peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/strategies.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import datetime | |
import sys | |
import pytest | |
import hypothesis as h | |
import hypothesis.strategies as st | |
import hypothesis.extra.numpy as npst | |
try: | |
import hypothesis.extra.pytz as tzst | |
except ImportError: | |
tzst = None | |
try: | |
import zoneinfo | |
except ImportError: | |
zoneinfo = None | |
if sys.platform == 'win32': | |
try: | |
import tzdata # noqa:F401 | |
except ImportError: | |
zoneinfo = None | |
import numpy as np | |
import pyarrow as pa | |
# TODO(kszucs): alphanum_text, surrogate_text | |
custom_text = st.text( | |
alphabet=st.characters( | |
min_codepoint=0x41, | |
max_codepoint=0x7E | |
) | |
) | |
null_type = st.just(pa.null()) | |
bool_type = st.just(pa.bool_()) | |
binary_type = st.just(pa.binary()) | |
string_type = st.just(pa.string()) | |
large_binary_type = st.just(pa.large_binary()) | |
large_string_type = st.just(pa.large_string()) | |
fixed_size_binary_type = st.builds( | |
pa.binary, | |
st.integers(min_value=0, max_value=16) | |
) | |
binary_like_types = st.one_of( | |
binary_type, | |
string_type, | |
large_binary_type, | |
large_string_type, | |
fixed_size_binary_type | |
) | |
signed_integer_types = st.sampled_from([ | |
pa.int8(), | |
pa.int16(), | |
pa.int32(), | |
pa.int64() | |
]) | |
unsigned_integer_types = st.sampled_from([ | |
pa.uint8(), | |
pa.uint16(), | |
pa.uint32(), | |
pa.uint64() | |
]) | |
integer_types = st.one_of(signed_integer_types, unsigned_integer_types) | |
floating_types = st.sampled_from([ | |
pa.float16(), | |
pa.float32(), | |
pa.float64() | |
]) | |
decimal128_type = st.builds( | |
pa.decimal128, | |
precision=st.integers(min_value=1, max_value=38), | |
scale=st.integers(min_value=1, max_value=38) | |
) | |
decimal256_type = st.builds( | |
pa.decimal256, | |
precision=st.integers(min_value=1, max_value=76), | |
scale=st.integers(min_value=1, max_value=76) | |
) | |
numeric_types = st.one_of(integer_types, floating_types, | |
decimal128_type, decimal256_type) | |
date_types = st.sampled_from([ | |
pa.date32(), | |
pa.date64() | |
]) | |
time_types = st.sampled_from([ | |
pa.time32('s'), | |
pa.time32('ms'), | |
pa.time64('us'), | |
pa.time64('ns') | |
]) | |
if tzst and zoneinfo: | |
timezones = st.one_of(st.none(), tzst.timezones(), st.timezones()) | |
elif tzst: | |
timezones = st.one_of(st.none(), tzst.timezones()) | |
elif zoneinfo: | |
timezones = st.one_of(st.none(), st.timezones()) | |
else: | |
timezones = st.none() | |
timestamp_types = st.builds( | |
pa.timestamp, | |
unit=st.sampled_from(['s', 'ms', 'us', 'ns']), | |
tz=timezones | |
) | |
duration_types = st.builds( | |
pa.duration, | |
st.sampled_from(['s', 'ms', 'us', 'ns']) | |
) | |
interval_types = st.just(pa.month_day_nano_interval()) | |
temporal_types = st.one_of( | |
date_types, | |
time_types, | |
timestamp_types, | |
duration_types, | |
interval_types | |
) | |
primitive_types = st.one_of( | |
null_type, | |
bool_type, | |
numeric_types, | |
temporal_types, | |
binary_like_types | |
) | |
metadata = st.dictionaries(st.text(), st.text()) | |
def fields(draw, type_strategy=primitive_types): | |
name = draw(custom_text) | |
typ = draw(type_strategy) | |
if pa.types.is_null(typ): | |
nullable = True | |
else: | |
nullable = draw(st.booleans()) | |
meta = draw(metadata) | |
return pa.field(name, type=typ, nullable=nullable, metadata=meta) | |
def list_types(item_strategy=primitive_types): | |
return ( | |
st.builds(pa.list_, item_strategy) | | |
st.builds(pa.large_list, item_strategy) | | |
st.builds( | |
pa.list_, | |
item_strategy, | |
st.integers(min_value=0, max_value=16) | |
) | | |
st.builds(pa.list_view, item_strategy) | | |
st.builds(pa.large_list_view, item_strategy) | |
) | |
def struct_types(draw, item_strategy=primitive_types): | |
fields_strategy = st.lists(fields(item_strategy)) | |
fields_rendered = draw(fields_strategy) | |
field_names = [field.name for field in fields_rendered] | |
# check that field names are unique, see ARROW-9997 | |
h.assume(len(set(field_names)) == len(field_names)) | |
return pa.struct(fields_rendered) | |
def dictionary_types(key_strategy=None, value_strategy=None): | |
