categories. If the categories | |
is more than the limit, the conversion to dictionary will not | |
happen: | |
>>> convert_options = csv.ConvertOptions( | |
... include_columns=["animals"], | |
... auto_dict_encode=True, | |
... auto_dict_max_cardinality=2) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
animals: string | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede",""]] | |
Set empty strings to missing values: | |
>>> convert_options = csv.ConvertOptions(include_columns=["animals", "n_legs"], | |
... strings_can_be_null=True) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
animals: string | |
n_legs: int64 | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede",null]] | |
n_legs: [[2,4,5,100,6]] | |
Define values to be True and False when converting a column | |
into a bool type: | |
>>> convert_options = csv.ConvertOptions( | |
... include_columns=["fast"], | |
... false_values=["No"], | |
... true_values=["Yes"]) | |
>>> csv.read_csv(io.BytesIO(s.encode()), convert_options=convert_options) | |
pyarrow.Table | |
fast: bool | |
---- | |
fast: [[true,true,false,false,null]] | |
""" | |
# Avoid mistakingly creating attributes | |
__slots__ = () | |
def __cinit__(self, *argw, **kwargs): | |
self.options.reset( | |
new CCSVConvertOptions(CCSVConvertOptions.Defaults())) | |
def __init__(self, *, check_utf8=None, column_types=None, null_values=None, | |
true_values=None, false_values=None, decimal_point=None, | |
strings_can_be_null=None, quoted_strings_can_be_null=None, | |
include_columns=None, include_missing_columns=None, | |
auto_dict_encode=None, auto_dict_max_cardinality=None, | |
timestamp_parsers=None): | |
if check_utf8 is not None: | |
self.check_utf8 = check_utf8 | |
if column_types is not None: | |
self.column_types = column_types | |
if null_values is not None: | |
self.null_values = null_values | |
if true_values is not None: | |
self.true_values = true_values | |
if false_values is not None: | |
self.false_values = false_values | |
if decimal_point is not None: | |
self.decimal_point = decimal_point | |
if strings_can_be_null is not None: | |
self.strings_can_be_null = strings_can_be_null | |
if quoted_strings_can_be_null is not None: | |
self.quoted_strings_can_be_null = quoted_strings_can_be_null | |
if include_columns is not None: | |
self.include_columns = include_columns | |
if include_missing_columns is not None: | |
self.include_missing_columns = include_missing_columns | |
if auto_dict_encode is not None: | |
self.auto_dict_encode = auto_dict_encode | |
if auto_dict_max_cardinality is not None: | |
self.auto_dict_max_cardinality = auto_dict_max_cardinality | |
if timestamp_parsers is not None: | |
self.timestamp_parsers = timestamp_parsers | |
@property | |
def check_utf8(self): | |
""" | |
Whether to check UTF8 validity of string columns. | |
""" | |
return deref(self.options).check_utf8 | |
@check_utf8.setter | |
def check_utf8(self, value): | |
deref(self.options).check_utf8 = value | |
@property | |
def strings_can_be_null(self): | |
""" | |
Whether string / binary columns can have null values. | |
""" | |
return deref(self.options).strings_can_be_null | |
@strings_can_be_null.setter | |
def strings_can_be_null(self, value): | |
deref(self.options).strings_can_be_null = value | |
@property | |
def quoted_strings_can_be_null(self): | |
""" | |
Whether quoted values can be null. | |
""" | |
return deref(self.options).quoted_strings_can_be_null | |
@quoted_strings_can_be_null.setter | |
def quoted_strings_can_be_null(self, value): | |
deref(self.options).quoted_strings_can_be_null = value | |
@property | |
def column_types(self): | |
""" | |
Explicitly map column names to column types. | |
""" | |
d = {frombytes(item.first): pyarrow_wrap_data_type(item.second) | |
for item in deref(self.options).column_types} | |
return d | |
@column_types.setter | |
def column_types(self, value): | |
cdef: | |
shared_ptr[CDataType] typ | |
if isinstance(value, Mapping): | |
value = value.items() | |
deref(self.options).column_types.clear() | |
for item in value: | |
