peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_array.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
from collections.abc import Iterable | |
import datetime | |
import decimal | |
import hypothesis as h | |
import hypothesis.strategies as st | |
import itertools | |
import pytest | |
import struct | |
import subprocess | |
import sys | |
import weakref | |
import numpy as np | |
import pyarrow as pa | |
import pyarrow.tests.strategies as past | |
from pyarrow.vendored.version import Version | |
def test_total_bytes_allocated(): | |
code = """if 1: | |
import pyarrow as pa | |
assert pa.total_allocated_bytes() == 0 | |
""" | |
res = subprocess.run([sys.executable, "-c", code], | |
universal_newlines=True, stderr=subprocess.PIPE) | |
if res.returncode != 0: | |
print(res.stderr, file=sys.stderr) | |
res.check_returncode() # fail | |
assert len(res.stderr.splitlines()) == 0 | |
def test_weakref(): | |
arr = pa.array([1, 2, 3]) | |
wr = weakref.ref(arr) | |
assert wr() is not None | |
del arr | |
assert wr() is None | |
def test_getitem_NULL(): | |
arr = pa.array([1, None, 2]) | |
assert arr[1].as_py() is None | |
assert arr[1].is_valid is False | |
assert isinstance(arr[1], pa.Int64Scalar) | |
def test_constructor_raises(): | |
# This could happen by wrong capitalization. | |
# ARROW-2638: prevent calling extension class constructors directly | |
with pytest.raises(TypeError): | |
pa.Array([1, 2]) | |
def test_list_format(): | |
arr = pa.array([[1], None, [2, 3, None]]) | |
result = arr.to_string() | |
expected = """\ | |
[ | |
[ | |
1 | |
], | |
null, | |
[ | |
2, | |
3, | |
null | |
] | |
]""" | |
assert result == expected | |
def test_string_format(): | |
arr = pa.array(['', None, 'foo']) | |
result = arr.to_string() | |
expected = """\ | |
[ | |
"", | |
null, | |
"foo" | |
]""" | |
assert result == expected | |
def test_long_array_format(): | |
arr = pa.array(range(100)) | |
result = arr.to_string(window=2) | |
expected = """\ | |
[ | |
0, | |
1, | |
... | |
98, | |
99 | |
]""" | |
assert result == expected | |
def test_indented_string_format(): | |
arr = pa.array(['', None, 'foo']) | |
result = arr.to_string(indent=1) | |
expected = '[\n "",\n null,\n "foo"\n]' | |
assert result == expected | |
def test_top_level_indented_string_format(): | |
arr = pa.array(['', None, 'foo']) | |
result = arr.to_string(top_level_indent=1) | |
expected = ' [\n "",\n null,\n "foo"\n ]' | |
assert result == expected | |
def test_binary_format(): | |
arr = pa.array([b'\x00', b'', None, b'\x01foo', b'\x80\xff']) | |
result = arr.to_string() | |
expected = """\ | |
[ | |
00, | |
, | |
null, | |
01666F6F, | |
80FF | |
]""" | |
assert result == expected | |
def test_binary_total_values_length(): | |
arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'], | |
type='binary') | |
large_arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'], | |
type='large_binary') | |
assert arr.total_values_length == 22 | |
assert arr.slice(1, 3).total_values_length == 11 | |
assert large_arr.total_values_length == 22 | |
assert large_arr.slice(1, 3).total_values_length == 11 | |
def test_to_numpy_zero_copy(): | |
arr = pa.array(range(10)) | |
np_arr = arr.to_numpy() | |
# check for zero copy (both arrays using same memory) | |
arrow_buf = arr.buffers()[1] | |
assert arrow_buf.address == np_arr.ctypes.data | |
arr = None | |
import gc | |
gc.collect() | |
# Ensure base is still valid | |
assert np_arr.base is not None | |
expected = np.arange(10) | |
np.testing.assert_array_equal(np_arr, expected) | |
def test_chunked_array_to_numpy_zero_copy(): | |
elements = [[2, 2, 4], [4, 5, 100]] | |
chunked_arr = pa.chunked_array(elements) | |
msg = "zero_copy_only must be False for pyarrow.ChunkedArray.to_numpy" | |
with pytest.raises(ValueError, match=msg): | |
chunked_arr.to_numpy(zero_copy_only=True) | |
np_arr = chunked_arr.to_numpy() | |
expected = [2, 2, 4, 4, 5, 100] | |
np.testing.assert_array_equal(np_arr, expected) | |
def test_to_numpy_unsupported_types(): | |
# ARROW-2871: Some primitive types are not yet supported in to_numpy | |
bool_arr = pa.array([True, False, True]) | |
with pytest.raises(ValueError): | |
bool_arr.to_numpy() | |
result = bool_arr.to_numpy(zero_copy_only=False) | |
expected = np.array([True, False, True]) | |
np.testing.assert_array_equal(result, expected) | |
null_arr = pa.array([None, None, None]) | |
with pytest.raises(ValueError): | |
null_arr.to_numpy() | |
result = null_arr.to_numpy(zero_copy_only=False) | |
expected = np.array([None, None, None], dtype=object) | |
np.testing.assert_array_equal(result, expected) | |
arr = pa.array([1, 2, None]) | |
with pytest.raises(ValueError, match="with 1 nulls"): | |
arr.to_numpy() | |
def test_to_numpy_writable(): | |
arr = pa.array(range(10)) | |
np_arr = arr.to_numpy() | |
# by default not writable for zero-copy conversion | |
with pytest.raises(ValueError): | |
np_arr[0] = 10 | |
np_arr2 = arr.to_numpy(zero_copy_only=False, writable=True) | |
np_arr2[0] = 10 | |
assert arr[0].as_py() == 0 | |
# when asking for writable, cannot do zero-copy | |
with pytest.raises(ValueError): | |
arr.to_numpy(zero_copy_only=True, writable=True) | |
def test_to_numpy_datetime64(unit, tz): | |
arr = pa.array([1, 2, 3], pa.timestamp(unit, tz=tz)) | |
expected = np.array([1, 2, 3], dtype="datetime64[{}]".format(unit)) | |
np_arr = arr.to_numpy() | |
np.testing.assert_array_equal(np_arr, expected) | |
def test_to_numpy_timedelta64(unit): | |
arr = pa.array([1, 2, 3], pa.duration(unit)) | |
expected = np.array([1, 2, 3], dtype="timedelta64[{}]".format(unit)) | |
np_arr = arr.to_numpy() | |
np.testing.assert_array_equal(np_arr, expected) | |
def test_to_numpy_dictionary(): | |
# ARROW-7591 | |
arr = pa.array(["a", "b", "a"]).dictionary_encode() | |
expected = np.array(["a", "b", "a"], dtype=object) | |
np_arr = arr.to_numpy(zero_copy_only=False) | |
np.testing.assert_array_equal(np_arr, expected) | |
def test_to_pandas_zero_copy(): | |
import gc | |
arr = pa.array(range(10)) | |
for i in range(10): | |
series = arr.to_pandas() | |
assert sys.getrefcount(series) == 2 | |
series = None # noqa | |
assert sys.getrefcount(arr) == 2 | |
for i in range(10): | |
arr = pa.array(range(10)) | |
series = arr.to_pandas() | |
arr = None | |
gc.collect() | |
# Ensure base is still valid | |
# Because of py.test's assert inspection magic, if you put getrefcount | |
# on the line being examined, it will be 1 higher than you expect | |
base_refcount = sys.getrefcount(series.values.base) | |
assert base_refcount == 2 | |
series.sum() | |
def test_asarray(): | |
# ensure this is tested both when pandas is present or not (ARROW-6564) | |
arr = pa.array(range(4)) | |
# The iterator interface gives back an array of Int64Value's | |
np_arr = np.asarray([_ for _ in arr]) | |
assert np_arr.tolist() == [0, 1, 2, 3] | |
assert np_arr.dtype == np.dtype('O') | |
assert isinstance(np_arr[0], pa.lib.Int64Value) | |
# Calling with the arrow array gives back an array with 'int64' dtype | |
np_arr = np.asarray(arr) | |
assert np_arr.tolist() == [0, 1, 2, 3] | |
assert np_arr.dtype == np.dtype('int64') | |
# An optional type can be specified when calling np.asarray | |
np_arr = np.asarray(arr, dtype='str') | |
assert np_arr.tolist() == ['0', '1', '2', '3'] | |
# If PyArrow array has null values, numpy type will be changed as needed | |
# to support nulls. | |
arr = pa.array([0, 1, 2, None]) | |
assert arr.type == pa.int64() | |
np_arr = np.asarray(arr) | |
elements = np_arr.tolist() | |
assert elements[:3] == [0., 1., 2.] | |
assert np.isnan(elements[3]) | |
assert np_arr.dtype == np.dtype('float64') | |
# DictionaryType data will be converted to dense numpy array | |
arr = pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 2, 0, 1]), pa.array(['a', 'b', 'c'])) | |
np_arr = np.asarray(arr) | |
assert np_arr.dtype == np.dtype('object') | |
assert np_arr.tolist() == ['a', 'b', 'c', 'a', 'b'] | |
def test_nulls(ty): | |
arr = pa.nulls(3, type=ty) | |
expected = pa.array([None, None, None], type=ty) | |
assert len(arr) == 3 | |
assert arr.equals(expected) | |
if ty is None: | |
assert arr.type == pa.null() | |
else: | |
assert arr.type == ty | |
def test_array_from_scalar(): | |
pytz = pytest.importorskip("pytz") | |
today = datetime.date.today() | |
now = datetime.datetime.now() | |
now_utc = now.replace(tzinfo=pytz.utc) | |
now_with_tz = now_utc.astimezone(pytz.timezone('US/Eastern')) | |
oneday = datetime.timedelta(days=1) | |
cases = [ | |
(None, 1, pa.array([None])), | |
(None, 10, pa.nulls(10)), | |
(-1, 3, pa.array([-1, -1, -1], type=pa.int64())), | |
(2.71, 2, pa.array([2.71, 2.71], type=pa.float64())), | |
("string", 4, pa.array(["string"] * 4)), | |
( | |
pa.scalar(8, type=pa.uint8()), | |
17, | |
pa.array([8] * 17, type=pa.uint8()) | |
), | |
(pa.scalar(None), 3, pa.array([None, None, None])), | |
(pa.scalar(True), 11, pa.array([True] * 11)), | |
(today, 2, pa.array([today] * 2)), | |
(now, 10, pa.array([now] * 10)), | |
( | |
now_with_tz, | |
2, | |
pa.array( | |
[now_utc] * 2, | |
type=pa.timestamp('us', tz=pytz.timezone('US/Eastern')) | |
) | |
), | |
(now.time(), 9, pa.array([now.time()] * 9)), | |
(oneday, 4, pa.array([oneday] * 4)), | |
(False, 9, pa.array([False] * 9)), | |
([1, 2], 2, pa.array([[1, 2], [1, 2]])), | |
( | |
pa.scalar([-1, 3], type=pa.large_list(pa.int8())), | |
5, | |
pa.array([[-1, 3]] * 5, type=pa.large_list(pa.int8())) | |
), | |
({'a': 1, 'b': 2}, 3, pa.array([{'a': 1, 'b': 2}] * 3)) | |
] | |
for value, size, expected in cases: | |
arr = pa.repeat(value, size) | |
assert len(arr) == size | |
assert arr.type.equals(expected.type) | |
assert arr.equals(expected) | |
if expected.type == pa.null(): | |
assert arr.null_count == size | |
else: | |
assert arr.null_count == 0 | |
def test_array_from_dictionary_scalar(): | |
dictionary = ['foo', 'bar', 'baz'] | |
arr = pa.DictionaryArray.from_arrays([2, 1, 2, 0], dictionary=dictionary) | |
result = pa.repeat(arr[0], 5) | |
expected = pa.DictionaryArray.from_arrays([2] * 5, dictionary=dictionary) | |
assert result.equals(expected) | |
result = pa.repeat(arr[3], 5) | |
expected = pa.DictionaryArray.from_arrays([0] * 5, dictionary=dictionary) | |
assert result.equals(expected) | |
def test_array_getitem(): | |
arr = pa.array(range(10, 15)) | |
lst = arr.to_pylist() | |
for idx in range(-len(arr), len(arr)): | |
assert arr[idx].as_py() == lst[idx] | |
for idx in range(-2 * len(arr), -len(arr)): | |
with pytest.raises(IndexError): | |
arr[idx] | |
for idx in range(len(arr), 2 * len(arr)): | |
with pytest.raises(IndexError): | |
arr[idx] | |
# check that numpy scalars are supported | |
for idx in range(-len(arr), len(arr)): | |
assert arr[np.int32(idx)].as_py() == lst[idx] | |
def test_array_slice(): | |
arr = pa.array(range(10)) | |
sliced = arr.slice(2) | |
expected = pa.array(range(2, 10)) | |
assert sliced.equals(expected) | |
sliced2 = arr.slice(2, 4) | |
expected2 = pa.array(range(2, 6)) | |
assert sliced2.equals(expected2) | |
# 0 offset | |
assert arr.slice(0).equals(arr) | |
# Slice past end of array | |
assert len(arr.slice(len(arr))) == 0 | |
assert len(arr.slice(len(arr) + 2)) == 0 | |
assert len(arr.slice(len(arr) + 2, 100)) == 0 | |
with pytest.raises(IndexError): | |
arr.slice(-1) | |
with pytest.raises(ValueError): | |
arr.slice(2, -1) | |
# Test slice notation | |
assert arr[2:].equals(arr.slice(2)) | |
assert arr[2:5].equals(arr.slice(2, 3)) | |
assert arr[-5:].equals(arr.slice(len(arr) - 5)) | |
n = len(arr) | |
for start in range(-n * 2, n * 2): | |
for stop in range(-n * 2, n * 2): | |
res = arr[start:stop] | |
res.validate() | |
expected = arr.to_pylist()[start:stop] | |
assert res.to_pylist() == expected | |
assert res.to_numpy().tolist() == expected | |
def test_array_slice_negative_step(): | |
# ARROW-2714 | |
np_arr = np.arange(20) | |
arr = pa.array(np_arr) | |
chunked_arr = pa.chunked_array([arr]) | |
cases = [ | |
slice(None, None, -1), | |
slice(None, 6, -2), | |
slice(10, 6, -2), | |
slice(8, None, -2), | |
slice(2, 10, -2), | |
slice(10, 2, -2), | |
slice(None, None, 2), | |
slice(0, 10, 2), | |
slice(15, -25, -1), # GH-38768 | |
slice(-22, -22, -1), # GH-40642 | |
] | |
for case in cases: | |
result = arr[case] | |
expected = pa.array(np_arr[case]) | |
assert result.equals(expected) | |
result = pa.record_batch([arr], names=['f0'])[case] | |
expected = pa.record_batch([expected], names=['f0']) | |
assert result.equals(expected) | |
result = chunked_arr[case] | |
expected = pa.chunked_array([np_arr[case]]) | |
assert result.equals(expected) | |
def test_array_diff(): | |
# ARROW-6252 | |
arr1 = pa.array(['foo'], type=pa.utf8()) | |
arr2 = pa.array(['foo', 'bar', None], type=pa.utf8()) | |
arr3 = pa.array([1, 2, 3]) | |
arr4 = pa.array([[], [1], None], type=pa.list_(pa.int64())) | |
assert arr1.diff(arr1) == '' | |
assert arr1.diff(arr2) == ''' | |
@@ -1, +1 @@ | |
+"bar" | |
+null | |
''' | |
assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64' | |
assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64' | |
assert arr1.diff(arr4).strip() == ('# Array types differed: string vs ' | |
'list<item: int64>') | |
def test_array_iter(): | |
arr = pa.array(range(10)) | |
for i, j in zip(range(10), arr): | |
assert i == j.as_py() | |
assert isinstance(arr, Iterable) | |
def test_struct_array_slice(): | |
# ARROW-2311: slicing nested arrays needs special care | |
ty = pa.struct([pa.field('a', pa.int8()), | |
pa.field('b', pa.float32())]) | |
arr = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) | |
assert arr[1:].to_pylist() == [{'a': 3, 'b': 4.5}, | |
{'a': 5, 'b': 6.5}] | |
def test_array_factory_invalid_type(): | |
class MyObject: | |
pass | |
arr = np.array([MyObject()]) | |
with pytest.raises(ValueError): | |
pa.array(arr) | |
def test_array_ref_to_ndarray_base(): | |
arr = np.array([1, 2, 3]) | |
refcount = sys.getrefcount(arr) | |
arr2 = pa.array(arr) # noqa | |
assert sys.getrefcount(arr) == (refcount + 1) | |
def test_array_eq(): | |
# ARROW-2150 / ARROW-9445: we define the __eq__ behavior to be | |
# data equality (not element-wise equality) | |
arr1 = pa.array([1, 2, 3], type=pa.int32()) | |
arr2 = pa.array([1, 2, 3], type=pa.int32()) | |
arr3 = pa.array([1, 2, 3], type=pa.int64()) | |
assert (arr1 == arr2) is True | |
assert (arr1 != arr2) is False | |
assert (arr1 == arr3) is False | |
assert (arr1 != arr3) is True | |
assert (arr1 == 1) is False | |
assert (arr1 == None) is False # noqa: E711 | |