if key_strategy is None: | |
key_strategy = signed_integer_types | |
if value_strategy is None: | |
value_strategy = st.one_of( | |
bool_type, | |
integer_types, | |
st.sampled_from([pa.float32(), pa.float64()]), | |
binary_type, | |
string_type, | |
fixed_size_binary_type, | |
) | |
return st.builds(pa.dictionary, key_strategy, value_strategy) | |
def map_types(draw, key_strategy=primitive_types, | |
item_strategy=primitive_types): | |
key_type = draw(key_strategy) | |
h.assume(not pa.types.is_null(key_type)) | |
value_type = draw(item_strategy) | |
return pa.map_(key_type, value_type) | |
# union type | |
# extension type | |
def schemas(type_strategy=primitive_types, max_fields=None): | |
children = st.lists(fields(type_strategy), max_size=max_fields) | |
return st.builds(pa.schema, children) | |
all_types = st.deferred( | |
lambda: ( | |
primitive_types | | |
list_types() | | |
struct_types() | | |
dictionary_types() | | |
map_types() | | |
list_types(all_types) | | |
struct_types(all_types) | |
) | |
) | |
all_fields = fields(all_types) | |
all_schemas = schemas(all_types) | |
_default_array_sizes = st.integers(min_value=0, max_value=20) | |
def _pylist(draw, value_type, size, nullable=True): | |
arr = draw(arrays(value_type, size=size, nullable=False)) | |
return arr.to_pylist() | |
def _pymap(draw, key_type, value_type, size, nullable=True): | |
length = draw(size) | |
keys = draw(_pylist(key_type, size=length, nullable=False)) | |
values = draw(_pylist(value_type, size=length, nullable=nullable)) | |
return list(zip(keys, values)) | |
def arrays(draw, type, size=None, nullable=True): | |
if isinstance(type, st.SearchStrategy): | |
ty = draw(type) | |
elif isinstance(type, pa.DataType): | |
ty = type | |
else: | |
raise TypeError('Type must be a pyarrow DataType') | |
if isinstance(size, st.SearchStrategy): | |
size = draw(size) | |
elif size is None: | |
size = draw(_default_array_sizes) | |
elif not isinstance(size, int): | |
raise TypeError('Size must be an integer') | |
if pa.types.is_null(ty): | |
h.assume(nullable) | |
value = st.none() | |
elif pa.types.is_boolean(ty): | |
value = st.booleans() | |
elif pa.types.is_integer(ty): | |
values = draw(npst.arrays(ty.to_pandas_dtype(), shape=(size,))) | |
return pa.array(values, type=ty) | |
elif pa.types.is_floating(ty): | |
values = draw(npst.arrays(ty.to_pandas_dtype(), shape=(size,))) | |
# Workaround ARROW-4952: no easy way to assert array equality | |
# in a NaN-tolerant way. | |
values[np.isnan(values)] = -42.0 | |
return pa.array(values, type=ty) | |
elif pa.types.is_decimal(ty): | |
# TODO(kszucs): properly limit the precision | |
# value = st.decimals(places=type.scale, allow_infinity=False) | |
h.reject() | |
elif pa.types.is_time(ty): | |
value = st.times() | |
elif pa.types.is_date(ty): | |
value = st.dates() | |
elif pa.types.is_timestamp(ty): | |
if zoneinfo is None: | |
pytest.skip('no module named zoneinfo (or tzdata on Windows)') | |
if ty.tz is None: | |
pytest.skip('requires timezone not None') | |
min_int64 = -(2**63) | |
max_int64 = 2**63 - 1 | |
min_datetime = datetime.datetime.fromtimestamp( | |
min_int64 // 10**9) + datetime.timedelta(hours=12) | |
max_datetime = datetime.datetime.fromtimestamp( | |
max_int64 // 10**9) - datetime.timedelta(hours=12) | |
try: | |
offset = ty.tz.split(":") | |
offset_hours = int(offset[0]) | |
offset_min = int(offset[1]) | |
tz = datetime.timedelta(hours=offset_hours, minutes=offset_min) | |
except ValueError: | |
tz = zoneinfo.ZoneInfo(ty.tz) | |
value = st.datetimes(timezones=st.just(tz), min_value=min_datetime, | |
max_value=max_datetime) | |
elif pa.types.is_duration(ty): | |
value = st.timedeltas() | |
elif pa.types.is_interval(ty): | |
value = st.timedeltas() | |
elif pa.types.is_binary(ty) or pa.types.is_large_binary(ty): | |
value = st.binary() | |
elif pa.types.is_string(ty) or pa.types.is_large_string(ty): | |
value = st.text() | |
elif pa.types.is_fixed_size_binary(ty): | |
value = st.binary(min_size=ty.byte_width, max_size=ty.byte_width) | |
elif pa.types.is_list(ty): | |
value = _pylist(ty.value_type, size=size, nullable=nullable) | |
elif pa.types.is_large_list(ty): | |
value = _pylist(ty.value_type, size=size, nullable=nullable) | |