if isinstance(item, Field): | |
k = item.name | |
v = item.type | |
else: | |
k, v = item | |
typ = pyarrow_unwrap_data_type(ensure_type(v)) | |
assert typ != NULL | |
deref(self.options).column_types[tobytes(k)] = typ | |
@property | |
def null_values(self): | |
""" | |
A sequence of strings that denote nulls in the data. | |
""" | |
return [frombytes(x) for x in deref(self.options).null_values] | |
@null_values.setter | |
def null_values(self, value): | |
deref(self.options).null_values = [tobytes(x) for x in value] | |
@property | |
def true_values(self): | |
""" | |
A sequence of strings that denote true booleans in the data. | |
""" | |
return [frombytes(x) for x in deref(self.options).true_values] | |
@true_values.setter | |
def true_values(self, value): | |
deref(self.options).true_values = [tobytes(x) for x in value] | |
@property | |
def false_values(self): | |
""" | |
A sequence of strings that denote false booleans in the data. | |
""" | |
return [frombytes(x) for x in deref(self.options).false_values] | |
@false_values.setter | |
def false_values(self, value): | |
deref(self.options).false_values = [tobytes(x) for x in value] | |
@property | |
def decimal_point(self): | |
""" | |
The character used as decimal point in floating-point and decimal | |
data. | |
""" | |
return chr(deref(self.options).decimal_point) | |
@decimal_point.setter | |
def decimal_point(self, value): | |
deref(self.options).decimal_point = _single_char(value) | |
@property | |
def auto_dict_encode(self): | |
""" | |
Whether to try to automatically dict-encode string / binary data. | |
""" | |
return deref(self.options).auto_dict_encode | |
@auto_dict_encode.setter | |
def auto_dict_encode(self, value): | |
deref(self.options).auto_dict_encode = value | |
@property | |
def auto_dict_max_cardinality(self): | |
""" | |
The maximum dictionary cardinality for `auto_dict_encode`. | |
This value is per chunk. | |
""" | |
return deref(self.options).auto_dict_max_cardinality | |
@auto_dict_max_cardinality.setter | |
def auto_dict_max_cardinality(self, value): | |
deref(self.options).auto_dict_max_cardinality = value | |
@property | |
def include_columns(self): | |
""" | |
The names of columns to include in the Table. | |
If empty, the Table will include all columns from the CSV file. | |
If not empty, only these columns will be included, in this order. | |
""" | |
return [frombytes(s) for s in deref(self.options).include_columns] | |
@include_columns.setter | |
def include_columns(self, value): | |
deref(self.options).include_columns.clear() | |
for item in value: | |
deref(self.options).include_columns.push_back(tobytes(item)) | |
@property | |
def include_missing_columns(self): | |
""" | |
If false, columns in `include_columns` but not in the CSV file will | |
error out. | |
If true, columns in `include_columns` but not in the CSV file will | |
produce a null column (whose type is selected using `column_types`, | |
or null by default). | |
This option is ignored if `include_columns` is empty. | |
""" | |
return deref(self.options).include_missing_columns | |
@include_missing_columns.setter | |
def include_missing_columns(self, value): | |
deref(self.options).include_missing_columns = value | |
@property | |
def timestamp_parsers(self): | |
""" | |
A sequence of strptime()-compatible format strings, tried in order | |
when attempting to infer or convert timestamp values (the special | |
value ISO8601() can also be given). By default, a fast built-in | |
ISO-8601 parser is used. | |
""" | |
cdef: | |
shared_ptr[CTimestampParser] c_parser | |
c_string kind | |
parsers = [] | |
for c_parser in deref(self.options).timestamp_parsers: | |
kind = deref(c_parser).kind() | |
if kind == b'strptime': | |
parsers.append(frombytes(deref(c_parser).format())) | |
else: | |
assert kind == b'iso8601' | |
parsers.append(ISO8601) | |
return parsers | |
@timestamp_parsers.setter | |
def timestamp_parsers(self, value): | |
cdef: | |
vector[shared_ptr[CTimestampParser]] c_parsers | |
for v in value: | |
if isinstance(v, str): | |