def test_array_from_buffers(): | |
values_buf = pa.py_buffer(np.int16([4, 5, 6, 7])) | |
nulls_buf = pa.py_buffer(np.uint8([0b00001101])) | |
arr = pa.Array.from_buffers(pa.int16(), 4, [nulls_buf, values_buf]) | |
assert arr.type == pa.int16() | |
assert arr.to_pylist() == [4, None, 6, 7] | |
arr = pa.Array.from_buffers(pa.int16(), 4, [None, values_buf]) | |
assert arr.type == pa.int16() | |
assert arr.to_pylist() == [4, 5, 6, 7] | |
arr = pa.Array.from_buffers(pa.int16(), 3, [nulls_buf, values_buf], | |
offset=1) | |
assert arr.type == pa.int16() | |
assert arr.to_pylist() == [None, 6, 7] | |
with pytest.raises(TypeError): | |
pa.Array.from_buffers(pa.int16(), 3, ['', ''], offset=1) | |
def test_string_binary_from_buffers(): | |
array = pa.array(["a", None, "b", "c"]) | |
buffers = array.buffers() | |
copied = pa.StringArray.from_buffers( | |
len(array), buffers[1], buffers[2], buffers[0], array.null_count, | |
array.offset) | |
assert copied.to_pylist() == ["a", None, "b", "c"] | |
binary_copy = pa.Array.from_buffers(pa.binary(), len(array), | |
array.buffers(), array.null_count, | |
array.offset) | |
assert binary_copy.to_pylist() == [b"a", None, b"b", b"c"] | |
copied = pa.StringArray.from_buffers( | |
len(array), buffers[1], buffers[2], buffers[0]) | |
assert copied.to_pylist() == ["a", None, "b", "c"] | |
sliced = array[1:] | |
buffers = sliced.buffers() | |
copied = pa.StringArray.from_buffers( | |
len(sliced), buffers[1], buffers[2], buffers[0], -1, sliced.offset) | |
assert copied.to_pylist() == [None, "b", "c"] | |
assert copied.null_count == 1 | |
# Slice but exclude all null entries so that we don't need to pass | |
# the null bitmap. | |
sliced = array[2:] | |
buffers = sliced.buffers() | |
copied = pa.StringArray.from_buffers( | |
len(sliced), buffers[1], buffers[2], None, -1, sliced.offset) | |
assert copied.to_pylist() == ["b", "c"] | |
assert copied.null_count == 0 | |
def test_list_from_buffers(list_type_factory): | |
ty = list_type_factory(pa.int16()) | |
array = pa.array([[0, 1, 2], None, [], [3, 4, 5]], type=ty) | |
assert array.type == ty | |
buffers = array.buffers() | |
with pytest.raises(ValueError): | |
# No children | |
pa.Array.from_buffers(ty, 4, buffers[:ty.num_buffers]) | |
child = pa.Array.from_buffers(pa.int16(), 6, buffers[ty.num_buffers:]) | |
copied = pa.Array.from_buffers(ty, 4, buffers[:ty.num_buffers], children=[child]) | |
assert copied.equals(array) | |
with pytest.raises(ValueError): | |
# too many children | |
pa.Array.from_buffers(ty, 4, buffers[:ty.num_buffers], | |
children=[child, child]) | |
def test_struct_from_buffers(): | |
ty = pa.struct([pa.field('a', pa.int16()), pa.field('b', pa.utf8())]) | |
array = pa.array([{'a': 0, 'b': 'foo'}, None, {'a': 5, 'b': ''}], | |
type=ty) | |
buffers = array.buffers() | |
with pytest.raises(ValueError): | |
# No children | |
pa.Array.from_buffers(ty, 3, [None, buffers[1]]) | |
children = [pa.Array.from_buffers(pa.int16(), 3, buffers[1:3]), | |
pa.Array.from_buffers(pa.utf8(), 3, buffers[3:])] | |
copied = pa.Array.from_buffers(ty, 3, buffers[:1], children=children) | |
assert copied.equals(array) | |
with pytest.raises(ValueError): | |
# not enough many children | |
pa.Array.from_buffers(ty, 3, [buffers[0]], | |
children=children[:1]) | |
def test_struct_from_arrays(): | |
a = pa.array([4, 5, 6], type=pa.int64()) | |
b = pa.array(["bar", None, ""]) | |
c = pa.array([[1, 2], None, [3, None]]) | |
expected_list = [ | |
{'a': 4, 'b': 'bar', 'c': [1, 2]}, | |
{'a': 5, 'b': None, 'c': None}, | |
{'a': 6, 'b': '', 'c': [3, None]}, | |
] | |
# From field names | |
arr = pa.StructArray.from_arrays([a, b, c], ["a", "b", "c"]) | |
assert arr.type == pa.struct( | |
[("a", a.type), ("b", b.type), ("c", c.type)]) | |
assert arr.to_pylist() == expected_list | |
with pytest.raises(ValueError): | |
pa.StructArray.from_arrays([a, b, c], ["a", "b"]) | |
arr = pa.StructArray.from_arrays([], []) | |
assert arr.type == pa.struct([]) | |
assert arr.to_pylist() == [] | |
# From fields | |
fa = pa.field("a", a.type, nullable=False) | |
fb = pa.field("b", b.type) | |
fc = pa.field("c", c.type) | |
arr = pa.StructArray.from_arrays([a, b, c], fields=[fa, fb, fc]) | |
assert arr.type == pa.struct([fa, fb, fc]) | |
assert not arr.type[0].nullable | |
assert arr.to_pylist() == expected_list | |
with pytest.raises(ValueError): | |
pa.StructArray.from_arrays([a, b, c], fields=[fa, fb]) | |
arr = pa.StructArray.from_arrays([], fields=[]) | |
assert arr.type == pa.struct([]) | |
assert arr.to_pylist() == [] | |
# Inconsistent fields | |
fa2 = pa.field("a", pa.int32()) | |
with pytest.raises(ValueError, match="int64 vs int32"): | |
pa.StructArray.from_arrays([a, b, c], fields=[fa2, fb, fc]) | |
arrays = [a, b, c] | |
fields = [fa, fb, fc] | |
# With mask | |
mask = pa.array([True, False, False]) | |
arr = pa.StructArray.from_arrays(arrays, fields=fields, mask=mask) | |
assert arr.to_pylist() == [None] + expected_list[1:] | |
arr = pa.StructArray.from_arrays(arrays, names=['a', 'b', 'c'], mask=mask) | |
assert arr.to_pylist() == [None] + expected_list[1:] | |
# Bad masks | |
with pytest.raises(TypeError, match='Mask must be'): | |
pa.StructArray.from_arrays(arrays, fields, mask=[True, False, False]) | |
with pytest.raises(ValueError, match='not contain nulls'): | |
pa.StructArray.from_arrays( | |
arrays, fields, mask=pa.array([True, False, None])) | |
with pytest.raises(TypeError, match='Mask must be'): | |
pa.StructArray.from_arrays( | |
arrays, fields, mask=pa.chunked_array([mask])) | |
# Non-empty array with no fields https://github.com/apache/arrow/issues/15109 | |
arr = pa.StructArray.from_arrays([], [], mask=mask) | |
assert arr.is_null() == mask | |
assert arr.to_pylist() == [None, {}, {}] | |
def test_struct_array_from_chunked(): | |
# ARROW-11780 | |
# Check that we don't segfault when trying to build | |
# a StructArray from a chunked array. | |
chunked_arr = pa.chunked_array([[1, 2, 3], [4, 5, 6]]) | |
with pytest.raises(TypeError, match="Expected Array"): | |
pa.StructArray.from_arrays([chunked_arr], ["foo"]) | |
def test_dictionary_from_buffers(offset): | |
a = pa.array(["one", "two", "three", "two", "one"]).dictionary_encode() | |
b = pa.DictionaryArray.from_buffers(a.type, len(a)-offset, | |
a.indices.buffers(), a.dictionary, | |
offset=offset) | |
assert a[offset:] == b | |
def test_dictionary_from_numpy(): | |
indices = np.repeat([0, 1, 2], 2) | |
dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) | |
mask = np.array([False, False, True, False, False, False]) | |
d1 = pa.DictionaryArray.from_arrays(indices, dictionary) | |
d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) | |
assert d1.indices.to_pylist() == indices.tolist() | |
assert d1.indices.to_pylist() == indices.tolist() | |
assert d1.dictionary.to_pylist() == dictionary.tolist() | |
assert d2.dictionary.to_pylist() == dictionary.tolist() | |
for i in range(len(indices)): | |
assert d1[i].as_py() == dictionary[indices[i]] | |
if mask[i]: | |
assert d2[i].as_py() is None | |
else: | |
assert d2[i].as_py() == dictionary[indices[i]] | |
def test_dictionary_to_numpy(): | |
expected = pa.array( | |
["foo", "bar", None, "foo"] | |
).to_numpy(zero_copy_only=False) | |
a = pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, None, 0]), | |
pa.array(['foo', 'bar']) | |
) | |
np.testing.assert_array_equal(a.to_numpy(zero_copy_only=False), | |
expected) | |
with pytest.raises(pa.ArrowInvalid): | |
# If this would be changed to no longer raise in the future, | |
# ensure to test the actual result because, currently, to_numpy takes | |
# for granted that when zero_copy_only=True there will be no nulls | |
# (it's the decoding of the DictionaryArray that handles the nulls and | |
# this is only activated with zero_copy_only=False) | |
a.to_numpy(zero_copy_only=True) | |
anonulls = pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 1, 0]), | |
pa.array(['foo', 'bar']) | |
) | |
expected = pa.array( | |
["foo", "bar", "bar", "foo"] | |
).to_numpy(zero_copy_only=False) | |
np.testing.assert_array_equal(anonulls.to_numpy(zero_copy_only=False), | |
expected) | |
with pytest.raises(pa.ArrowInvalid): | |
anonulls.to_numpy(zero_copy_only=True) | |
afloat = pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 1, 0]), | |
pa.array([13.7, 11.0]) | |
) | |
expected = pa.array([13.7, 11.0, 11.0, 13.7]).to_numpy() | |
np.testing.assert_array_equal(afloat.to_numpy(zero_copy_only=True), | |
expected) | |
np.testing.assert_array_equal(afloat.to_numpy(zero_copy_only=False), | |
expected) | |
afloat2 = pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, None, 0]), | |
pa.array([13.7, 11.0]) | |
) | |
expected = pa.array( | |
[13.7, 11.0, None, 13.7] | |
).to_numpy(zero_copy_only=False) | |
np.testing.assert_allclose( | |
afloat2.to_numpy(zero_copy_only=False), | |
expected, | |
equal_nan=True | |
) | |
# Testing for integers can reveal problems related to dealing | |
# with None values, as a numpy array of int dtype | |
# can't contain NaN nor None. | |
aints = pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, None, 0]), | |
pa.array([7, 11]) | |
) | |
expected = pa.array([7, 11, None, 7]).to_numpy(zero_copy_only=False) | |
np.testing.assert_allclose( | |
aints.to_numpy(zero_copy_only=False), | |
expected, | |
equal_nan=True | |
) | |
def test_dictionary_from_boxed_arrays(): | |
indices = np.repeat([0, 1, 2], 2) | |
dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) | |
iarr = pa.array(indices) | |
darr = pa.array(dictionary) | |
d1 = pa.DictionaryArray.from_arrays(iarr, darr) | |
assert d1.indices.to_pylist() == indices.tolist() | |
assert d1.dictionary.to_pylist() == dictionary.tolist() | |
for i in range(len(indices)): | |
assert d1[i].as_py() == dictionary[indices[i]] | |
def test_dictionary_from_arrays_boundscheck(): | |
indices1 = pa.array([0, 1, 2, 0, 1, 2]) | |
indices2 = pa.array([0, -1, 2]) | |
indices3 = pa.array([0, 1, 2, 3]) | |
dictionary = pa.array(['foo', 'bar', 'baz']) | |
# Works fine | |
pa.DictionaryArray.from_arrays(indices1, dictionary) | |
with pytest.raises(pa.ArrowException): | |
pa.DictionaryArray.from_arrays(indices2, dictionary) | |
with pytest.raises(pa.ArrowException): | |
pa.DictionaryArray.from_arrays(indices3, dictionary) | |
# If we are confident that the indices are "safe" we can pass safe=False to | |
# disable the boundschecking | |
pa.DictionaryArray.from_arrays(indices2, dictionary, safe=False) | |
def test_dictionary_indices(): | |
# https://issues.apache.org/jira/browse/ARROW-6882 | |
indices = pa.array([0, 1, 2, 0, 1, 2]) | |
dictionary = pa.array(['foo', 'bar', 'baz']) | |
arr = pa.DictionaryArray.from_arrays(indices, dictionary) | |
arr.indices.validate(full=True) | |
def test_list_from_arrays(list_array_type, list_type_factory): | |
offsets_arr = np.array([0, 2, 5, 8], dtype='i4') | |
offsets = pa.array(offsets_arr, type='int32') | |
pyvalues = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h'] | |
values = pa.array(pyvalues, type='binary') | |
result = list_array_type.from_arrays(offsets, values) | |
expected = pa.array([pyvalues[:2], pyvalues[2:5], pyvalues[5:8]], | |
type=list_type_factory(pa.binary())) | |
assert result.equals(expected) | |
# With specified type | |
typ = list_type_factory(pa.field("name", pa.binary())) | |
result = list_array_type.from_arrays(offsets, values, typ) | |
assert result.type == typ | |
assert result.type.value_field.name == "name" | |
# With nulls | |
offsets = [0, None, 2, 6] | |
values = [b'a', b'b', b'c', b'd', b'e', b'f'] | |
result = list_array_type.from_arrays(offsets, values) | |
expected = pa.array([values[:2], None, values[2:]], | |
type=list_type_factory(pa.binary())) | |
assert result.equals(expected) | |
# Another edge case | |
offsets2 = [0, 2, None, 6] | |
result = list_array_type.from_arrays(offsets2, values) | |
expected = pa.array([values[:2], values[2:], None], | |
type=list_type_factory(pa.binary())) | |
assert result.equals(expected) | |
# raise on invalid array | |
offsets = [1, 3, 10] | |
values = np.arange(5) | |
with pytest.raises(ValueError): | |
list_array_type.from_arrays(offsets, values) | |
# Non-monotonic offsets | |
offsets = [0, 3, 2, 6] | |
values = list(range(6)) | |
result = list_array_type.from_arrays(offsets, values) | |
with pytest.raises(ValueError): | |
result.validate(full=True) | |
# mismatching type | |
typ = list_type_factory(pa.binary()) | |
with pytest.raises(TypeError): | |
list_array_type.from_arrays(offsets, values, type=typ) | |
def test_list_array_types_from_arrays( | |
list_array_type, list_type_factory, arr | |
): | |
arr = pa.array(arr, list_type_factory(pa.int8())) | |
reconstructed_arr = list_array_type.from_arrays( | |
arr.offsets, arr.values, mask=arr.is_null()) | |
assert arr == reconstructed_arr | |
def test_list_array_types_from_arrays_fail(list_array_type, list_type_factory): | |
# Fail when manual offsets include nulls and mask passed | |
# ListArray.offsets doesn't report nulls. | |
# This test case arr.offsets == [0, 1, 1, 3, 4] | |
arr = pa.array([[0], None, [0, None], [0]], list_type_factory(pa.int8())) | |
offsets = pa.array([0, None, 1, 3, 4]) | |
# Using array's offset has no nulls; gives empty lists on top level | |
reconstructed_arr = list_array_type.from_arrays(arr.offsets, arr.values) | |
assert reconstructed_arr.to_pylist() == [[0], [], [0, None], [0]] | |
# Manually specifying offsets (with nulls) is same as mask at top level | |
reconstructed_arr = list_array_type.from_arrays(offsets, arr.values) | |
assert arr == reconstructed_arr | |
reconstructed_arr = list_array_type.from_arrays(arr.offsets, | |
arr.values, | |
mask=arr.is_null()) | |
assert arr == reconstructed_arr | |
# But using both is ambiguous, in this case `offsets` has nulls | |
with pytest.raises(ValueError, match="Ambiguous to specify both "): | |
list_array_type.from_arrays(offsets, arr.values, mask=arr.is_null()) | |
# Not supported to reconstruct from a slice. | |
arr_slice = arr[1:] | |
msg = "Null bitmap with offsets slice not supported." | |
with pytest.raises(NotImplementedError, match=msg): | |
list_array_type.from_arrays( | |
arr_slice.offsets, arr_slice.values, mask=arr_slice.is_null()) | |
def test_map_labelled(): | |
# ARROW-13735 | |
t = pa.map_(pa.field("name", "string", nullable=False), "int64") | |
arr = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], type=t) | |
assert arr.type.key_field == pa.field("name", pa.utf8(), nullable=False) | |