elif pa.types.is_fixed_size_list(ty): | |
value = _pylist(ty.value_type, size=ty.list_size, nullable=nullable) | |
elif pa.types.is_list_view(ty): | |
value = _pylist(ty.value_type, size=size, nullable=nullable) | |
elif pa.types.is_large_list_view(ty): | |
value = _pylist(ty.value_type, size=size, nullable=nullable) | |
elif pa.types.is_dictionary(ty): | |
values = _pylist(ty.value_type, size=size, nullable=nullable) | |
return pa.array(draw(values), type=ty) | |
elif pa.types.is_map(ty): | |
value = _pymap(ty.key_type, ty.item_type, size=_default_array_sizes, | |
nullable=nullable) | |
elif pa.types.is_struct(ty): | |
h.assume(len(ty) > 0) | |
fields, child_arrays = [], [] | |
for field in ty: | |
fields.append(field) | |
child_arrays.append(draw(arrays(field.type, size=size))) | |
return pa.StructArray.from_arrays(child_arrays, fields=fields) | |
else: | |
raise NotImplementedError(ty) | |
if nullable: | |
value = st.one_of(st.none(), value) | |
values = st.lists(value, min_size=size, max_size=size) | |
return pa.array(draw(values), type=ty) | |
def chunked_arrays(draw, type, min_chunks=0, max_chunks=None, chunk_size=None): | |
if isinstance(type, st.SearchStrategy): | |
type = draw(type) | |
# TODO(kszucs): remove it, field metadata is not kept | |
h.assume(not pa.types.is_struct(type)) | |
chunk = arrays(type, size=chunk_size) | |
chunks = st.lists(chunk, min_size=min_chunks, max_size=max_chunks) | |
return pa.chunked_array(draw(chunks), type=type) | |
def record_batches(draw, type, rows=None, max_fields=None): | |
if isinstance(rows, st.SearchStrategy): | |
rows = draw(rows) | |
elif rows is None: | |
rows = draw(_default_array_sizes) | |
elif not isinstance(rows, int): | |
raise TypeError('Rows must be an integer') | |
schema = draw(schemas(type, max_fields=max_fields)) | |
children = [draw(arrays(field.type, size=rows)) for field in schema] | |
# TODO(kszucs): the names and schema arguments are not consistent with | |
# Table.from_array's arguments | |
return pa.RecordBatch.from_arrays(children, schema=schema) | |
def tables(draw, type, rows=None, max_fields=None): | |
if isinstance(rows, st.SearchStrategy): | |
rows = draw(rows) | |
elif rows is None: | |
rows = draw(_default_array_sizes) | |
elif not isinstance(rows, int): | |
raise TypeError('Rows must be an integer') | |
schema = draw(schemas(type, max_fields=max_fields)) | |
children = [draw(arrays(field.type, size=rows)) for field in schema] | |
return pa.Table.from_arrays(children, schema=schema) | |
all_arrays = arrays(all_types) | |
all_chunked_arrays = chunked_arrays(all_types) | |
all_record_batches = record_batches(all_types) | |
all_tables = tables(all_types) | |
# Define the same rules as above for pandas tests by excluding certain types | |
# from the generation because of known issues. | |
pandas_compatible_primitive_types = st.one_of( | |
null_type, | |
bool_type, | |
integer_types, | |
st.sampled_from([pa.float32(), pa.float64()]), | |
decimal128_type, | |
date_types, | |
time_types, | |
# Need to exclude timestamp and duration types otherwise hypothesis | |
# discovers ARROW-10210 | |
# timestamp_types, | |
# duration_types | |
interval_types, | |
binary_type, | |
string_type, | |
large_binary_type, | |
large_string_type, | |
) | |
# Need to exclude floating point types otherwise hypothesis discovers | |
# ARROW-10211 | |
pandas_compatible_dictionary_value_types = st.one_of( | |
bool_type, | |
integer_types, | |
binary_type, | |
string_type, | |
fixed_size_binary_type, | |
) | |
def pandas_compatible_list_types( | |
item_strategy=pandas_compatible_primitive_types | |
): | |
# Need to exclude fixed size list type otherwise hypothesis discovers | |
# ARROW-10194 | |
return ( | |
st.builds(pa.list_, item_strategy) | | |
st.builds(pa.large_list, item_strategy) | |
) | |
pandas_compatible_types = st.deferred( | |
lambda: st.one_of( | |
pandas_compatible_primitive_types, | |
pandas_compatible_list_types(pandas_compatible_primitive_types), | |
struct_types(pandas_compatible_primitive_types), | |
dictionary_types( | |
value_strategy=pandas_compatible_dictionary_value_types | |
), | |
pandas_compatible_list_types(pandas_compatible_types), | |
struct_types(pandas_compatible_types) | |
) | |
) | |