c_parsers.push_back(CTimestampParser.MakeStrptime(tobytes(v))) | |
elif v == ISO8601: | |
c_parsers.push_back(CTimestampParser.MakeISO8601()) | |
else: | |
raise TypeError("Expected list of str or ISO8601 objects") | |
deref(self.options).timestamp_parsers = move(c_parsers) | |
@staticmethod | |
cdef ConvertOptions wrap(CCSVConvertOptions options): | |
out = ConvertOptions() | |
out.options.reset(new CCSVConvertOptions(move(options))) | |
return out | |
def validate(self): | |
check_status(deref(self.options).Validate()) | |
def equals(self, ConvertOptions other): | |
""" | |
Parameters | |
---------- | |
other : pyarrow.csv.ConvertOptions | |
Returns | |
------- | |
bool | |
""" | |
return ( | |
self.check_utf8 == other.check_utf8 and | |
self.column_types == other.column_types and | |
self.null_values == other.null_values and | |
self.true_values == other.true_values and | |
self.false_values == other.false_values and | |
self.decimal_point == other.decimal_point and | |
self.timestamp_parsers == other.timestamp_parsers and | |
self.strings_can_be_null == other.strings_can_be_null and | |
self.quoted_strings_can_be_null == | |
other.quoted_strings_can_be_null and | |
self.auto_dict_encode == other.auto_dict_encode and | |
self.auto_dict_max_cardinality == | |
other.auto_dict_max_cardinality and | |
self.include_columns == other.include_columns and | |
self.include_missing_columns == other.include_missing_columns | |
) | |
def __getstate__(self): | |
return (self.check_utf8, self.column_types, self.null_values, | |
self.true_values, self.false_values, self.decimal_point, | |
self.timestamp_parsers, self.strings_can_be_null, | |
self.quoted_strings_can_be_null, self.auto_dict_encode, | |
self.auto_dict_max_cardinality, self.include_columns, | |
self.include_missing_columns) | |
def __setstate__(self, state): | |
(self.check_utf8, self.column_types, self.null_values, | |
self.true_values, self.false_values, self.decimal_point, | |
self.timestamp_parsers, self.strings_can_be_null, | |
self.quoted_strings_can_be_null, self.auto_dict_encode, | |
self.auto_dict_max_cardinality, self.include_columns, | |
self.include_missing_columns) = state | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return False | |
cdef _get_reader(input_file, ReadOptions read_options, | |
shared_ptr[CInputStream]* out): | |
use_memory_map = False | |
get_input_stream(input_file, use_memory_map, out) | |
if read_options is not None: | |
out[0] = native_transcoding_input_stream(out[0], | |
read_options.encoding, | |
'utf8') | |
cdef _get_read_options(ReadOptions read_options, CCSVReadOptions* out): | |
if read_options is None: | |
out[0] = CCSVReadOptions.Defaults() | |
else: | |
out[0] = deref(read_options.options) | |
cdef _get_parse_options(ParseOptions parse_options, CCSVParseOptions* out): | |
if parse_options is None: | |
out[0] = CCSVParseOptions.Defaults() | |
else: | |
out[0] = deref(parse_options.options) | |
cdef _get_convert_options(ConvertOptions convert_options, | |
CCSVConvertOptions* out): | |
if convert_options is None: | |
out[0] = CCSVConvertOptions.Defaults() | |
else: | |
out[0] = deref(convert_options.options) | |
cdef class CSVStreamingReader(RecordBatchReader): | |
"""An object that reads record batches incrementally from a CSV file. | |
Should not be instantiated directly by user code. | |
""" | |
cdef readonly: | |
Schema schema | |
def __init__(self): | |
raise TypeError("Do not call {}'s constructor directly, " | |
"use pyarrow.csv.open_csv() instead." | |
.format(self.__class__.__name__)) | |
# Note about cancellation: we cannot create a SignalStopHandler | |
# by default here, as several CSVStreamingReader instances may be | |
# created (including by the same thread). Handling cancellation | |
# would require having the user pass the SignalStopHandler. | |
# (in addition to solving ARROW-11853) | |
cdef _open(self, shared_ptr[CInputStream] stream, | |
CCSVReadOptions c_read_options, | |
CCSVParseOptions c_parse_options, | |
CCSVConvertOptions c_convert_options, | |