assert arr.type.item_field == pa.field("value", pa.int64()) | |
assert len(arr) == 2 | |
def test_map_from_dict(): | |
# ARROW-17832 | |
tup_arr = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], | |
pa.map_(pa.string(), pa.int64())) | |
dict_arr = pa.array([{'a': 1, 'b': 2}, {'c': 3}], | |
pa.map_(pa.string(), pa.int64())) | |
assert tup_arr.equals(dict_arr) | |
def test_map_from_arrays(): | |
offsets_arr = np.array([0, 2, 5, 8], dtype='i4') | |
offsets = pa.array(offsets_arr, type='int32') | |
pykeys = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h'] | |
pyitems = list(range(len(pykeys))) | |
pypairs = list(zip(pykeys, pyitems)) | |
pyentries = [pypairs[:2], pypairs[2:5], pypairs[5:8]] | |
keys = pa.array(pykeys, type='binary') | |
items = pa.array(pyitems, type='i4') | |
result = pa.MapArray.from_arrays(offsets, keys, items) | |
expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32())) | |
assert result.equals(expected) | |
# With nulls | |
offsets = [0, None, 2, 6] | |
pykeys = [b'a', b'b', b'c', b'd', b'e', b'f'] | |
pyitems = [1, 2, 3, None, 4, 5] | |
pypairs = list(zip(pykeys, pyitems)) | |
pyentries = [pypairs[:2], None, pypairs[2:]] | |
keys = pa.array(pykeys, type='binary') | |
items = pa.array(pyitems, type='i4') | |
result = pa.MapArray.from_arrays(offsets, keys, items) | |
expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32())) | |
assert result.equals(expected) | |
# pass in the type explicitly | |
result = pa.MapArray.from_arrays(offsets, keys, items, pa.map_( | |
keys.type, | |
items.type | |
)) | |
assert result.equals(expected) | |
# pass in invalid types | |
with pytest.raises(pa.ArrowTypeError, match='Expected map type, got string'): | |
pa.MapArray.from_arrays(offsets, keys, items, pa.string()) | |
with pytest.raises(pa.ArrowTypeError, match='Mismatching map items type'): | |
pa.MapArray.from_arrays(offsets, keys, items, pa.map_( | |
keys.type, | |
# Larger than the original i4 | |
pa.int64() | |
)) | |
# check invalid usage | |
offsets = [0, 1, 3, 5] | |
keys = np.arange(5) | |
items = np.arange(5) | |
_ = pa.MapArray.from_arrays(offsets, keys, items) | |
# raise on invalid offsets | |
with pytest.raises(ValueError): | |
pa.MapArray.from_arrays(offsets + [6], keys, items) | |
# raise on length of keys != items | |
with pytest.raises(ValueError): | |
pa.MapArray.from_arrays(offsets, keys, np.concatenate([items, items])) | |
# raise on keys with null | |
keys_with_null = list(keys)[:-1] + [None] | |
assert len(keys_with_null) == len(items) | |
with pytest.raises(ValueError): | |
pa.MapArray.from_arrays(offsets, keys_with_null, items) | |
def test_fixed_size_list_from_arrays(): | |
values = pa.array(range(12), pa.int64()) | |
result = pa.FixedSizeListArray.from_arrays(values, 4) | |
assert result.to_pylist() == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] | |
assert result.type.equals(pa.list_(pa.int64(), 4)) | |
typ = pa.list_(pa.field("name", pa.int64()), 4) | |
result = pa.FixedSizeListArray.from_arrays(values, type=typ) | |
assert result.to_pylist() == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] | |
assert result.type.equals(typ) | |
assert result.type.value_field.name == "name" | |
result = pa.FixedSizeListArray.from_arrays(values, | |
type=typ, | |
mask=pa.array([False, True, False])) | |
assert result.to_pylist() == [[0, 1, 2, 3], None, [8, 9, 10, 11]] | |
result = pa.FixedSizeListArray.from_arrays(values, | |
list_size=4, | |
mask=pa.array([False, True, False])) | |
assert result.to_pylist() == [[0, 1, 2, 3], None, [8, 9, 10, 11]] | |
# raise on invalid values / list_size | |
with pytest.raises(ValueError): | |
pa.FixedSizeListArray.from_arrays(values, -4) | |
with pytest.raises(ValueError): | |
# array with list size 0 cannot be constructed with from_arrays | |
pa.FixedSizeListArray.from_arrays(pa.array([], pa.int64()), 0) | |
with pytest.raises(ValueError): | |
# length of values not multiple of 5 | |
pa.FixedSizeListArray.from_arrays(values, 5) | |
typ = pa.list_(pa.int64(), 5) | |
with pytest.raises(ValueError): | |
pa.FixedSizeListArray.from_arrays(values, type=typ) | |
# raise on mismatching values type | |
typ = pa.list_(pa.float64(), 4) | |
with pytest.raises(TypeError): | |
pa.FixedSizeListArray.from_arrays(values, type=typ) | |
# raise on specifying none or both of list_size / type | |
with pytest.raises(ValueError): | |
pa.FixedSizeListArray.from_arrays(values) | |
typ = pa.list_(pa.int64(), 4) | |
with pytest.raises(ValueError): | |
pa.FixedSizeListArray.from_arrays(values, list_size=4, type=typ) | |
def test_variable_list_from_arrays(): | |
values = pa.array([1, 2, 3, 4], pa.int64()) | |
offsets = pa.array([0, 2, 4]) | |
result = pa.ListArray.from_arrays(offsets, values) | |
assert result.to_pylist() == [[1, 2], [3, 4]] | |
assert result.type.equals(pa.list_(pa.int64())) | |
offsets = pa.array([0, None, 2, 4]) | |
result = pa.ListArray.from_arrays(offsets, values) | |
assert result.to_pylist() == [[1, 2], None, [3, 4]] | |
# raise if offset out of bounds | |
with pytest.raises(ValueError): | |
pa.ListArray.from_arrays(pa.array([-1, 2, 4]), values) | |
with pytest.raises(ValueError): | |
pa.ListArray.from_arrays(pa.array([0, 2, 5]), values) | |
def test_union_from_dense(): | |
binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') | |
int64 = pa.array([1, 2, 3], type='int64') | |
types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') | |
logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8') | |
value_offsets = pa.array([0, 0, 1, 2, 1, 2, 3], type='int32') | |
py_value = [b'a', 1, b'b', b'c', 2, 3, b'd'] | |
def check_result(result, expected_field_names, expected_type_codes, | |
expected_type_code_values): | |
result.validate(full=True) | |
actual_field_names = [result.type[i].name | |
for i in range(result.type.num_fields)] | |
assert actual_field_names == expected_field_names | |
assert result.type.mode == "dense" | |
assert result.type.type_codes == expected_type_codes | |
assert result.to_pylist() == py_value | |
assert expected_type_code_values.equals(result.type_codes) | |
assert value_offsets.equals(result.offsets) | |
assert result.field(0).equals(binary) | |
assert result.field(1).equals(int64) | |
with pytest.raises(KeyError): | |
result.field(-1) | |
with pytest.raises(KeyError): | |
result.field(2) | |
# without field names and type codes | |
check_result(pa.UnionArray.from_dense(types, value_offsets, | |
[binary, int64]), | |
expected_field_names=['0', '1'], | |
expected_type_codes=[0, 1], | |
expected_type_code_values=types) | |
# with field names | |
check_result(pa.UnionArray.from_dense(types, value_offsets, | |
[binary, int64], | |
['bin', 'int']), | |
expected_field_names=['bin', 'int'], | |
expected_type_codes=[0, 1], | |
expected_type_code_values=types) | |
# with type codes | |
check_result(pa.UnionArray.from_dense(logical_types, value_offsets, | |
[binary, int64], | |
type_codes=[11, 13]), | |
expected_field_names=['0', '1'], | |
expected_type_codes=[11, 13], | |
expected_type_code_values=logical_types) | |
# with field names and type codes | |
check_result(pa.UnionArray.from_dense(logical_types, value_offsets, | |
[binary, int64], | |
['bin', 'int'], [11, 13]), | |
expected_field_names=['bin', 'int'], | |
expected_type_codes=[11, 13], | |
expected_type_code_values=logical_types) | |
# Bad type ids | |
arr = pa.UnionArray.from_dense(logical_types, value_offsets, | |
[binary, int64]) | |
with pytest.raises(pa.ArrowInvalid): | |
arr.validate(full=True) | |
arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64], | |
type_codes=[11, 13]) | |
with pytest.raises(pa.ArrowInvalid): | |
arr.validate(full=True) | |
# Offset larger than child size | |
bad_offsets = pa.array([0, 0, 1, 2, 1, 2, 4], type='int32') | |
arr = pa.UnionArray.from_dense(types, bad_offsets, [binary, int64]) | |
with pytest.raises(pa.ArrowInvalid): | |
arr.validate(full=True) | |
def test_union_from_sparse(): | |
binary = pa.array([b'a', b' ', b'b', b'c', b' ', b' ', b'd'], | |
type='binary') | |
int64 = pa.array([0, 1, 0, 0, 2, 3, 0], type='int64') | |
types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') | |
logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8') | |
py_value = [b'a', 1, b'b', b'c', 2, 3, b'd'] | |
def check_result(result, expected_field_names, expected_type_codes, | |
expected_type_code_values): | |
result.validate(full=True) | |
assert result.to_pylist() == py_value | |
actual_field_names = [result.type[i].name | |
for i in range(result.type.num_fields)] | |
assert actual_field_names == expected_field_names | |
assert result.type.mode == "sparse" | |
assert result.type.type_codes == expected_type_codes | |
assert expected_type_code_values.equals(result.type_codes) | |
assert result.field(0).equals(binary) | |
assert result.field(1).equals(int64) | |
with pytest.raises(pa.ArrowTypeError): | |
result.offsets | |
with pytest.raises(KeyError): | |
result.field(-1) | |
with pytest.raises(KeyError): | |
result.field(2) | |
# without field names and type codes | |
check_result(pa.UnionArray.from_sparse(types, [binary, int64]), | |
expected_field_names=['0', '1'], | |
expected_type_codes=[0, 1], | |
expected_type_code_values=types) | |
# with field names | |
check_result(pa.UnionArray.from_sparse(types, [binary, int64], | |
['bin', 'int']), | |
expected_field_names=['bin', 'int'], | |
expected_type_codes=[0, 1], | |
expected_type_code_values=types) | |
# with type codes | |
check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64], | |
type_codes=[11, 13]), | |
expected_field_names=['0', '1'], | |
expected_type_codes=[11, 13], | |
expected_type_code_values=logical_types) | |
# with field names and type codes | |
check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64], | |
['bin', 'int'], | |
[11, 13]), | |
expected_field_names=['bin', 'int'], | |
expected_type_codes=[11, 13], | |
expected_type_code_values=logical_types) | |
# Bad type ids | |
arr = pa.UnionArray.from_sparse(logical_types, [binary, int64]) | |
with pytest.raises(pa.ArrowInvalid): | |
arr.validate(full=True) | |
arr = pa.UnionArray.from_sparse(types, [binary, int64], | |
type_codes=[11, 13]) | |
with pytest.raises(pa.ArrowInvalid): | |
arr.validate(full=True) | |
# Invalid child length | |
with pytest.raises(pa.ArrowInvalid): | |
arr = pa.UnionArray.from_sparse(logical_types, [binary, int64[1:]]) | |
def test_union_array_to_pylist_with_nulls(): | |
# ARROW-9556 | |
arr = pa.UnionArray.from_sparse( | |
pa.array([0, 1, 0, 0, 1], type=pa.int8()), | |
[ | |
pa.array([0.0, 1.1, None, 3.3, 4.4]), | |
pa.array([True, None, False, True, False]), | |
] | |
) | |
assert arr.to_pylist() == [0.0, None, None, 3.3, False] | |
arr = pa.UnionArray.from_dense( | |
pa.array([0, 1, 0, 0, 0, 1, 1], type=pa.int8()), | |
pa.array([0, 0, 1, 2, 3, 1, 2], type=pa.int32()), | |
[ | |
pa.array([0.0, 1.1, None, 3.3]), | |
pa.array([True, None, False]) | |
] | |
) | |
assert arr.to_pylist() == [0.0, True, 1.1, None, 3.3, None, False] | |
def test_union_array_slice(): | |
# ARROW-2314 | |
arr = pa.UnionArray.from_sparse(pa.array([0, 0, 1, 1], type=pa.int8()), | |
[pa.array(["a", "b", "c", "d"]), | |
pa.array([1, 2, 3, 4])]) | |
assert arr[1:].to_pylist() == ["b", 3, 4] | |
binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') | |
int64 = pa.array([1, 2, 3], type='int64') | |
types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') | |
value_offsets = pa.array([0, 0, 2, 1, 1, 2, 3], type='int32') | |
arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64]) | |
lst = arr.to_pylist() | |
for i in range(len(arr)): | |
for j in range(i, len(arr)): | |
assert arr[i:j].to_pylist() == lst[i:j] | |
def _check_cast_case(case, *, safe=True, check_array_construction=True): | |
in_data, in_type, out_data, out_type = case | |
if isinstance(out_data, pa.Array): | |
assert out_data.type == out_type | |
expected = out_data | |
else: | |
expected = pa.array(out_data, type=out_type) | |
# check casting an already created array | |
if isinstance(in_data, pa.Array): | |
assert in_data.type == in_type | |
in_arr = in_data | |
else: | |
in_arr = pa.array(in_data, type=in_type) | |
casted = in_arr.cast(out_type, safe=safe) | |
casted.validate(full=True) | |
assert casted.equals(expected) | |
# constructing an array with out type which optionally involves casting | |
# for more see ARROW-1949 | |
if check_array_construction: | |
in_arr = pa.array(in_data, type=out_type, safe=safe) | |
assert in_arr.equals(expected) | |
def test_cast_integers_safe(): | |
safe_cases = [ | |
(np.array([0, 1, 2, 3], dtype='i1'), 'int8', | |
np.array([0, 1, 2, 3], dtype='i4'), pa.int32()), | |
(np.array([0, 1, 2, 3], dtype='i1'), 'int8', | |
np.array([0, 1, 2, 3], dtype='u4'), pa.uint16()), | |
(np.array([0, 1, 2, 3], dtype='i1'), 'int8', | |
np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), | |
(np.array([0, 1, 2, 3], dtype='i1'), 'int8', | |
np.array([0, 1, 2, 3], dtype='f8'), pa.float64()) | |
] | |
for case in safe_cases: | |
_check_cast_case(case) | |
unsafe_cases = [ | |
(np.array([50000], dtype='i4'), 'int32', 'int16'), | |
(np.array([70000], dtype='i4'), 'int32', 'uint16'), | |
(np.array([-1], dtype='i4'), 'int32', 'uint16'), | |
(np.array([50000], dtype='u2'), 'uint16', 'int16') | |
] | |
for in_data, in_type, out_type in unsafe_cases: | |
in_arr = pa.array(in_data, type=in_type) | |
with pytest.raises(pa.ArrowInvalid): | |
in_arr.cast(out_type) | |
def test_cast_none(): | |
# ARROW-3735: Ensure that calling cast(None) doesn't segfault. | |
arr = pa.array([1, 2, 3]) | |
with pytest.raises(TypeError): | |
arr.cast(None) | |
def test_cast_list_to_primitive(): | |
# ARROW-8070: cast segfaults on unsupported cast from list<binary> to utf8 | |
arr = pa.array([[1, 2], [3, 4]]) | |
with pytest.raises(NotImplementedError): | |
arr.cast(pa.int8()) | |
arr = pa.array([[b"a", b"b"], [b"c"]], pa.list_(pa.binary())) | |
with pytest.raises(NotImplementedError): | |
arr.cast(pa.binary()) | |
def test_slice_chunked_array_zero_chunks(): | |
# ARROW-8911 | |
arr = pa.chunked_array([], type='int8') | |
assert arr.num_chunks == 0 | |
result = arr[:] | |
assert result.equals(arr) | |
# Do not crash | |
arr[:5] | |
def test_cast_chunked_array(): | |
arrays = [pa.array([1, 2, 3]), pa.array([4, 5, 6])] | |
carr = pa.chunked_array(arrays) | |
target = pa.float64() | |
casted = carr.cast(target) | |
expected = pa.chunked_array([x.cast(target) for x in arrays]) | |