MemoryPool memory_pool): | |
cdef: | |
shared_ptr[CSchema] c_schema | |
CIOContext io_context | |
io_context = CIOContext(maybe_unbox_memory_pool(memory_pool)) | |
with nogil: | |
self.reader = <shared_ptr[CRecordBatchReader]> GetResultValue( | |
CCSVStreamingReader.Make( | |
io_context, stream, | |
move(c_read_options), move(c_parse_options), | |
move(c_convert_options))) | |
c_schema = self.reader.get().schema() | |
self.schema = pyarrow_wrap_schema(c_schema) | |
def read_csv(input_file, read_options=None, parse_options=None, | |
convert_options=None, MemoryPool memory_pool=None): | |
""" | |
Read a Table from a stream of CSV data. | |
Parameters | |
---------- | |
input_file : string, path or file-like object | |
The location of CSV data. If a string or path, and if it ends | |
with a recognized compressed file extension (e.g. ".gz" or ".bz2"), | |
the data is automatically decompressed when reading. | |
read_options : pyarrow.csv.ReadOptions, optional | |
Options for the CSV reader (see pyarrow.csv.ReadOptions constructor | |
for defaults) | |
parse_options : pyarrow.csv.ParseOptions, optional | |
Options for the CSV parser | |
(see pyarrow.csv.ParseOptions constructor for defaults) | |
convert_options : pyarrow.csv.ConvertOptions, optional | |
Options for converting CSV data | |
(see pyarrow.csv.ConvertOptions constructor for defaults) | |
memory_pool : MemoryPool, optional | |
Pool to allocate Table memory from | |
Returns | |
------- | |
:class:`pyarrow.Table` | |
Contents of the CSV file as a in-memory table. | |
Examples | |
-------- | |
Defining an example file from bytes object: | |
>>> import io | |
>>> s = ( | |
... "animals,n_legs,entry\\n" | |
... "Flamingo,2,2022-03-01\\n" | |
... "Horse,4,2022-03-02\\n" | |
... "Brittle stars,5,2022-03-03\\n" | |
... "Centipede,100,2022-03-04" | |
... ) | |
>>> print(s) | |
animals,n_legs,entry | |
Flamingo,2,2022-03-01 | |
Horse,4,2022-03-02 | |
Brittle stars,5,2022-03-03 | |
Centipede,100,2022-03-04 | |
>>> source = io.BytesIO(s.encode()) | |
Reading from the file | |
>>> from pyarrow import csv | |
>>> csv.read_csv(source) | |
pyarrow.Table | |
animals: string | |
n_legs: int64 | |
entry: date32[day] | |
---- | |
animals: [["Flamingo","Horse","Brittle stars","Centipede"]] | |
n_legs: [[2,4,5,100]] | |
entry: [[2022-03-01,2022-03-02,2022-03-03,2022-03-04]] | |
""" | |
cdef: | |
shared_ptr[CInputStream] stream | |
CCSVReadOptions c_read_options | |
CCSVParseOptions c_parse_options | |
CCSVConvertOptions c_convert_options | |
CIOContext io_context | |
SharedPtrNoGIL[CCSVReader] reader | |
shared_ptr[CTable] table | |
_get_reader(input_file, read_options, &stream) | |
_get_read_options(read_options, &c_read_options) | |
_get_parse_options(parse_options, &c_parse_options) | |
_get_convert_options(convert_options, &c_convert_options) | |
with SignalStopHandler() as stop_handler: | |
io_context = CIOContext( | |
maybe_unbox_memory_pool(memory_pool), | |
(<StopToken> stop_handler.stop_token).stop_token) | |
reader = GetResultValue(CCSVReader.Make( | |
io_context, stream, | |
c_read_options, c_parse_options, c_convert_options)) | |
with nogil: | |
table = GetResultValue(reader.get().Read()) | |
return pyarrow_wrap_table(table) | |
def open_csv(input_file, read_options=None, parse_options=None, | |
convert_options=None, MemoryPool memory_pool=None): | |
""" | |
Open a streaming reader of CSV data. | |
Reading using this function is always single-threaded. | |
Parameters | |
---------- | |
input_file : string, path or file-like object | |
The location of CSV data. If a string or path, and if it ends | |
with a recognized compressed file extension (e.g. ".gz" or ".bz2"), | |
the data is automatically decompressed when reading. | |
read_options : pyarrow.csv.ReadOptions, optional | |
Options for the CSV reader (see pyarrow.csv.ReadOptions constructor | |
for defaults) | |
parse_options : pyarrow.csv.ParseOptions, optional | |
Options for the CSV parser | |
(see pyarrow.csv.ParseOptions constructor for defaults) | |
convert_options : pyarrow.csv.ConvertOptions, optional | |
Options for converting CSV data | |
(see pyarrow.csv.ConvertOptions constructor for defaults) | |
memory_pool : MemoryPool, optional | |
Pool to allocate Table memory from | |
Returns | |
------- | |
:class:`pyarrow.csv.CSVStreamingReader` | |
""" | |
cdef: | |
shared_ptr[CInputStream] stream | |
CCSVReadOptions c_read_options | |
CCSVParseOptions c_parse_options | |
CCSVConvertOptions c_convert_options | |
CSVStreamingReader reader | |
_get_reader(input_file, read_options, &stream) | |
_get_read_options(read_options, &c_read_options) | |
_get_parse_options(parse_options, &c_parse_options) | |
_get_convert_options(convert_options, &c_convert_options) | |
reader = CSVStreamingReader.__new__(CSVStreamingReader) | |
reader._open(stream, move(c_read_options), move(c_parse_options), | |
move(c_convert_options), memory_pool) | |
return reader | |
def _raise_invalid_function_option(value, description, *, | |
exception_class=ValueError): | |
raise exception_class(f"\"{value}\" is not a valid {description}") | |
cdef CQuotingStyle unwrap_quoting_style(quoting_style) except *: | |
if quoting_style == "needed": | |
return CQuotingStyle_Needed | |
elif quoting_style == "all_valid": | |
return CQuotingStyle_AllValid | |
elif quoting_style == "none": | |
return CQuotingStyle_None | |
_raise_invalid_function_option(quoting_style, "quoting style") | |
cdef wrap_quoting_style(quoting_style): | |
if quoting_style == CQuotingStyle_Needed: | |
return 'needed' | |
elif quoting_style == CQuotingStyle_AllValid: | |
return 'all_valid' | |
elif quoting_style == CQuotingStyle_None: | |
return 'none' | |
cdef class WriteOptions(_Weakrefable): | |
""" | |
Options for writing CSV files. | |
Parameters | |
---------- | |
include_header : bool, optional (default True) | |
Whether to write an initial header line with column names | |
batch_size : int, optional (default 1024) | |
How many rows to process together when converting and writing | |
CSV data | |
delimiter : 1-character string, optional (default ",") | |
The character delimiting individual cells in the CSV data. | |
quoting_style : str, optional (default "needed") | |
Whether to quote values, and if so, which quoting style to use. | |
The following values are accepted: | |
- "needed" (default): only enclose values in quotes when needed. | |
- "all_valid": enclose all valid values in quotes; nulls are not quoted. | |
- "none": do not enclose any values in quotes; values containing | |
special characters (such as quotes, cell delimiters or line endings) | |
will raise an error. | |
""" | |
# Avoid mistakingly creating attributes | |
__slots__ = () | |
def __init__(self, *, include_header=None, batch_size=None, | |
delimiter=None, quoting_style=None): | |
self.options.reset(new CCSVWriteOptions(CCSVWriteOptions.Defaults())) | |
if include_header is not None: | |
self.include_header = include_header | |
if batch_size is not None: | |
self.batch_size = batch_size | |
if delimiter is not None: | |
self.delimiter = delimiter | |
if quoting_style is not None: | |
self.quoting_style = quoting_style | |
@property | |
def include_header(self): | |
""" | |
Whether to write an initial header line with column names. | |
""" | |
return deref(self.options).include_header | |
@include_header.setter | |
def include_header(self, value): | |
deref(self.options).include_header = value | |
@property | |
def batch_size(self): | |
""" | |
How many rows to process together when converting and writing | |
CSV data. | |
""" | |
return deref(self.options).batch_size | |
@batch_size.setter | |
def batch_size(self, value): | |
deref(self.options).batch_size = value | |
@property | |
def delimiter(self): | |
""" | |
The character delimiting individual cells in the CSV data. | |
""" | |
return chr(deref(self.options).delimiter) | |
@delimiter.setter | |
def delimiter(self, value): | |
deref(self.options).delimiter = _single_char(value) | |
@property | |
def quoting_style(self): | |
""" | |
Whether to quote values, and if so, which quoting style to use. | |