assert casted.equals(expected) | |
def test_cast_chunked_array_empty(): | |
# ARROW-8142 | |
for typ1, typ2 in [(pa.dictionary(pa.int8(), pa.string()), pa.string()), | |
(pa.int64(), pa.int32())]: | |
arr = pa.chunked_array([], type=typ1) | |
result = arr.cast(typ2) | |
expected = pa.chunked_array([], type=typ2) | |
assert result.equals(expected) | |
def test_chunked_array_data_warns(): | |
with pytest.warns(FutureWarning): | |
res = pa.chunked_array([[]]).data | |
assert isinstance(res, pa.ChunkedArray) | |
def test_cast_integers_unsafe(): | |
# We let NumPy do the unsafe casting. | |
# Note that NEP50 in the NumPy spec no longer allows | |
# the np.array() constructor to pass the dtype directly | |
# if it results in an unsafe cast. | |
unsafe_cases = [ | |
(np.array([50000], dtype='i4'), 'int32', | |
np.array([50000]).astype(dtype='i2'), pa.int16()), | |
(np.array([70000], dtype='i4'), 'int32', | |
np.array([70000]).astype(dtype='u2'), pa.uint16()), | |
(np.array([-1], dtype='i4'), 'int32', | |
np.array([-1]).astype(dtype='u2'), pa.uint16()), | |
(np.array([50000], dtype='u2'), pa.uint16(), | |
np.array([50000]).astype(dtype='i2'), pa.int16()) | |
] | |
for case in unsafe_cases: | |
_check_cast_case(case, safe=False) | |
def test_floating_point_truncate_safe(): | |
safe_cases = [ | |
(np.array([1.0, 2.0, 3.0], dtype='float32'), 'float32', | |
np.array([1, 2, 3], dtype='i4'), pa.int32()), | |
(np.array([1.0, 2.0, 3.0], dtype='float64'), 'float64', | |
np.array([1, 2, 3], dtype='i4'), pa.int32()), | |
(np.array([-10.0, 20.0, -30.0], dtype='float64'), 'float64', | |
np.array([-10, 20, -30], dtype='i4'), pa.int32()), | |
] | |
for case in safe_cases: | |
_check_cast_case(case, safe=True) | |
def test_floating_point_truncate_unsafe(): | |
unsafe_cases = [ | |
(np.array([1.1, 2.2, 3.3], dtype='float32'), 'float32', | |
np.array([1, 2, 3], dtype='i4'), pa.int32()), | |
(np.array([1.1, 2.2, 3.3], dtype='float64'), 'float64', | |
np.array([1, 2, 3], dtype='i4'), pa.int32()), | |
(np.array([-10.1, 20.2, -30.3], dtype='float64'), 'float64', | |
np.array([-10, 20, -30], dtype='i4'), pa.int32()), | |
] | |
for case in unsafe_cases: | |
# test safe casting raises | |
with pytest.raises(pa.ArrowInvalid, match='truncated'): | |
_check_cast_case(case, safe=True) | |
# test unsafe casting truncates | |
_check_cast_case(case, safe=False) | |
def test_decimal_to_int_safe(): | |
safe_cases = [ | |
( | |
[decimal.Decimal("123456"), None, decimal.Decimal("-912345")], | |
pa.decimal128(32, 5), | |
[123456, None, -912345], | |
pa.int32() | |
), | |
( | |
[decimal.Decimal("1234"), None, decimal.Decimal("-9123")], | |
pa.decimal128(19, 10), | |
[1234, None, -9123], | |
pa.int16() | |
), | |
( | |
[decimal.Decimal("123"), None, decimal.Decimal("-91")], | |
pa.decimal128(19, 10), | |
[123, None, -91], | |
pa.int8() | |
), | |
] | |
for case in safe_cases: | |
_check_cast_case(case) | |
_check_cast_case(case, safe=True) | |
def test_decimal_to_int_value_out_of_bounds(): | |
out_of_bounds_cases = [ | |
( | |
np.array([ | |
decimal.Decimal("1234567890123"), | |
None, | |
decimal.Decimal("-912345678901234") | |
]), | |
pa.decimal128(32, 5), | |
[1912276171, None, -135950322], | |
pa.int32() | |
), | |
( | |
[decimal.Decimal("123456"), None, decimal.Decimal("-912345678")], | |
pa.decimal128(32, 5), | |
[-7616, None, -19022], | |
pa.int16() | |
), | |
( | |
[decimal.Decimal("1234"), None, decimal.Decimal("-9123")], | |
pa.decimal128(32, 5), | |
[-46, None, 93], | |
pa.int8() | |
), | |
] | |
for case in out_of_bounds_cases: | |
# test safe casting raises | |
with pytest.raises(pa.ArrowInvalid, | |
match='Integer value out of bounds'): | |
_check_cast_case(case) | |
# XXX `safe=False` can be ignored when constructing an array | |
# from a sequence of Python objects (ARROW-8567) | |
_check_cast_case(case, safe=False, check_array_construction=False) | |
def test_decimal_to_int_non_integer(): | |
non_integer_cases = [ | |
( | |
[ | |
decimal.Decimal("123456.21"), | |
None, | |
decimal.Decimal("-912345.13") | |
], | |
pa.decimal128(32, 5), | |
[123456, None, -912345], | |
pa.int32() | |
), | |
( | |
[decimal.Decimal("1234.134"), None, decimal.Decimal("-9123.1")], | |
pa.decimal128(19, 10), | |
[1234, None, -9123], | |
pa.int16() | |
), | |
( | |
[decimal.Decimal("123.1451"), None, decimal.Decimal("-91.21")], | |
pa.decimal128(19, 10), | |
[123, None, -91], | |
pa.int8() | |
), | |
] | |
for case in non_integer_cases: | |
# test safe casting raises | |
msg_regexp = 'Rescaling Decimal128 value would cause data loss' | |
with pytest.raises(pa.ArrowInvalid, match=msg_regexp): | |
_check_cast_case(case) | |
_check_cast_case(case, safe=False) | |
def test_decimal_to_decimal(): | |
arr = pa.array( | |
[decimal.Decimal("1234.12"), None], | |
type=pa.decimal128(19, 10) | |
) | |
result = arr.cast(pa.decimal128(15, 6)) | |
expected = pa.array( | |
[decimal.Decimal("1234.12"), None], | |
type=pa.decimal128(15, 6) | |
) | |
assert result.equals(expected) | |
msg_regexp = 'Rescaling Decimal128 value would cause data loss' | |
with pytest.raises(pa.ArrowInvalid, match=msg_regexp): | |
result = arr.cast(pa.decimal128(9, 1)) | |
result = arr.cast(pa.decimal128(9, 1), safe=False) | |
expected = pa.array( | |
[decimal.Decimal("1234.1"), None], | |
type=pa.decimal128(9, 1) | |
) | |
assert result.equals(expected) | |
with pytest.raises(pa.ArrowInvalid, | |
match='Decimal value does not fit in precision'): | |
result = arr.cast(pa.decimal128(5, 2)) | |
def test_safe_cast_nan_to_int_raises(): | |
arr = pa.array([np.nan, 1.]) | |
with pytest.raises(pa.ArrowInvalid, match='truncated'): | |
arr.cast(pa.int64(), safe=True) | |
def test_cast_signed_to_unsigned(): | |
safe_cases = [ | |
(np.array([0, 1, 2, 3], dtype='i1'), pa.uint8(), | |
np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), | |
(np.array([0, 1, 2, 3], dtype='i2'), pa.uint16(), | |
np.array([0, 1, 2, 3], dtype='u2'), pa.uint16()) | |
] | |
for case in safe_cases: | |
_check_cast_case(case) | |
def test_cast_from_null(): | |
in_data = [None] * 3 | |
in_type = pa.null() | |
out_types = [ | |
pa.null(), | |
pa.uint8(), | |
pa.float16(), | |
pa.utf8(), | |
pa.binary(), | |
pa.binary(10), | |
pa.list_(pa.int16()), | |
pa.list_(pa.int32(), 4), | |
pa.large_list(pa.uint8()), | |
pa.decimal128(19, 4), | |
pa.timestamp('us'), | |
pa.timestamp('us', tz='UTC'), | |
pa.timestamp('us', tz='Europe/Paris'), | |
pa.duration('us'), | |
pa.month_day_nano_interval(), | |
pa.struct([pa.field('a', pa.int32()), | |
pa.field('b', pa.list_(pa.int8())), | |
pa.field('c', pa.string())]), | |
pa.dictionary(pa.int32(), pa.string()), | |
] | |
for out_type in out_types: | |
_check_cast_case((in_data, in_type, in_data, out_type)) | |
out_types = [ | |
pa.union([pa.field('a', pa.binary(10)), | |
pa.field('b', pa.string())], mode=pa.lib.UnionMode_DENSE), | |
pa.union([pa.field('a', pa.binary(10)), | |
pa.field('b', pa.string())], mode=pa.lib.UnionMode_SPARSE), | |
] | |
in_arr = pa.array(in_data, type=pa.null()) | |
for out_type in out_types: | |
with pytest.raises(NotImplementedError): | |
in_arr.cast(out_type) | |
def test_cast_string_to_number_roundtrip(): | |
cases = [ | |
(pa.array(["1", "127", "-128"]), | |
pa.array([1, 127, -128], type=pa.int8())), | |
(pa.array([None, "18446744073709551615"]), | |
pa.array([None, 18446744073709551615], type=pa.uint64())), | |
] | |
for in_arr, expected in cases: | |
casted = in_arr.cast(expected.type, safe=True) | |
casted.validate(full=True) | |
assert casted.equals(expected) | |
casted_back = casted.cast(in_arr.type, safe=True) | |
casted_back.validate(full=True) | |
assert casted_back.equals(in_arr) | |
def test_cast_dictionary(): | |
# cast to the value type | |
arr = pa.array( | |
["foo", "bar", None], | |
type=pa.dictionary(pa.int64(), pa.string()) | |
) | |
expected = pa.array(["foo", "bar", None]) | |
assert arr.type == pa.dictionary(pa.int64(), pa.string()) | |
assert arr.cast(pa.string()) == expected | |
# cast to a different key type | |
for key_type in [pa.int8(), pa.int16(), pa.int32()]: | |
typ = pa.dictionary(key_type, pa.string()) | |
expected = pa.array( | |
["foo", "bar", None], | |
type=pa.dictionary(key_type, pa.string()) | |
) | |
assert arr.cast(typ) == expected | |
# shouldn't crash (ARROW-7077) | |
with pytest.raises(pa.ArrowInvalid): | |
arr.cast(pa.int32()) | |
def test_view(): | |
# ARROW-5992 | |
arr = pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) | |
expected = pa.array(['foo', 'bar', 'baz'], type=pa.binary()) | |
assert arr.view(pa.binary()).equals(expected) | |
assert arr.view('binary').equals(expected) | |
def test_unique_simple(): | |
cases = [ | |
(pa.array([1, 2, 3, 1, 2, 3]), pa.array([1, 2, 3])), | |
(pa.array(['foo', None, 'bar', 'foo']), | |
pa.array(['foo', None, 'bar'])), | |
(pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()), | |
pa.array(['foo', None, 'bar'], pa.large_binary())), | |
] | |
for arr, expected in cases: | |
result = arr.unique() | |
assert result.equals(expected) | |
result = pa.chunked_array([arr]).unique() | |
assert result.equals(expected) | |
def test_value_counts_simple(): | |
cases = [ | |
(pa.array([1, 2, 3, 1, 2, 3]), | |
pa.array([1, 2, 3]), | |
pa.array([2, 2, 2], type=pa.int64())), | |
(pa.array(['foo', None, 'bar', 'foo']), | |
pa.array(['foo', None, 'bar']), | |
pa.array([2, 1, 1], type=pa.int64())), | |
(pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()), | |
pa.array(['foo', None, 'bar'], pa.large_binary()), | |
pa.array([2, 1, 1], type=pa.int64())), | |
] | |
for arr, expected_values, expected_counts in cases: | |
for arr_in in (arr, pa.chunked_array([arr])): | |
result = arr_in.value_counts() | |
assert result.type.equals( | |
pa.struct([pa.field("values", arr.type), | |
pa.field("counts", pa.int64())])) | |
assert result.field("values").equals(expected_values) | |
assert result.field("counts").equals(expected_counts) | |
def test_unique_value_counts_dictionary_type(): | |
indices = pa.array([3, 0, 0, 0, 1, 1, 3, 0, 1, 3, 0, 1]) | |
dictionary = pa.array(['foo', 'bar', 'baz', 'qux']) | |
arr = pa.DictionaryArray.from_arrays(indices, dictionary) | |
unique_result = arr.unique() | |
expected = pa.DictionaryArray.from_arrays(indices.unique(), dictionary) | |
assert unique_result.equals(expected) | |
result = arr.value_counts() | |
assert result.field('values').equals(unique_result) | |
assert result.field('counts').equals(pa.array([3, 5, 4], type='int64')) | |
arr = pa.DictionaryArray.from_arrays( | |
pa.array([], type='int64'), dictionary) | |
unique_result = arr.unique() | |
expected = pa.DictionaryArray.from_arrays(pa.array([], type='int64'), | |
pa.array([], type='utf8')) | |
assert unique_result.equals(expected) | |
result = arr.value_counts() | |
assert result.field('values').equals(unique_result) | |
assert result.field('counts').equals(pa.array([], type='int64')) | |
def test_dictionary_encode_simple(): | |
cases = [ | |
(pa.array([1, 2, 3, None, 1, 2, 3]), | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 2, None, 0, 1, 2], type='int32'), | |
[1, 2, 3])), | |
(pa.array(['foo', None, 'bar', 'foo']), | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, None, 1, 0], type='int32'), | |
['foo', 'bar'])), | |
(pa.array(['foo', None, 'bar', 'foo'], type=pa.large_binary()), | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, None, 1, 0], type='int32'), | |
pa.array(['foo', 'bar'], type=pa.large_binary()))), | |
] | |
for arr, expected in cases: | |
result = arr.dictionary_encode() | |
assert result.equals(expected) | |
result = pa.chunked_array([arr]).dictionary_encode() | |
assert result.num_chunks == 1 | |
assert result.chunk(0).equals(expected) | |
result = pa.chunked_array([], type=arr.type).dictionary_encode() | |
assert result.num_chunks == 0 | |
assert result.type == expected.type | |
def test_dictionary_encode_sliced(): | |
cases = [ | |
(pa.array([1, 2, 3, None, 1, 2, 3])[1:-1], | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, None, 2, 0], type='int32'), | |
[2, 3, 1])), | |
(pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'])[1:-1], | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 0], type='int32'), | |
['foo', 'bar'])), | |
(pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'], | |
type=pa.large_string())[1:-1], | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 0], type='int32'), | |
pa.array(['foo', 'bar'], type=pa.large_string()))), | |
] | |
for arr, expected in cases: | |
result = arr.dictionary_encode() | |
assert result.equals(expected) | |
result = pa.chunked_array([arr]).dictionary_encode() | |
assert result.num_chunks == 1 | |
assert result.type == expected.type | |
assert result.chunk(0).equals(expected) | |
result = pa.chunked_array([], type=arr.type).dictionary_encode() | |
assert result.num_chunks == 0 | |
assert result.type == expected.type | |
# ARROW-9143 dictionary_encode after slice was segfaulting | |
array = pa.array(['foo', 'bar', 'baz']) | |
array.slice(1).dictionary_encode() | |
def test_dictionary_encode_zero_length(): | |
# User-facing experience of ARROW-7008 | |
arr = pa.array([], type=pa.string()) | |
encoded = arr.dictionary_encode() | |
assert len(encoded.dictionary) == 0 | |
encoded.validate(full=True) | |
def test_dictionary_decode(): | |
cases = [ | |
(pa.array([1, 2, 3, None, 1, 2, 3]), | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, 1, 2, None, 0, 1, 2], type='int32'), | |
[1, 2, 3])), | |
(pa.array(['foo', None, 'bar', 'foo']), | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, None, 1, 0], type='int32'), | |
['foo', 'bar'])), | |
(pa.array(['foo', None, 'bar', 'foo'], type=pa.large_binary()), | |
pa.DictionaryArray.from_arrays( | |
pa.array([0, None, 1, 0], type='int32'), | |
pa.array(['foo', 'bar'], type=pa.large_binary()))), | |
] | |
for expected, arr in cases: | |
result = arr.dictionary_decode() | |
assert result.equals(expected) | |
def test_cast_time32_to_int(): | |
arr = pa.array(np.array([0, 1, 2], dtype='int32'), | |
type=pa.time32('s')) | |
expected = pa.array([0, 1, 2], type='i4') | |
result = arr.cast('i4') | |
assert result.equals(expected) | |
def test_cast_time64_to_int(): | |
arr = pa.array(np.array([0, 1, 2], dtype='int64'), | |
type=pa.time64('us')) | |
expected = pa.array([0, 1, 2], type='i8') | |
result = arr.cast('i8') | |
assert result.equals(expected) | |
def test_cast_timestamp_to_int(): | |
arr = pa.array(np.array([0, 1, 2], dtype='int64'), | |