The following values are accepted: | |
- "needed" (default): only enclose values in quotes when needed. | |
- "all_valid": enclose all valid values in quotes; nulls are not quoted. | |
- "none": do not enclose any values in quotes; values containing | |
special characters (such as quotes, cell delimiters or line endings) | |
will raise an error. | |
""" | |
return wrap_quoting_style(deref(self.options).quoting_style) | |
@quoting_style.setter | |
def quoting_style(self, value): | |
deref(self.options).quoting_style = unwrap_quoting_style(value) | |
@staticmethod | |
cdef WriteOptions wrap(CCSVWriteOptions options): | |
out = WriteOptions() | |
out.options.reset(new CCSVWriteOptions(move(options))) | |
return out | |
def validate(self): | |
check_status(self.options.get().Validate()) | |
cdef _get_write_options(WriteOptions write_options, CCSVWriteOptions* out): | |
if write_options is None: | |
out[0] = CCSVWriteOptions.Defaults() | |
else: | |
out[0] = deref(write_options.options) | |
def write_csv(data, output_file, write_options=None, | |
MemoryPool memory_pool=None): | |
""" | |
Write record batch or table to a CSV file. | |
Parameters | |
---------- | |
data : pyarrow.RecordBatch or pyarrow.Table | |
The data to write. | |
output_file : string, path, pyarrow.NativeFile, or file-like object | |
The location where to write the CSV data. | |
write_options : pyarrow.csv.WriteOptions | |
Options to configure writing the CSV data. | |
memory_pool : MemoryPool, optional | |
Pool for temporary allocations. | |
Examples | |
-------- | |
>>> import pyarrow as pa | |
>>> from pyarrow import csv | |
>>> legs = pa.array([2, 4, 5, 100]) | |
>>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) | |
>>> entry_date = pa.array(["01/03/2022", "02/03/2022", | |
... "03/03/2022", "04/03/2022"]) | |
>>> table = pa.table([animals, legs, entry_date], | |
... names=["animals", "n_legs", "entry"]) | |
>>> csv.write_csv(table, "animals.csv") | |
>>> write_options = csv.WriteOptions(include_header=False) | |
>>> csv.write_csv(table, "animals.csv", write_options=write_options) | |
>>> write_options = csv.WriteOptions(delimiter=";") | |
>>> csv.write_csv(table, "animals.csv", write_options=write_options) | |
""" | |
cdef: | |
shared_ptr[COutputStream] stream | |
CCSVWriteOptions c_write_options | |
CMemoryPool* c_memory_pool | |
CRecordBatch* batch | |
CTable* table | |
_get_write_options(write_options, &c_write_options) | |
get_writer(output_file, &stream) | |
c_memory_pool = maybe_unbox_memory_pool(memory_pool) | |
c_write_options.io_context = CIOContext(c_memory_pool) | |
if isinstance(data, RecordBatch): | |
batch = pyarrow_unwrap_batch(data).get() | |
with nogil: | |
check_status(WriteCSV(deref(batch), c_write_options, stream.get())) | |
elif isinstance(data, Table): | |
table = pyarrow_unwrap_table(data).get() | |
with nogil: | |
check_status(WriteCSV(deref(table), c_write_options, stream.get())) | |
else: | |
raise TypeError(f"Expected Table or RecordBatch, got '{type(data)}'") | |
cdef class CSVWriter(_CRecordBatchWriter): | |
""" | |
Writer to create a CSV file. | |
Parameters | |
---------- | |
sink : str, path, pyarrow.OutputStream or file-like object | |
The location where to write the CSV data. | |
schema : pyarrow.Schema | |
The schema of the data to be written. | |
write_options : pyarrow.csv.WriteOptions | |
Options to configure writing the CSV data. | |
memory_pool : MemoryPool, optional | |
Pool for temporary allocations. | |
""" | |
def __init__(self, sink, Schema schema, *, | |
WriteOptions write_options=None, MemoryPool memory_pool=None): | |
cdef: | |
shared_ptr[COutputStream] c_stream | |
shared_ptr[CSchema] c_schema = pyarrow_unwrap_schema(schema) | |
CCSVWriteOptions c_write_options | |
CMemoryPool* c_memory_pool = maybe_unbox_memory_pool(memory_pool) | |
_get_write_options(write_options, &c_write_options) | |
c_write_options.io_context = CIOContext(c_memory_pool) | |
get_writer(sink, &c_stream) | |
with nogil: | |
self.writer = GetResultValue(MakeCSVWriter( | |
c_stream, c_schema, c_write_options)) | |