type=pa.timestamp('us')) | |
expected = pa.array([0, 1, 2], type='i8') | |
result = arr.cast('i8') | |
assert result.equals(expected) | |
def test_cast_date32_to_int(): | |
arr = pa.array([0, 1, 2], type='i4') | |
result1 = arr.cast('date32') | |
result2 = result1.cast('i4') | |
expected1 = pa.array([ | |
datetime.date(1970, 1, 1), | |
datetime.date(1970, 1, 2), | |
datetime.date(1970, 1, 3) | |
]).cast('date32') | |
assert result1.equals(expected1) | |
assert result2.equals(arr) | |
def test_cast_duration_to_int(): | |
arr = pa.array(np.array([0, 1, 2], dtype='int64'), | |
type=pa.duration('us')) | |
expected = pa.array([0, 1, 2], type='i8') | |
result = arr.cast('i8') | |
assert result.equals(expected) | |
def test_cast_binary_to_utf8(): | |
binary_arr = pa.array([b'foo', b'bar', b'baz'], type=pa.binary()) | |
utf8_arr = binary_arr.cast(pa.utf8()) | |
expected = pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) | |
assert utf8_arr.equals(expected) | |
non_utf8_values = [('mañana').encode('utf-16-le')] | |
non_utf8_binary = pa.array(non_utf8_values) | |
assert non_utf8_binary.type == pa.binary() | |
with pytest.raises(ValueError): | |
non_utf8_binary.cast(pa.string()) | |
non_utf8_all_null = pa.array(non_utf8_values, mask=np.array([True]), | |
type=pa.binary()) | |
# No error | |
casted = non_utf8_all_null.cast(pa.string()) | |
assert casted.null_count == 1 | |
def test_cast_date64_to_int(): | |
arr = pa.array(np.array([0, 1, 2], dtype='int64'), | |
type=pa.date64()) | |
expected = pa.array([0, 1, 2], type='i8') | |
result = arr.cast('i8') | |
assert result.equals(expected) | |
def test_date64_from_builtin_datetime(): | |
val1 = datetime.datetime(2000, 1, 1, 12, 34, 56, 123456) | |
val2 = datetime.datetime(2000, 1, 1) | |
result = pa.array([val1, val2], type='date64') | |
result2 = pa.array([val1.date(), val2.date()], type='date64') | |
assert result.equals(result2) | |
as_i8 = result.view('int64') | |
assert as_i8[0].as_py() == as_i8[1].as_py() | |
def test_cast_identities(ty, values): | |
arr = pa.array(values, type=ty) | |
assert arr.cast(ty).equals(arr) | |
pickle_test_parametrize = pytest.mark.parametrize( | |
('data', 'typ'), | |
[ | |
([True, False, True, True], pa.bool_()), | |
([1, 2, 4, 6], pa.int64()), | |
([1.0, 2.5, None], pa.float64()), | |
(['a', None, 'b'], pa.string()), | |
([], None), | |
([[1, 2], [3]], pa.list_(pa.int64())), | |
([[4, 5], [6]], pa.large_list(pa.int16())), | |
([['a'], None, ['b', 'c']], pa.list_(pa.string())), | |
([[1, 2], [3]], pa.list_view(pa.int64())), | |
([[4, 5], [6]], pa.large_list_view(pa.int16())), | |
([['a'], None, ['b', 'c']], pa.list_view(pa.string())), | |
([(1, 'a'), (2, 'c'), None], | |
pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string())])) | |
] | |
) | |
def test_array_pickle(data, typ, pickle_module): | |
# Allocate here so that we don't have any Arrow data allocated. | |
# This is needed to ensure that allocator tests can be reliable. | |
array = pa.array(data, type=typ) | |
for proto in range(0, pickle_module.HIGHEST_PROTOCOL + 1): | |
result = pickle_module.loads(pickle_module.dumps(array, proto)) | |
assert array.equals(result) | |
def test_array_pickle_dictionary(pickle_module): | |
# not included in the above as dictionary array cannot be created with | |
# the pa.array function | |
array = pa.DictionaryArray.from_arrays([0, 1, 2, 0, 1], ['a', 'b', 'c']) | |
for proto in range(0, pickle_module.HIGHEST_PROTOCOL + 1): | |
result = pickle_module.loads(pickle_module.dumps(array, proto)) | |
assert array.equals(result) | |
def test_pickling(pickle_module, arr): | |
data = pickle_module.dumps(arr) | |
restored = pickle_module.loads(data) | |
assert arr.equals(restored) | |
def test_array_pickle_protocol5(data, typ, pickle_module): | |
# Test zero-copy pickling with protocol 5 (PEP 574) | |
array = pa.array(data, type=typ) | |
addresses = [buf.address if buf is not None else 0 | |
for buf in array.buffers()] | |
for proto in range(5, pickle_module.HIGHEST_PROTOCOL + 1): | |
buffers = [] | |
pickled = pickle_module.dumps(array, proto, buffer_callback=buffers.append) | |
result = pickle_module.loads(pickled, buffers=buffers) | |
assert array.equals(result) | |
result_addresses = [buf.address if buf is not None else 0 | |
for buf in result.buffers()] | |
assert result_addresses == addresses | |
def test_to_numpy_roundtrip(narr): | |
arr = pa.array(narr) | |
assert narr.dtype == arr.to_numpy().dtype | |
np.testing.assert_array_equal(narr, arr.to_numpy()) | |
np.testing.assert_array_equal(narr[:6], arr[:6].to_numpy()) | |
np.testing.assert_array_equal(narr[2:], arr[2:].to_numpy()) | |
np.testing.assert_array_equal(narr[2:6], arr[2:6].to_numpy()) | |
def test_array_uint64_from_py_over_range(): | |
arr = pa.array([2 ** 63], type=pa.uint64()) | |
expected = pa.array(np.array([2 ** 63], dtype='u8')) | |
assert arr.equals(expected) | |
def test_array_conversions_no_sentinel_values(): | |
arr = np.array([1, 2, 3, 4], dtype='int8') | |
refcount = sys.getrefcount(arr) | |
arr2 = pa.array(arr) # noqa | |
assert sys.getrefcount(arr) == (refcount + 1) | |
assert arr2.type == 'int8' | |
arr3 = pa.array(np.array([1, np.nan, 2, 3, np.nan, 4], dtype='float32'), | |
type='float32') | |
assert arr3.type == 'float32' | |
assert arr3.null_count == 0 | |
def test_time32_time64_from_integer(): | |
# ARROW-4111 | |
result = pa.array([1, 2, None], type=pa.time32('s')) | |
expected = pa.array([datetime.time(second=1), | |
datetime.time(second=2), None], | |
type=pa.time32('s')) | |
assert result.equals(expected) | |
result = pa.array([1, 2, None], type=pa.time32('ms')) | |
expected = pa.array([datetime.time(microsecond=1000), | |
datetime.time(microsecond=2000), None], | |
type=pa.time32('ms')) | |
assert result.equals(expected) | |
result = pa.array([1, 2, None], type=pa.time64('us')) | |
expected = pa.array([datetime.time(microsecond=1), | |
datetime.time(microsecond=2), None], | |
type=pa.time64('us')) | |
assert result.equals(expected) | |
result = pa.array([1000, 2000, None], type=pa.time64('ns')) | |
expected = pa.array([datetime.time(microsecond=1), | |
datetime.time(microsecond=2), None], | |
type=pa.time64('ns')) | |
assert result.equals(expected) | |
def test_binary_string_pandas_null_sentinels(): | |
# ARROW-6227 | |
def _check_case(ty): | |
arr = pa.array(['string', np.nan], type=ty, from_pandas=True) | |
expected = pa.array(['string', None], type=ty) | |
assert arr.equals(expected) | |
_check_case('binary') | |
_check_case('utf8') | |
def test_pandas_null_sentinels_raise_error(): | |
# ARROW-6227 | |
cases = [ | |
([None, np.nan], 'null'), | |
(['string', np.nan], 'binary'), | |
(['string', np.nan], 'utf8'), | |
(['string', np.nan], 'large_binary'), | |
(['string', np.nan], 'large_utf8'), | |
([b'string', np.nan], pa.binary(6)), | |
([True, np.nan], pa.bool_()), | |
([decimal.Decimal('0'), np.nan], pa.decimal128(12, 2)), | |
([0, np.nan], pa.date32()), | |
([0, np.nan], pa.date32()), | |
([0, np.nan], pa.date64()), | |
([0, np.nan], pa.time32('s')), | |
([0, np.nan], pa.time64('us')), | |
([0, np.nan], pa.timestamp('us')), | |
([0, np.nan], pa.duration('us')), | |
] | |
for case, ty in cases: | |
# Both types of exceptions are raised. May want to clean that up | |
with pytest.raises((ValueError, TypeError)): | |
pa.array(case, type=ty) | |
# from_pandas option suppresses failure | |
result = pa.array(case, type=ty, from_pandas=True) | |
assert result.null_count == (1 if ty != 'null' else 2) | |
def test_pandas_null_sentinels_index(): | |
# ARROW-7023 - ensure that when passing a pandas Index, "from_pandas" | |
# semantics are used | |
import pandas as pd | |
idx = pd.Index([1, 2, np.nan], dtype=object) | |
result = pa.array(idx) | |
expected = pa.array([1, 2, np.nan], from_pandas=True) | |
assert result.equals(expected) | |
def test_array_roundtrip_from_numpy_datetimeD(): | |
arr = np.array([None, datetime.date(2017, 4, 4)], dtype='datetime64[D]') | |
result = pa.array(arr) | |
expected = pa.array([None, datetime.date(2017, 4, 4)], type=pa.date32()) | |
assert result.equals(expected) | |
result = result.to_numpy(zero_copy_only=False) | |
np.testing.assert_array_equal(result, arr) | |
assert result.dtype == arr.dtype | |
def test_array_from_naive_datetimes(): | |
arr = pa.array([ | |
None, | |
datetime.datetime(2017, 4, 4, 12, 11, 10), | |
datetime.datetime(2018, 1, 1, 0, 2, 0) | |
]) | |
assert arr.type == pa.timestamp('us', tz=None) | |
def test_array_from_numpy_datetime(dtype, type): | |
data = [ | |
None, | |
datetime.datetime(2017, 4, 4, 12, 11, 10), | |
datetime.datetime(2018, 1, 1, 0, 2, 0) | |
] | |
# from numpy array | |
arr = pa.array(np.array(data, dtype=dtype)) | |
expected = pa.array(data, type=type) | |
assert arr.equals(expected) | |
# from list of numpy scalars | |
arr = pa.array(list(np.array(data, dtype=dtype))) | |
assert arr.equals(expected) | |
def test_array_from_different_numpy_datetime_units_raises(): | |
data = [ | |
None, | |
datetime.datetime(2017, 4, 4, 12, 11, 10), | |
datetime.datetime(2018, 1, 1, 0, 2, 0) | |
] | |
s = np.array(data, dtype='datetime64[s]') | |
ms = np.array(data, dtype='datetime64[ms]') | |
data = list(s[:2]) + list(ms[2:]) | |
with pytest.raises(pa.ArrowNotImplementedError): | |
pa.array(data) | |
def test_array_from_list_of_timestamps(unit): | |
n = np.datetime64('NaT', unit) | |
x = np.datetime64('2017-01-01 01:01:01.111111111', unit) | |
y = np.datetime64('2018-11-22 12:24:48.111111111', unit) | |
a1 = pa.array([n, x, y]) | |
a2 = pa.array([n, x, y], type=pa.timestamp(unit)) | |
assert a1.type == a2.type | |
assert a1.type.unit == unit | |
assert a1[0] == a2[0] | |
def test_array_from_timestamp_with_generic_unit(): | |
n = np.datetime64('NaT') | |
x = np.datetime64('2017-01-01 01:01:01.111111111') | |
y = np.datetime64('2018-11-22 12:24:48.111111111') | |
with pytest.raises(pa.ArrowNotImplementedError, | |
match='Unbound or generic datetime64 time unit'): | |
pa.array([n, x, y]) | |
def test_array_from_numpy_timedelta(dtype, type): | |
data = [ | |
None, | |
datetime.timedelta(1), | |
datetime.timedelta(0, 1) | |
] | |
# from numpy array | |
np_arr = np.array(data, dtype=dtype) | |
arr = pa.array(np_arr) | |
assert isinstance(arr, pa.DurationArray) | |
assert arr.type == type | |
expected = pa.array(data, type=type) | |
assert arr.equals(expected) | |
assert arr.to_pylist() == data | |
# from list of numpy scalars | |
arr = pa.array(list(np.array(data, dtype=dtype))) | |
assert arr.equals(expected) | |
assert arr.to_pylist() == data | |
def test_array_from_numpy_timedelta_incorrect_unit(): | |
# generic (no unit) | |
td = np.timedelta64(1) | |
for data in [[td], np.array([td])]: | |
with pytest.raises(NotImplementedError): | |
pa.array(data) | |
# unsupported unit | |
td = np.timedelta64(1, 'M') | |
for data in [[td], np.array([td])]: | |
with pytest.raises(NotImplementedError): | |
pa.array(data) | |
def test_array_from_numpy_ascii(): | |
arr = np.array(['abcde', 'abc', ''], dtype='|S5') | |
arrow_arr = pa.array(arr) | |
assert arrow_arr.type == 'binary' | |
expected = pa.array(['abcde', 'abc', ''], type='binary') | |
assert arrow_arr.equals(expected) | |
mask = np.array([False, True, False]) | |
arrow_arr = pa.array(arr, mask=mask) | |
expected = pa.array(['abcde', None, ''], type='binary') | |
assert arrow_arr.equals(expected) | |
# Strided variant | |
arr = np.array(['abcde', 'abc', ''] * 5, dtype='|S5')[::2] | |
mask = np.array([False, True, False] * 5)[::2] | |
arrow_arr = pa.array(arr, mask=mask) | |
expected = pa.array(['abcde', '', None, 'abcde', '', None, 'abcde', ''], | |
type='binary') | |
assert arrow_arr.equals(expected) | |
# 0 itemsize | |
arr = np.array(['', '', ''], dtype='|S0') | |
arrow_arr = pa.array(arr) | |
expected = pa.array(['', '', ''], type='binary') | |
assert arrow_arr.equals(expected) | |
def test_interval_array_from_timedelta(): | |
data = [ | |
None, | |
datetime.timedelta(days=1, seconds=1, microseconds=1, | |
milliseconds=1, minutes=1, hours=1, weeks=1)] | |
# From timedelta (explicit type required) | |
arr = pa.array(data, pa.month_day_nano_interval()) | |
assert isinstance(arr, pa.MonthDayNanoIntervalArray) | |
assert arr.type == pa.month_day_nano_interval() | |
expected_list = [ | |
None, | |
pa.MonthDayNano([0, 8, | |
(datetime.timedelta(seconds=1, microseconds=1, | |
milliseconds=1, minutes=1, | |
hours=1) // | |
datetime.timedelta(microseconds=1)) * 1000])] | |
expected = pa.array(expected_list) | |
assert arr.equals(expected) | |
assert arr.to_pylist() == expected_list | |
def test_interval_array_from_relativedelta(): | |
# dateutil is dependency of pandas | |
from dateutil.relativedelta import relativedelta | |
from pandas import DateOffset | |
data = [ | |
None, | |
relativedelta(years=1, months=1, | |
days=1, seconds=1, microseconds=1, | |
minutes=1, hours=1, weeks=1, leapdays=1)] | |
# Note leapdays are ignored. | |
# From relativedelta | |
arr = pa.array(data) | |
assert isinstance(arr, pa.MonthDayNanoIntervalArray) | |
assert arr.type == pa.month_day_nano_interval() | |
expected_list = [ | |
None, | |
pa.MonthDayNano([13, 8, | |
(datetime.timedelta(seconds=1, microseconds=1, | |
minutes=1, hours=1) // | |
datetime.timedelta(microseconds=1)) * 1000])] | |
expected = pa.array(expected_list) | |
assert arr.equals(expected) | |
assert arr.to_pandas().tolist() == [ | |
None, DateOffset(months=13, days=8, | |
microseconds=( | |
datetime.timedelta(seconds=1, microseconds=1, | |
minutes=1, hours=1) // | |
datetime.timedelta(microseconds=1)), | |
nanoseconds=0)] | |
with pytest.raises(ValueError): | |
pa.array([DateOffset(years=((1 << 32) // 12), months=100)]) | |
with pytest.raises(ValueError): | |
pa.array([DateOffset(weeks=((1 << 32) // 7), days=100)]) | |
with pytest.raises(ValueError): | |
pa.array([DateOffset(seconds=((1 << 64) // 1000000000), | |
nanoseconds=1)]) | |
with pytest.raises(ValueError): | |
pa.array([DateOffset(microseconds=((1 << 64) // 100))]) | |
def test_interval_array_from_tuple(): | |
data = [None, (1, 2, -3)] | |
# From timedelta (explicit type required) | |
arr = pa.array(data, pa.month_day_nano_interval()) | |
assert isinstance(arr, pa.MonthDayNanoIntervalArray) | |
assert arr.type == pa.month_day_nano_interval() | |
expected_list = [ | |
None, | |
pa.MonthDayNano([1, 2, -3])] | |
expected = pa.array(expected_list) | |
assert arr.equals(expected) | |
assert arr.to_pylist() == expected_list | |
def test_interval_array_from_dateoffset(): | |
from pandas.tseries.offsets import DateOffset | |
data = [ | |
None, | |
DateOffset(years=1, months=1, | |
days=1, seconds=1, microseconds=1, | |
minutes=1, hours=1, weeks=1, nanoseconds=1), | |
DateOffset()] | |
arr = pa.array(data) | |
assert isinstance(arr, pa.MonthDayNanoIntervalArray) | |
assert arr.type == pa.month_day_nano_interval() | |
expected_list = [ | |
None, | |
pa.MonthDayNano([13, 8, 3661000001001]), | |
pa.MonthDayNano([0, 0, 0])] | |
expected = pa.array(expected_list) | |
assert arr.equals(expected) | |
expected_from_pandas = [ | |
None, DateOffset(months=13, days=8, | |
microseconds=( | |
datetime.timedelta(seconds=1, microseconds=1, | |
minutes=1, hours=1) // | |
datetime.timedelta(microseconds=1)), | |
nanoseconds=1), | |
DateOffset(months=0, days=0, microseconds=0, nanoseconds=0)] | |
assert arr.to_pandas().tolist() == expected_from_pandas | |
# nested list<interval> array conversion | |
actual_list = pa.array([data]).to_pandas().tolist() | |
assert len(actual_list) == 1 | |
assert list(actual_list[0]) == expected_from_pandas | |
def test_array_from_numpy_unicode(): | |
dtypes = ['<U5', '>U5'] | |
for dtype in dtypes: | |
arr = np.array(['abcde', 'abc', ''], dtype=dtype) | |
arrow_arr = pa.array(arr) | |
assert arrow_arr.type == 'utf8' | |
expected = pa.array(['abcde', 'abc', ''], type='utf8') | |
assert arrow_arr.equals(expected) | |
mask = np.array([False, True, False]) | |
arrow_arr = pa.array(arr, mask=mask) | |
expected = pa.array(['abcde', None, ''], type='utf8') | |
assert arrow_arr.equals(expected) | |
# Strided variant | |
arr = np.array(['abcde', 'abc', ''] * 5, dtype=dtype)[::2] | |
mask = np.array([False, True, False] * 5)[::2] | |
arrow_arr = pa.array(arr, mask=mask) | |
expected = pa.array(['abcde', '', None, 'abcde', '', None, | |
'abcde', ''], type='utf8') | |
assert arrow_arr.equals(expected) | |
# 0 itemsize | |
arr = np.array(['', '', ''], dtype='<U0') | |
arrow_arr = pa.array(arr) | |
expected = pa.array(['', '', ''], type='utf8') | |
assert arrow_arr.equals(expected) | |
def test_array_string_from_non_string(): | |
# ARROW-5682 - when converting to string raise on non string-like dtype | |
with pytest.raises(TypeError): | |
pa.array(np.array([1, 2, 3]), type=pa.string()) | |
def test_array_string_from_all_null(): | |
# ARROW-5682 | |
vals = np.array([None, None], dtype=object) | |
arr = pa.array(vals, type=pa.string()) | |
assert arr.null_count == 2 | |
vals = np.array([np.nan, np.nan], dtype='float64') | |
# by default raises, but accept as all-null when from_pandas=True | |
with pytest.raises(TypeError): | |
pa.array(vals, type=pa.string()) | |
arr = pa.array(vals, type=pa.string(), from_pandas=True) | |
assert arr.null_count == 2 | |
def test_array_from_masked(): | |
ma = np.ma.array([1, 2, 3, 4], dtype='int64', | |
mask=[False, False, True, False]) | |
result = pa.array(ma) | |
expected = pa.array([1, 2, None, 4], type='int64') | |
assert expected.equals(result) | |
with pytest.raises(ValueError, match="Cannot pass a numpy masked array"): | |
pa.array(ma, mask=np.array([True, False, False, False])) | |
def test_array_from_shrunken_masked(): | |
ma = np.ma.array([0], dtype='int64') | |
result = pa.array(ma) | |
expected = pa.array([0], type='int64') | |
assert expected.equals(result) | |
def test_array_from_invalid_dim_raises(): | |
msg = "only handle 1-dimensional arrays" | |
arr2d = np.array([[1, 2, 3], [4, 5, 6]]) | |
with pytest.raises(ValueError, match=msg): | |
pa.array(arr2d) | |
arr0d = np.array(0) | |
with pytest.raises(ValueError, match=msg): | |
pa.array(arr0d) | |
def test_array_from_strided_bool(): | |
# ARROW-6325 | |
arr = np.ones((3, 2), dtype=bool) | |
result = pa.array(arr[:, 0]) | |
expected = pa.array([True, True, True]) | |
assert result.equals(expected) | |
result = pa.array(arr[0, :]) | |
expected = pa.array([True, True]) | |
assert result.equals(expected) | |
def test_array_from_strided(): | |
pydata = [ | |
([b"ab", b"cd", b"ef"], (pa.binary(), pa.binary(2))), | |
([1, 2, 3], (pa.int8(), pa.int16(), pa.int32(), pa.int64())), | |
([1.0, 2.0, 3.0], (pa.float32(), pa.float64())), | |
(["ab", "cd", "ef"], (pa.utf8(), )) | |
] | |
for values, dtypes in pydata: | |
nparray = np.array(values) | |
for patype in dtypes: | |
for mask in (None, np.array([False, False])): | |
arrow_array = pa.array(nparray[::2], patype, | |
mask=mask) | |
assert values[::2] == arrow_array.to_pylist() | |
def test_boolean_true_count_false_count(): | |
# ARROW-9145 | |
arr = pa.array([True, True, None, False, None, True] * 1000) | |
assert arr.true_count == 3000 | |
assert arr.false_count == 1000 | |
def test_buffers_primitive(): | |
a = pa.array([1, 2, None, 4], type=pa.int16()) | |
buffers = a.buffers() | |
assert len(buffers) == 2 | |
null_bitmap = buffers[0].to_pybytes() | |
assert 1 <= len(null_bitmap) <= 64 # XXX this is varying | |
assert bytearray(null_bitmap)[0] == 0b00001011 | |
# Slicing does not affect the buffers but the offset | |
a_sliced = a[1:] | |
buffers = a_sliced.buffers() | |
a_sliced.offset == 1 | |
assert len(buffers) == 2 | |
null_bitmap = buffers[0].to_pybytes() | |
assert 1 <= len(null_bitmap) <= 64 # XXX this is varying | |
assert bytearray(null_bitmap)[0] == 0b00001011 | |
assert struct.unpack('hhxxh', buffers[1].to_pybytes()) == (1, 2, 4) | |
a = pa.array(np.int8([4, 5, 6])) | |
buffers = a.buffers() | |
assert len(buffers) == 2 | |
# No null bitmap from Numpy int array | |
assert buffers[0] is None | |
assert struct.unpack('3b', buffers[1].to_pybytes()) == (4, 5, 6) | |
a = pa.array([b'foo!', None, b'bar!!']) | |
buffers = a.buffers() | |
assert len(buffers) == 3 | |
null_bitmap = buffers[0].to_pybytes() | |
assert bytearray(null_bitmap)[0] == 0b00000101 | |
offsets = buffers[1].to_pybytes() | |
assert struct.unpack('4i', offsets) == (0, 4, 4, 9) | |
values = buffers[2].to_pybytes() | |
assert values == b'foo!bar!!' | |
def test_buffers_nested(): | |
a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64())) | |
buffers = a.buffers() | |
assert len(buffers) == 4 | |
# The parent buffers | |
null_bitmap = buffers[0].to_pybytes() | |
assert bytearray(null_bitmap)[0] == 0b00000101 | |
offsets = buffers[1].to_pybytes() | |
assert struct.unpack('4i', offsets) == (0, 2, 2, 6) | |
# The child buffers | |
null_bitmap = buffers[2].to_pybytes() | |
assert bytearray(null_bitmap)[0] == 0b00110111 | |
values = buffers[3].to_pybytes() | |
assert struct.unpack('qqq8xqq', values) == (1, 2, 3, 4, 5) | |
a = pa.array([(42, None), None, (None, 43)], | |
type=pa.struct([pa.field('a', pa.int8()), | |
pa.field('b', pa.int16())])) | |
buffers = a.buffers() | |
assert len(buffers) == 5 | |
# The parent buffer | |
null_bitmap = buffers[0].to_pybytes() | |
assert bytearray(null_bitmap)[0] == 0b00000101 | |
# The child buffers: 'a' | |
null_bitmap = buffers[1].to_pybytes() | |
assert bytearray(null_bitmap)[0] == 0b00000011 | |
values = buffers[2].to_pybytes() | |
assert struct.unpack('bxx', values) == (42,) | |
# The child buffers: 'b' | |
null_bitmap = buffers[3].to_pybytes() | |
assert bytearray(null_bitmap)[0] == 0b00000110 | |
values = buffers[4].to_pybytes() | |
assert struct.unpack('4xh', values) == (43,) | |
def test_total_buffer_size(): | |
a = pa.array(np.array([4, 5, 6], dtype='int64')) | |
assert a.nbytes == 8 * 3 | |
assert a.get_total_buffer_size() == 8 * 3 | |
assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes | |
a = pa.array([1, None, 3], type='int64') | |
assert a.nbytes == 8*3 + 1 | |
assert a.get_total_buffer_size() == 8*3 + 1 | |
assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes | |
a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64())) | |
assert a.nbytes == 62 | |
assert a.get_total_buffer_size() == 1 + 4 * 4 + 1 + 6 * 8 | |
assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes | |
a = pa.array([[[5, 6, 7]], [[9, 10]]], type=pa.list_(pa.list_(pa.int8()))) | |
assert a.get_total_buffer_size() == (4 * 3) + (4 * 3) + (1 * 5) | |
assert a.nbytes == 21 | |
a = pa.array([[[1, 2], [3, 4]], [[5, 6, 7], None, [8]], [[9, 10]]], | |
type=pa.list_(pa.list_(pa.int8()))) | |
a1 = a.slice(1, 2) | |
assert a1.nbytes == (4 * 2) + 1 + (4 * 4) + (1 * 6) | |
assert a1.get_total_buffer_size() == (4 * 4) + 1 + (4 * 7) + (1 * 10) | |
def test_nbytes_size(): | |
a = pa.chunked_array([pa.array([1, None, 3], type=pa.int16()), | |
pa.array([4, 5, 6], type=pa.int16())]) | |
assert a.nbytes == 13 | |
def test_invalid_tensor_constructor_repr(): | |
# ARROW-2638: prevent calling extension class constructors directly | |
with pytest.raises(TypeError): | |
repr(pa.Tensor([1])) | |
def test_invalid_tensor_construction(): | |
with pytest.raises(TypeError): | |
pa.Tensor() | |
def test_list_array_flatten(offset_type, list_type_factory): | |
typ2 = list_type_factory( | |
list_type_factory( | |
pa.int64() | |
) | |
) | |
arr2 = pa.array([ | |
None, | |
[ | |
[1, None, 2], | |
None, | |
[3, 4] | |
], | |
[], | |
[ | |
[], | |
[5, 6], | |
None | |
], | |
[ | |
[7, 8] | |
] | |
], type=typ2) | |
offsets2 = pa.array([0, 0, 3, 3, 6, 7], type=offset_type) | |
typ1 = list_type_factory(pa.int64()) | |
arr1 = pa.array([ | |
[1, None, 2], | |
None, | |
[3, 4], | |
[], | |
[5, 6], | |
None, | |
[7, 8] | |
], type=typ1) | |
offsets1 = pa.array([0, 3, 3, 5, 5, 7, 7, 9], type=offset_type) | |
arr0 = pa.array([ | |
1, None, 2, | |
3, 4, | |
5, 6, | |
7, 8 | |
], type=pa.int64()) | |
assert arr2.flatten().equals(arr1) | |
assert arr2.offsets.equals(offsets2) | |
assert arr2.values.equals(arr1) | |
assert arr1.flatten().equals(arr0) | |
assert arr1.offsets.equals(offsets1) | |
assert arr1.values.equals(arr0) | |
assert arr2.flatten().flatten().equals(arr0) | |
assert arr2.values.values.equals(arr0) | |
def test_list_value_parent_indices(list_type): | |
arr = pa.array( | |
[ | |
[0, 1], | |
None, | |
[None, None], | |
[3, 4] | |
], type=list_type) | |
expected = pa.array([0, 0, 2, 2, 3, 3], type=pa.int64()) | |
assert arr.value_parent_indices().equals(expected) | |
def test_list_value_lengths(offset_type, list_type): | |
# FixedSizeListArray needs fixed list sizes | |
if getattr(list_type, "list_size", None): | |
arr = pa.array( | |
[ | |
[0, 1], | |
None, | |
[None, None], | |
[3, 4] | |
], type=list_type) | |
expected = pa.array([2, None, 2, 2], type=offset_type) | |
# Otherwise create variable list sizes | |
else: | |
arr = pa.array( | |
[ | |
[0, 1, 2], | |
None, | |
[], | |
[3, 4] | |
], type=list_type) | |
expected = pa.array([3, None, 0, 2], type=offset_type) | |
assert arr.value_lengths().equals(expected) | |
def test_list_array_flatten_non_canonical(list_type_factory): | |
# Non-canonical list array (null elements backed by non-empty sublists) | |
typ = list_type_factory(pa.int64()) | |
arr = pa.array([[1], [2, 3], [4, 5, 6]], type=typ) | |
buffers = arr.buffers()[:2] | |
buffers[0] = pa.py_buffer(b"\x05") # validity bitmap | |
arr = arr.from_buffers(arr.type, len(arr), buffers, children=[arr.values]) | |
assert arr.to_pylist() == [[1], None, [4, 5, 6]] | |
assert arr.offsets.to_pylist() == [0, 1, 3, 6] | |
flattened = arr.flatten() | |
flattened.validate(full=True) | |
assert flattened.type == typ.value_type | |
assert flattened.to_pylist() == [1, 4, 5, 6] | |
# .values is the physical values array (including masked elements) | |
assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6] | |
def test_list_array_values_offsets_sliced(klass): | |
# ARROW-7301 | |
arr = klass.from_arrays(offsets=[0, 3, 4, 6], values=[1, 2, 3, 4, 5, 6]) | |
assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6] | |
assert arr.offsets.to_pylist() == [0, 3, 4, 6] | |
# sliced -> values keeps referring to full values buffer, but offsets is | |
# sliced as well so the offsets correctly point into the full values array | |
# sliced -> flatten() will return the sliced value array. | |
arr2 = arr[1:] | |
assert arr2.values.to_pylist() == [1, 2, 3, 4, 5, 6] | |
assert arr2.offsets.to_pylist() == [3, 4, 6] | |
assert arr2.flatten().to_pylist() == [4, 5, 6] | |
i = arr2.offsets[0].as_py() | |
j = arr2.offsets[1].as_py() | |
assert arr2[0].as_py() == arr2.values[i:j].to_pylist() == [4] | |
def test_fixed_size_list_array_flatten(): | |
typ2 = pa.list_(pa.list_(pa.int64(), 2), 3) | |
arr2 = pa.array([ | |
[ | |
[1, 2], | |
[3, 4], | |
[5, 6], | |
], | |
None, | |
[ | |
[7, None], | |
None, | |
[8, 9] | |
], | |
], type=typ2) | |
assert arr2.type.equals(typ2) | |
typ1 = pa.list_(pa.int64(), 2) | |
arr1 = pa.array([ | |
[1, 2], [3, 4], [5, 6], | |
[7, None], None, [8, 9] | |
], type=typ1) | |
assert arr1.type.equals(typ1) | |
assert arr2.flatten().equals(arr1) | |
typ0 = pa.int64() | |
arr0 = pa.array([ | |
1, 2, 3, 4, 5, 6, 7, None, 8, 9, | |
], type=typ0) | |
assert arr0.type.equals(typ0) | |
assert arr1.flatten().equals(arr0) | |
assert arr2.flatten().flatten().equals(arr0) | |
def test_fixed_size_list_array_flatten_with_slice(): | |
array = pa.array([[1], [2], [3]], | |
type=pa.list_(pa.float64(), list_size=1)) | |
assert array[2:].flatten() == pa.array([3], type=pa.float64()) | |
def test_map_array_values_offsets(): | |
ty = pa.map_(pa.utf8(), pa.int32()) | |
ty_values = pa.struct([pa.field("key", pa.utf8(), nullable=False), | |
pa.field("value", pa.int32())]) | |
a = pa.array([[('a', 1), ('b', 2)], [('c', 3)]], type=ty) | |
assert a.values.type.equals(ty_values) | |
assert a.values == pa.array([ | |
{'key': 'a', 'value': 1}, | |
{'key': 'b', 'value': 2}, | |
{'key': 'c', 'value': 3}, | |
], type=ty_values) | |
assert a.keys.equals(pa.array(['a', 'b', 'c'])) | |
assert a.items.equals(pa.array([1, 2, 3], type=pa.int32())) | |
assert pa.ListArray.from_arrays(a.offsets, a.keys).equals( | |
pa.array([['a', 'b'], ['c']])) | |
assert pa.ListArray.from_arrays(a.offsets, a.items).equals( | |
pa.array([[1, 2], [3]], type=pa.list_(pa.int32()))) | |
with pytest.raises(NotImplementedError): | |
a.flatten() | |
def test_struct_array_flatten(): | |
ty = pa.struct([pa.field('x', pa.int16()), | |
pa.field('y', pa.float32())]) | |
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) | |
xs, ys = a.flatten() | |
assert xs.type == pa.int16() | |
assert ys.type == pa.float32() | |
assert xs.to_pylist() == [1, 3, 5] | |
assert ys.to_pylist() == [2.5, 4.5, 6.5] | |
xs, ys = a[1:].flatten() | |
assert xs.to_pylist() == [3, 5] | |
assert ys.to_pylist() == [4.5, 6.5] | |
a = pa.array([(1, 2.5), None, (3, 4.5)], type=ty) | |
xs, ys = a.flatten() | |
assert xs.to_pylist() == [1, None, 3] | |
assert ys.to_pylist() == [2.5, None, 4.5] | |
xs, ys = a[1:].flatten() | |
assert xs.to_pylist() == [None, 3] | |
assert ys.to_pylist() == [None, 4.5] | |
a = pa.array([(1, None), (2, 3.5), (None, 4.5)], type=ty) | |
xs, ys = a.flatten() | |
assert xs.to_pylist() == [1, 2, None] | |
assert ys.to_pylist() == [None, 3.5, 4.5] | |
xs, ys = a[1:].flatten() | |
assert xs.to_pylist() == [2, None] | |
assert ys.to_pylist() == [3.5, 4.5] | |
a = pa.array([(1, None), None, (None, 2.5)], type=ty) | |
xs, ys = a.flatten() | |
assert xs.to_pylist() == [1, None, None] | |
assert ys.to_pylist() == [None, None, 2.5] | |
xs, ys = a[1:].flatten() | |
assert xs.to_pylist() == [None, None] | |
assert ys.to_pylist() == [None, 2.5] | |
def test_struct_array_field(): | |
ty = pa.struct([pa.field('x', pa.int16()), | |
pa.field('y', pa.float32())]) | |
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) | |
x0 = a.field(0) | |
y0 = a.field(1) | |
x1 = a.field(-2) | |
y1 = a.field(-1) | |
x2 = a.field('x') | |
y2 = a.field('y') | |
assert isinstance(x0, pa.lib.Int16Array) | |
assert isinstance(y1, pa.lib.FloatArray) | |
assert x0.equals(pa.array([1, 3, 5], type=pa.int16())) | |
assert y0.equals(pa.array([2.5, 4.5, 6.5], type=pa.float32())) | |
assert x0.equals(x1) | |
assert x0.equals(x2) | |
assert y0.equals(y1) | |
assert y0.equals(y2) | |
for invalid_index in [None, pa.int16()]: | |
with pytest.raises(TypeError): | |
a.field(invalid_index) | |
for invalid_index in [3, -3]: | |
with pytest.raises(IndexError): | |
a.field(invalid_index) | |
for invalid_name in ['z', '']: | |
with pytest.raises(KeyError): | |
a.field(invalid_name) | |
def test_struct_array_flattened_field(): | |
ty = pa.struct([pa.field('x', pa.int16()), | |
pa.field('y', pa.float32())]) | |
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty, | |
mask=pa.array([False, True, False])) | |
x0 = a._flattened_field(0) | |
y0 = a._flattened_field(1) | |
x1 = a._flattened_field(-2) | |
y1 = a._flattened_field(-1) | |
x2 = a._flattened_field('x') | |
y2 = a._flattened_field('y') | |
assert isinstance(x0, pa.lib.Int16Array) | |
assert isinstance(y1, pa.lib.FloatArray) | |
assert x0.equals(pa.array([1, None, 5], type=pa.int16())) | |
assert y0.equals(pa.array([2.5, None, 6.5], type=pa.float32())) | |
assert x0.equals(x1) | |
assert x0.equals(x2) | |
assert y0.equals(y1) | |
assert y0.equals(y2) | |
for invalid_index in [None, pa.int16()]: | |
with pytest.raises(TypeError): | |
a._flattened_field(invalid_index) | |
for invalid_index in [3, -3]: | |
with pytest.raises(IndexError): | |
a._flattened_field(invalid_index) | |
for invalid_name in ['z', '']: | |
with pytest.raises(KeyError): | |
a._flattened_field(invalid_name) | |
def test_empty_cast(): | |
types = [ | |
pa.null(), | |
pa.bool_(), | |
pa.int8(), | |
pa.int16(), | |
pa.int32(), | |
pa.int64(), | |
pa.uint8(), | |
pa.uint16(), | |
pa.uint32(), | |
pa.uint64(), | |
pa.float16(), | |
pa.float32(), | |
pa.float64(), | |
pa.date32(), | |
pa.date64(), | |
pa.binary(), | |
pa.binary(length=4), | |
pa.string(), | |
] | |
for (t1, t2) in itertools.product(types, types): | |
try: | |
# ARROW-4766: Ensure that supported types conversion don't segfault | |
# on empty arrays of common types | |
pa.array([], type=t1).cast(t2) | |
except (pa.lib.ArrowNotImplementedError, pa.ArrowInvalid): | |
continue | |
def test_nested_dictionary_array(): | |
dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) | |
list_arr = pa.ListArray.from_arrays([0, 2, 3], dict_arr) | |
assert list_arr.to_pylist() == [['a', 'b'], ['a']] | |
dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) | |
dict_arr2 = pa.DictionaryArray.from_arrays([0, 1, 2, 1, 0], dict_arr) | |
assert dict_arr2.to_pylist() == ['a', 'b', 'a', 'b', 'a'] | |
def test_array_from_numpy_str_utf8(): | |
# ARROW-3890 -- in Python 3, NPY_UNICODE arrays are produced, but in Python | |
# 2 they are NPY_STRING (binary), so we must do UTF-8 validation | |
vec = np.array(["toto", "tata"]) | |
vec2 = np.array(["toto", "tata"], dtype=object) | |
arr = pa.array(vec, pa.string()) | |
arr2 = pa.array(vec2, pa.string()) | |
expected = pa.array(["toto", "tata"]) | |
assert arr.equals(expected) | |
assert arr2.equals(expected) | |
# with mask, separate code path | |
mask = np.array([False, False], dtype=bool) | |
arr = pa.array(vec, pa.string(), mask=mask) | |
assert arr.equals(expected) | |
# UTF8 validation failures | |
vec = np.array([('mañana').encode('utf-16-le')]) | |
with pytest.raises(ValueError): | |
pa.array(vec, pa.string()) | |
with pytest.raises(ValueError): | |
pa.array(vec, pa.string(), mask=np.array([False])) | |
def test_numpy_binary_overflow_to_chunked(): | |
# ARROW-3762, ARROW-5966 | |
# 2^31 + 1 bytes | |
values = [b'x'] | |
unicode_values = ['x'] | |
# Make 10 unique 1MB strings then repeat then 2048 times | |
unique_strings = { | |
i: b'x' * ((1 << 20) - 1) + str(i % 10).encode('utf8') | |
for i in range(10) | |
} | |
unicode_unique_strings = {i: x.decode('utf8') | |
for i, x in unique_strings.items()} | |
values += [unique_strings[i % 10] for i in range(1 << 11)] | |
unicode_values += [unicode_unique_strings[i % 10] | |
for i in range(1 << 11)] | |
for case, ex_type in [(values, pa.binary()), | |
(unicode_values, pa.utf8())]: | |
arr = np.array(case) | |
arrow_arr = pa.array(arr) | |
arr = None | |
assert isinstance(arrow_arr, pa.ChunkedArray) | |
assert arrow_arr.type == ex_type | |
# Split up into 16MB chunks. 128 * 16 = 2048, so 129 | |
assert arrow_arr.num_chunks == 129 | |
value_index = 0 | |
for i in range(arrow_arr.num_chunks): | |
chunk = arrow_arr.chunk(i) | |
for val in chunk: | |
assert val.as_py() == case[value_index] | |
value_index += 1 | |
def test_list_child_overflow_to_chunked(): | |
kilobyte_string = 'x' * 1024 | |
two_mega = 2**21 | |
vals = [[kilobyte_string]] * (two_mega - 1) | |
arr = pa.array(vals) | |
assert isinstance(arr, pa.Array) | |
assert len(arr) == two_mega - 1 | |
vals = [[kilobyte_string]] * two_mega | |
arr = pa.array(vals) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr) == two_mega | |
assert len(arr.chunk(0)) == two_mega - 1 | |
assert len(arr.chunk(1)) == 1 | |
def test_infer_type_masked(): | |
# ARROW-5208 | |
ty = pa.infer_type(['foo', 'bar', None, 2], | |
mask=[False, False, False, True]) | |
assert ty == pa.utf8() | |
# all masked | |
ty = pa.infer_type(['foo', 'bar', None, 2], | |
mask=np.array([True, True, True, True])) | |
assert ty == pa.null() | |
# length 0 | |
assert pa.infer_type([], mask=[]) == pa.null() | |
def test_array_masked(): | |
# ARROW-5208 | |
arr = pa.array([4, None, 4, 3.], | |
mask=np.array([False, True, False, True])) | |
assert arr.type == pa.int64() | |
# ndarray dtype=object argument | |
arr = pa.array(np.array([4, None, 4, 3.], dtype="O"), | |
mask=np.array([False, True, False, True])) | |
assert arr.type == pa.int64() | |
def test_array_supported_masks(): | |
# ARROW-13883 | |
arr = pa.array([4, None, 4, 3.], | |
mask=np.array([False, True, False, True])) | |
assert arr.to_pylist() == [4, None, 4, None] | |
arr = pa.array([4, None, 4, 3], | |
mask=pa.array([False, True, False, True])) | |
assert arr.to_pylist() == [4, None, 4, None] | |
arr = pa.array([4, None, 4, 3], | |
mask=[False, True, False, True]) | |
assert arr.to_pylist() == [4, None, 4, None] | |
arr = pa.array([4, 3, None, 3], | |
mask=[False, True, False, True]) | |
assert arr.to_pylist() == [4, None, None, None] | |
# Non boolean values | |
with pytest.raises(pa.ArrowTypeError): | |
arr = pa.array([4, None, 4, 3], | |
mask=pa.array([1.0, 2.0, 3.0, 4.0])) | |
with pytest.raises(pa.ArrowTypeError): | |
arr = pa.array([4, None, 4, 3], | |
mask=[1.0, 2.0, 3.0, 4.0]) | |
with pytest.raises(pa.ArrowTypeError): | |
arr = pa.array([4, None, 4, 3], | |
mask=np.array([1.0, 2.0, 3.0, 4.0])) | |
with pytest.raises(pa.ArrowTypeError): | |
arr = pa.array([4, None, 4, 3], | |
mask=pa.array([False, True, False, True], | |
mask=pa.array([True, True, True, True]))) | |
with pytest.raises(pa.ArrowTypeError): | |
arr = pa.array([4, None, 4, 3], | |
mask=pa.array([False, None, False, True])) | |
# Numpy arrays only accepts numpy masks | |
with pytest.raises(TypeError): | |
arr = pa.array(np.array([4, None, 4, 3.]), | |
mask=[True, False, True, False]) | |
with pytest.raises(TypeError): | |
arr = pa.array(np.array([4, None, 4, 3.]), | |
mask=pa.array([True, False, True, False])) | |
def test_array_supported_pandas_masks(): | |
import pandas | |
arr = pa.array(pandas.Series([0, 1], name="a", dtype="int64"), | |
mask=pandas.Series([True, False], dtype='bool')) | |
assert arr.to_pylist() == [None, 1] | |
def test_binary_array_masked(): | |
# ARROW-12431 | |
masked_basic = pa.array([b'\x05'], type=pa.binary(1), | |
mask=np.array([False])) | |
assert [b'\x05'] == masked_basic.to_pylist() | |
# Fixed Length Binary | |
masked = pa.array(np.array([b'\x05']), type=pa.binary(1), | |
mask=np.array([False])) | |
assert [b'\x05'] == masked.to_pylist() | |
masked_nulls = pa.array(np.array([b'\x05']), type=pa.binary(1), | |
mask=np.array([True])) | |
assert [None] == masked_nulls.to_pylist() | |
# Variable Length Binary | |
masked = pa.array(np.array([b'\x05']), type=pa.binary(), | |
mask=np.array([False])) | |
assert [b'\x05'] == masked.to_pylist() | |
masked_nulls = pa.array(np.array([b'\x05']), type=pa.binary(), | |
mask=np.array([True])) | |
assert [None] == masked_nulls.to_pylist() | |
# Fixed Length Binary, copy | |
npa = np.array([b'aaa', b'bbb', b'ccc']*10) | |
arrow_array = pa.array(npa, type=pa.binary(3), | |
mask=np.array([False, False, False]*10)) | |
npa[npa == b"bbb"] = b"XXX" | |
assert ([b'aaa', b'bbb', b'ccc']*10) == arrow_array.to_pylist() | |
def test_binary_array_strided(): | |
# Masked | |
nparray = np.array([b"ab", b"cd", b"ef"]) | |
arrow_array = pa.array(nparray[::2], pa.binary(2), | |
mask=np.array([False, False])) | |
assert [b"ab", b"ef"] == arrow_array.to_pylist() | |
# Unmasked | |
nparray = np.array([b"ab", b"cd", b"ef"]) | |
arrow_array = pa.array(nparray[::2], pa.binary(2)) | |
assert [b"ab", b"ef"] == arrow_array.to_pylist() | |
def test_array_invalid_mask_raises(): | |
# ARROW-10742 | |
cases = [ | |
([1, 2], np.array([False, False], dtype="O"), | |
TypeError, "must be boolean dtype"), | |
([1, 2], np.array([[False], [False]]), | |
pa.ArrowInvalid, "must be 1D array"), | |
([1, 2, 3], np.array([False, False]), | |
pa.ArrowInvalid, "different length"), | |
(np.array([1, 2]), np.array([False, False], dtype="O"), | |
TypeError, "must be boolean dtype"), | |
(np.array([1, 2]), np.array([[False], [False]]), | |
ValueError, "must be 1D array"), | |
(np.array([1, 2, 3]), np.array([False, False]), | |
ValueError, "different length"), | |
] | |
for obj, mask, ex, msg in cases: | |
with pytest.raises(ex, match=msg): | |
pa.array(obj, mask=mask) | |
def test_array_from_large_pyints(): | |
# ARROW-5430 | |
with pytest.raises(OverflowError): | |
# too large for int64 so dtype must be explicitly provided | |
pa.array([int(2 ** 63)]) | |
def test_numpy_array_protocol(): | |
# test the __array__ method on pyarrow.Array | |
arr = pa.array([1, 2, 3]) | |
result = np.asarray(arr) | |
expected = np.array([1, 2, 3], dtype="int64") | |
np.testing.assert_array_equal(result, expected) | |
# this should not raise a deprecation warning with numpy 2.0+ | |
result = np.array(arr, copy=False) | |
np.testing.assert_array_equal(result, expected) | |
result = np.array(arr, dtype="int64", copy=False) | |
np.testing.assert_array_equal(result, expected) | |
# no zero-copy is possible | |
arr = pa.array([1, 2, None]) | |
expected = np.array([1, 2, np.nan], dtype="float64") | |
result = np.asarray(arr) | |
np.testing.assert_array_equal(result, expected) | |
if Version(np.__version__) < Version("2.0"): | |
# copy keyword is not strict and not passed down to __array__ | |
result = np.array(arr, copy=False) | |
np.testing.assert_array_equal(result, expected) | |
result = np.array(arr, dtype="float64", copy=False) | |
np.testing.assert_array_equal(result, expected) | |
else: | |
# starting with numpy 2.0, the copy=False keyword is assumed to be strict | |
with pytest.raises(ValueError, match="Unable to avoid a copy"): | |
np.array(arr, copy=False) | |
arr = pa.array([1, 2, 3]) | |
with pytest.raises(ValueError): | |
np.array(arr, dtype="float64", copy=False) | |
# copy=True -> not yet passed by numpy, so we have to call this directly to test | |
arr = pa.array([1, 2, 3]) | |
result = arr.__array__(copy=True) | |
assert result.flags.writeable | |
arr = pa.array([1, 2, 3]) | |
result = arr.__array__(dtype=np.dtype("float64"), copy=True) | |
assert result.dtype == "float64" | |
def test_array_protocol(): | |
class MyArray: | |
def __init__(self, data): | |
self.data = data | |
def __arrow_array__(self, type=None): | |
return pa.array(self.data, type=type) | |
arr = MyArray(np.array([1, 2, 3], dtype='int64')) | |
result = pa.array(arr) | |
expected = pa.array([1, 2, 3], type=pa.int64()) | |
assert result.equals(expected) | |
result = pa.array(arr, type=pa.int64()) | |
expected = pa.array([1, 2, 3], type=pa.int64()) | |
assert result.equals(expected) | |
result = pa.array(arr, type=pa.float64()) | |
expected = pa.array([1, 2, 3], type=pa.float64()) | |
assert result.equals(expected) | |
# raise error when passing size or mask keywords | |
with pytest.raises(ValueError): | |
pa.array(arr, mask=np.array([True, False, True])) | |
with pytest.raises(ValueError): | |
pa.array(arr, size=3) | |
# ensure the return value is an Array | |
class MyArrayInvalid: | |
def __init__(self, data): | |
self.data = data | |
def __arrow_array__(self, type=None): | |
return np.array(self.data) | |
arr = MyArrayInvalid(np.array([1, 2, 3], dtype='int64')) | |
with pytest.raises(TypeError): | |
pa.array(arr) | |
# ARROW-7066 - allow ChunkedArray output | |
# GH-33727 - if num_chunks=1 return Array | |
class MyArray2: | |
def __init__(self, data): | |
self.data = data | |
def __arrow_array__(self, type=None): | |
return pa.chunked_array([self.data], type=type) | |
arr = MyArray2(np.array([1, 2, 3], dtype='int64')) | |
result = pa.array(arr) | |
expected = pa.array([1, 2, 3], type=pa.int64()) | |
assert result.equals(expected) | |
class MyArray3: | |
def __init__(self, data1, data2): | |
self.data1 = data1 | |
self.data2 = data2 | |
def __arrow_array__(self, type=None): | |
return pa.chunked_array([self.data1, self.data2], type=type) | |
np_arr = np.array([1, 2, 3], dtype='int64') | |
arr = MyArray3(np_arr, np_arr) | |
result = pa.array(arr) | |
expected = pa.chunked_array([[1, 2, 3], [1, 2, 3]], type=pa.int64()) | |
assert result.equals(expected) | |
def test_c_array_protocol(): | |
class ArrayWrapper: | |
def __init__(self, data): | |
self.data = data | |
def __arrow_c_array__(self, requested_schema=None): | |
return self.data.__arrow_c_array__(requested_schema) | |
# Can roundtrip through the C array protocol | |
arr = ArrayWrapper(pa.array([1, 2, 3], type=pa.int64())) | |
result = pa.array(arr) | |
assert result == arr.data | |
# Will cast to requested type | |
result = pa.array(arr, type=pa.int32()) | |
assert result == pa.array([1, 2, 3], type=pa.int32()) | |
def test_concat_array(): | |
concatenated = pa.concat_arrays( | |
[pa.array([1, 2]), pa.array([3, 4])]) | |
assert concatenated.equals(pa.array([1, 2, 3, 4])) | |
def test_concat_array_different_types(): | |
with pytest.raises(pa.ArrowInvalid): | |
pa.concat_arrays([pa.array([1]), pa.array([2.])]) | |
def test_concat_array_invalid_type(): | |
# ARROW-9920 - do not segfault on non-array input | |
with pytest.raises(TypeError, match="should contain Array objects"): | |
pa.concat_arrays([None]) | |
arr = pa.chunked_array([[0, 1], [3, 4]]) | |
with pytest.raises(TypeError, match="should contain Array objects"): | |
pa.concat_arrays(arr) | |
def test_to_pandas_timezone(): | |
# https://issues.apache.org/jira/browse/ARROW-6652 | |
arr = pa.array([1, 2, 3], type=pa.timestamp('s', tz='Europe/Brussels')) | |
s = arr.to_pandas() | |
assert s.dt.tz is not None | |
arr = pa.chunked_array([arr]) | |
s = arr.to_pandas() | |
assert s.dt.tz is not None | |
def test_to_pandas_float16_list(): | |
# https://github.com/apache/arrow/issues/36168 | |
expected = [[np.float16(1)], [np.float16(2)], [np.float16(3)]] | |
arr = pa.array(expected) | |
result = arr.to_pandas() | |
assert result[0].dtype == "float16" | |
assert result.tolist() == expected | |
def test_array_sort(): | |
arr = pa.array([5, 7, 35], type=pa.int64()) | |
sorted_arr = arr.sort("descending") | |
assert sorted_arr.to_pylist() == [35, 7, 5] | |
arr = pa.chunked_array([[1, 2, 3], [4, 5, 6]]) | |
sorted_arr = arr.sort("descending") | |
assert sorted_arr.to_pylist() == [6, 5, 4, 3, 2, 1] | |
arr = pa.array([5, 7, 35, None], type=pa.int64()) | |
sorted_arr = arr.sort("descending", null_placement="at_end") | |
assert sorted_arr.to_pylist() == [35, 7, 5, None] | |
sorted_arr = arr.sort("descending", null_placement="at_start") | |
assert sorted_arr.to_pylist() == [None, 35, 7, 5] | |
def test_struct_array_sort(): | |
arr = pa.StructArray.from_arrays([ | |
pa.array([5, 7, 7, 35], type=pa.int64()), | |
pa.array(["foo", "car", "bar", "foobar"]) | |
], names=["a", "b"]) | |
sorted_arr = arr.sort("descending", by="a") | |
assert sorted_arr.to_pylist() == [ | |
{"a": 35, "b": "foobar"}, | |
{"a": 7, "b": "car"}, | |
{"a": 7, "b": "bar"}, | |
{"a": 5, "b": "foo"}, | |
] | |
arr_with_nulls = pa.StructArray.from_arrays([ | |
pa.array([5, 7, 7, 35], type=pa.int64()), | |
pa.array(["foo", "car", "bar", "foobar"]) | |
], names=["a", "b"], mask=pa.array([False, False, True, False])) | |
sorted_arr = arr_with_nulls.sort( | |
"descending", by="a", null_placement="at_start") | |
assert sorted_arr.to_pylist() == [ | |
None, | |
{"a": 35, "b": "foobar"}, | |
{"a": 7, "b": "car"}, | |
{"a": 5, "b": "foo"}, | |
] | |
sorted_arr = arr_with_nulls.sort( | |
"descending", by="a", null_placement="at_end") | |
assert sorted_arr.to_pylist() == [ | |
{"a": 35, "b": "foobar"}, | |
{"a": 7, "b": "car"}, | |
{"a": 5, "b": "foo"}, | |
None | |
] | |
def test_array_accepts_pyarrow_array(): | |
arr = pa.array([1, 2, 3]) | |
result = pa.array(arr) | |
assert arr == result | |
# Test casting to a different type | |
result = pa.array(arr, type=pa.uint8()) | |
expected = pa.array([1, 2, 3], type=pa.uint8()) | |
assert expected == result | |
assert expected.type == pa.uint8() | |
# Test casting with safe keyword | |
arr = pa.array([2 ** 63 - 1], type=pa.int64()) | |
with pytest.raises(pa.ArrowInvalid): | |
pa.array(arr, type=pa.int32()) | |
expected = pa.array([-1], type=pa.int32()) | |
result = pa.array(arr, type=pa.int32(), safe=False) | |
assert result == expected | |
# Test memory_pool keyword is accepted | |
result = pa.array(arr, memory_pool=pa.default_memory_pool()) | |
assert arr == result | |
def check_run_end_encoded(ree_array, run_ends, values, logical_length, physical_length, | |
physical_offset): | |
assert ree_array.run_ends.to_pylist() == run_ends | |
assert ree_array.values.to_pylist() == values | |
assert len(ree_array) == logical_length | |
assert ree_array.find_physical_length() == physical_length | |
assert ree_array.find_physical_offset() == physical_offset | |
def check_run_end_encoded_from_arrays_with_type(ree_type=None): | |
run_ends = [3, 5, 10, 19] | |
values = [1, 2, 1, 3] | |
ree_array = pa.RunEndEncodedArray.from_arrays(run_ends, values, ree_type) | |
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) | |
def test_run_end_encoded_from_arrays(): | |
check_run_end_encoded_from_arrays_with_type() | |
for run_end_type in [pa.int16(), pa.int32(), pa.int64()]: | |
for value_type in [pa.uint32(), pa.int32(), pa.uint64(), pa.int64()]: | |
ree_type = pa.run_end_encoded(run_end_type, value_type) | |
check_run_end_encoded_from_arrays_with_type(ree_type) | |
def test_run_end_encoded_from_buffers(): | |
run_ends = [3, 5, 10, 19] | |
values = [1, 2, 1, 3] | |
ree_type = pa.run_end_encoded(run_end_type=pa.int32(), value_type=pa.uint8()) | |
length = 19 | |
buffers = [None] | |
null_count = 0 | |
offset = 0 | |
children = [run_ends, values] | |
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, | |
null_count, offset, | |
children) | |
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) | |
# buffers = [] | |
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, [], | |
null_count, offset, | |
children) | |
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) | |
# null_count = -1 | |
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, | |
-1, offset, | |
children) | |
check_run_end_encoded(ree_array, run_ends, values, 19, 4, 0) | |
# offset = 4 | |
ree_array = pa.RunEndEncodedArray.from_buffers(ree_type, length - 4, buffers, | |
null_count, 4, children) | |
check_run_end_encoded(ree_array, run_ends, values, length - 4, 3, 1) | |
# buffers = [None, None] | |
with pytest.raises(ValueError): | |
pa.RunEndEncodedArray.from_buffers(ree_type, length, [None, None], | |
null_count, offset, children) | |
# children = None | |
with pytest.raises(ValueError): | |
pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, | |
null_count, offset, None) | |
# len(children) == 1 | |
with pytest.raises(ValueError): | |
pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, | |
null_count, offset, [run_ends]) | |
# null_count = 1 | |
with pytest.raises(ValueError): | |
pa.RunEndEncodedArray.from_buffers(ree_type, length, buffers, | |
1, offset, children) | |
def test_run_end_encoded_from_array_with_type(): | |
run_ends = [1, 3, 6] | |
values = [1, 2, 3] | |
ree_type = pa.run_end_encoded(pa.int32(), pa.int64()) | |
expected = pa.RunEndEncodedArray.from_arrays(run_ends, values, | |
ree_type) | |
arr = [1, 2, 2, 3, 3, 3] | |
result = pa.array(arr, type=ree_type) | |
assert result.equals(expected) | |
result = pa.array(np.array(arr), type=ree_type) | |
assert result.equals(expected) | |
ree_type_2 = pa.run_end_encoded(pa.int16(), pa.float32()) | |
result = pa.array(arr, type=ree_type_2) | |
assert not result.equals(expected) | |
expected_2 = pa.RunEndEncodedArray.from_arrays(run_ends, values, | |
ree_type_2) | |
assert result.equals(expected_2) | |
run_ends = [1, 3, 5, 6] | |
values = [1, 2, 3, None] | |
expected = pa.RunEndEncodedArray.from_arrays(run_ends, values, | |
ree_type) | |
arr = [1, 2, 2, 3, 3, None] | |
result = pa.array(arr, type=ree_type) | |
assert result.equals(expected) | |
run_ends = [1, 3, 4, 5, 6] | |
values = [1, 2, None, 3, None] | |
expected = pa.RunEndEncodedArray.from_arrays(run_ends, values, | |
ree_type) | |
mask = pa.array([False, False, False, True, False, True]) | |
result = pa.array(arr, type=ree_type, mask=mask) | |
assert result.equals(expected) | |
def test_run_end_encoded_to_numpy(): | |
arr = [1, 2, 2, 3, 3, 3] | |
ree_array = pa.array(arr, pa.run_end_encoded(pa.int32(), pa.int64())) | |
expected = np.array(arr) | |
np.testing.assert_array_equal(ree_array.to_numpy(zero_copy_only=False), expected) | |
with pytest.raises(pa.ArrowInvalid): | |
ree_array.to_numpy() | |
def test_run_end_encoded_to_pandas(): | |
arr = [1, 2, 2, 3, 3, 3] | |
ree_array = pa.array(arr, pa.run_end_encoded(pa.int32(), pa.int64())) | |
assert ree_array.to_pandas().tolist() == arr | |
with pytest.raises(pa.ArrowInvalid): | |
ree_array.to_pandas(zero_copy_only=True) | |
def test_list_view_from_arrays(list_array_type, list_type_factory): | |
# test in order offsets, similar to ListArray representation | |
values = [1, 2, 3, 4, 5, 6, None, 7] | |
offsets = [0, 2, 4, 6] | |
sizes = [2, 2, 2, 2] | |
array = list_array_type.from_arrays(offsets, sizes, values) | |
assert array.to_pylist() == [[1, 2], [3, 4], [5, 6], [None, 7]] | |
assert array.values.to_pylist() == values | |
assert array.offsets.to_pylist() == offsets | |
assert array.sizes.to_pylist() == sizes | |
# with specified type | |
typ = list_type_factory(pa.field("name", pa.int64())) | |
result = list_array_type.from_arrays(offsets, sizes, values, typ) | |
assert result.type == typ | |
assert result.type.value_field.name == "name" | |
# with mismatching type | |
typ = list_type_factory(pa.binary()) | |
with pytest.raises(TypeError): | |
list_array_type.from_arrays(offsets, sizes, values, type=typ) | |
# test out of order offsets with overlapping values | |
values = [1, 2, 3, 4] | |
offsets = [2, 1, 0] | |
sizes = [2, 2, 2] | |
array = list_array_type.from_arrays(offsets, sizes, values) | |
assert array.to_pylist() == [[3, 4], [2, 3], [1, 2]] | |
assert array.values.to_pylist() == values | |
assert array.offsets.to_pylist() == offsets | |
assert array.sizes.to_pylist() == sizes | |
# test null offsets and empty list values | |
values = [] | |
offsets = [0, None] | |
sizes = [0, 0] | |
array = list_array_type.from_arrays(offsets, sizes, values) | |
assert array.to_pylist() == [[], None] | |
assert array.values.to_pylist() == values | |
assert array.offsets.to_pylist() == [0, 0] | |
assert array.sizes.to_pylist() == sizes | |
# test null sizes and empty list values | |
values = [] | |
offsets = [0, 0] | |
sizes = [None, 0] | |
array = list_array_type.from_arrays(offsets, sizes, values) | |
assert array.to_pylist() == [None, []] | |
assert array.values.to_pylist() == values | |
assert array.offsets.to_pylist() == offsets | |
assert array.sizes.to_pylist() == [0, 0] | |
# test null bitmask | |
values = [1, 2] | |
offsets = [0, 0, 1] | |
sizes = [1, 0, 1] | |
mask = pa.array([False, True, False]) | |
array = list_array_type.from_arrays(offsets, sizes, values, mask=mask) | |
assert array.to_pylist() == [[1], None, [2]] | |
assert array.values.to_pylist() == values | |
assert array.offsets.to_pylist() == offsets | |
assert array.sizes.to_pylist() == sizes | |
def test_list_view_from_arrays_fails(list_array_type, list_type_factory): | |
values = [1, 2] | |
offsets = [0, 1, None] | |
sizes = [1, 1, 0] | |
mask = pa.array([False, False, True]) | |
# Ambiguous to specify both validity map and offsets or sizes with nulls | |
with pytest.raises(pa.lib.ArrowInvalid): | |
list_array_type.from_arrays(offsets, sizes, values, mask=mask) | |
offsets = [0, 1, 1] | |
array = list_array_type.from_arrays(offsets, sizes, values, mask=mask) | |
array_slice = array[1:] | |
# List offsets and sizes must not be slices if a validity map is specified | |
with pytest.raises(pa.lib.ArrowInvalid): | |
list_array_type.from_arrays( | |
array_slice.offsets, array_slice.sizes, | |
array_slice.values, mask=array_slice.is_null()) | |
def test_list_view_flatten(list_array_type, list_type_factory, offset_type): | |
arr0 = pa.array([ | |
1, None, 2, | |
3, 4, | |
5, 6, | |
7, 8 | |
], type=pa.int64()) | |
typ1 = list_type_factory(pa.int64()) | |
arr1 = pa.array([ | |
[1, None, 2], | |
None, | |
[3, 4], | |
[], | |
[5, 6], | |
None, | |
[7, 8] | |
], type=typ1) | |
offsets1 = pa.array([0, 3, 3, 5, 5, 7, 7], type=offset_type) | |
sizes1 = pa.array([3, 0, 2, 0, 2, 0, 2], type=offset_type) | |
typ2 = list_type_factory( | |
list_type_factory( | |
pa.int64() | |
) | |
) | |
arr2 = pa.array([ | |
None, | |
[ | |
[1, None, 2], | |
None, | |
[3, 4] | |
], | |
[], | |
[ | |
[], | |
[5, 6], | |
None | |
], | |
[ | |
[7, 8] | |
] | |
], type=typ2) | |
offsets2 = pa.array([0, 0, 3, 3, 6], type=offset_type) | |
sizes2 = pa.array([0, 3, 0, 3, 1], type=offset_type) | |
assert arr1.flatten().equals(arr0) | |
assert arr1.offsets.equals(offsets1) | |
assert arr1.sizes.equals(sizes1) | |
assert arr1.values.equals(arr0) | |
assert arr2.flatten().equals(arr1) | |
assert arr2.offsets.equals(offsets2) | |
assert arr2.sizes.equals(sizes2) | |
assert arr2.values.equals(arr1) | |
assert arr2.flatten().flatten().equals(arr0) | |
assert arr2.values.values.equals(arr0) | |
# test out of order offsets | |
values = [1, 2, 3, 4] | |
offsets = [3, 2, 1, 0] | |
sizes = [1, 1, 1, 1] | |
array = list_array_type.from_arrays(offsets, sizes, values) | |
assert array.flatten().to_pylist() == [4, 3, 2, 1] | |
# test null elements backed by non-empty sublists | |
mask = pa.array([False, False, False, True]) | |
array = list_array_type.from_arrays(offsets, sizes, values, mask=mask) | |
assert array.flatten().to_pylist() == [4, 3, 2] | |
assert array.values.to_pylist() == [1, 2, 3, 4] | |
def test_list_view_slice(list_view_type): | |
# sliced -> values keeps referring to full values buffer, but offsets is | |
# sliced as well so the offsets correctly point into the full values array | |
# sliced -> flatten() will return the sliced value array. | |
array = list_view_type.from_arrays(offsets=[0, 3, 4], sizes=[ | |
3, 1, 2], values=[1, 2, 3, 4, 5, 6]) | |
sliced_array = array[1:] | |
assert sliced_array.values.to_pylist() == [1, 2, 3, 4, 5, 6] | |
assert sliced_array.offsets.to_pylist() == [3, 4] | |
assert sliced_array.flatten().to_pylist() == [4, 5, 6] | |
i = sliced_array.offsets[0].as_py() | |
j = sliced_array.offsets[1].as_py() | |
assert sliced_array[0].as_py() == sliced_array.values[i:j].to_pylist() == [4] | |