peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_convert_builtin.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import collections | |
import datetime | |
import decimal | |
import itertools | |
import math | |
import re | |
import sys | |
import hypothesis as h | |
import numpy as np | |
import pytest | |
from pyarrow.pandas_compat import _pandas_api # noqa | |
import pyarrow as pa | |
from pyarrow.tests import util | |
import pyarrow.tests.strategies as past | |
int_type_pairs = [ | |
(np.int8, pa.int8()), | |
(np.int16, pa.int16()), | |
(np.int32, pa.int32()), | |
(np.int64, pa.int64()), | |
(np.uint8, pa.uint8()), | |
(np.uint16, pa.uint16()), | |
(np.uint32, pa.uint32()), | |
(np.uint64, pa.uint64())] | |
np_int_types, pa_int_types = zip(*int_type_pairs) | |
class StrangeIterable: | |
def __init__(self, lst): | |
self.lst = lst | |
def __iter__(self): | |
return self.lst.__iter__() | |
class MyInt: | |
def __init__(self, value): | |
self.value = value | |
def __int__(self): | |
return self.value | |
class MyBrokenInt: | |
def __int__(self): | |
1/0 # MARKER | |
def check_struct_type(ty, expected): | |
""" | |
Check a struct type is as expected, but not taking order into account. | |
""" | |
assert pa.types.is_struct(ty) | |
assert set(ty) == set(expected) | |
def test_iterable_types(): | |
arr1 = pa.array(StrangeIterable([0, 1, 2, 3])) | |
arr2 = pa.array((0, 1, 2, 3)) | |
assert arr1.equals(arr2) | |
def test_empty_iterable(): | |
arr = pa.array(StrangeIterable([])) | |
assert len(arr) == 0 | |
assert arr.null_count == 0 | |
assert arr.type == pa.null() | |
assert arr.to_pylist() == [] | |
def test_limited_iterator_types(): | |
arr1 = pa.array(iter(range(3)), type=pa.int64(), size=3) | |
arr2 = pa.array((0, 1, 2)) | |
assert arr1.equals(arr2) | |
def test_limited_iterator_size_overflow(): | |
arr1 = pa.array(iter(range(3)), type=pa.int64(), size=2) | |
arr2 = pa.array((0, 1)) | |
assert arr1.equals(arr2) | |
def test_limited_iterator_size_underflow(): | |
arr1 = pa.array(iter(range(3)), type=pa.int64(), size=10) | |
arr2 = pa.array((0, 1, 2)) | |
assert arr1.equals(arr2) | |
def test_iterator_without_size(): | |
expected = pa.array((0, 1, 2)) | |
arr1 = pa.array(iter(range(3))) | |
assert arr1.equals(expected) | |
# Same with explicit type | |
arr1 = pa.array(iter(range(3)), type=pa.int64()) | |
assert arr1.equals(expected) | |
def test_infinite_iterator(): | |
expected = pa.array((0, 1, 2)) | |
arr1 = pa.array(itertools.count(0), size=3) | |
assert arr1.equals(expected) | |
# Same with explicit type | |
arr1 = pa.array(itertools.count(0), type=pa.int64(), size=3) | |
assert arr1.equals(expected) | |
def test_failing_iterator(): | |
with pytest.raises(ZeroDivisionError): | |
pa.array((1 // 0 for x in range(10))) | |
# ARROW-17253 | |
with pytest.raises(ZeroDivisionError): | |
pa.array((1 // 0 for x in range(10)), size=10) | |
class ObjectWithOnlyGetitem: | |
def __getitem__(self, key): | |
return 3 | |
def test_object_with_getitem(): | |
# https://github.com/apache/arrow/issues/34944 | |
# considered as sequence because of __getitem__, but has no length | |
with pytest.raises(TypeError, match="has no len()"): | |
pa.array(ObjectWithOnlyGetitem()) | |
def _as_list(xs): | |
return xs | |
def _as_tuple(xs): | |
return tuple(xs) | |
def _as_deque(xs): | |
# deque is a sequence while neither tuple nor list | |
return collections.deque(xs) | |
def _as_dict_values(xs): | |
# a dict values object is not a sequence, just a regular iterable | |
dct = {k: v for k, v in enumerate(xs)} | |
return dct.values() | |
def _as_numpy_array(xs): | |
arr = np.empty(len(xs), dtype=object) | |
arr[:] = xs | |
return arr | |
def _as_set(xs): | |
return set(xs) | |
SEQUENCE_TYPES = [_as_list, _as_tuple, _as_numpy_array] | |
ITERABLE_TYPES = [_as_set, _as_dict_values] + SEQUENCE_TYPES | |
COLLECTIONS_TYPES = [_as_deque] + ITERABLE_TYPES | |
parametrize_with_iterable_types = pytest.mark.parametrize( | |
"seq", ITERABLE_TYPES | |
) | |
parametrize_with_sequence_types = pytest.mark.parametrize( | |
"seq", SEQUENCE_TYPES | |
) | |
parametrize_with_collections_types = pytest.mark.parametrize( | |
"seq", COLLECTIONS_TYPES | |
) | |
def test_sequence_types(seq): | |
arr1 = pa.array(seq([1, 2, 3])) | |
arr2 = pa.array([1, 2, 3]) | |
assert arr1.equals(arr2) | |
def test_nested_sequence_types(seq): | |
arr1 = pa.array([seq([1, 2, 3])]) | |
arr2 = pa.array([[1, 2, 3]]) | |
assert arr1.equals(arr2) | |
def test_sequence_boolean(seq): | |
expected = [True, None, False, None] | |
arr = pa.array(seq(expected)) | |
assert len(arr) == 4 | |
assert arr.null_count == 2 | |
assert arr.type == pa.bool_() | |
assert arr.to_pylist() == expected | |
def test_sequence_numpy_boolean(seq): | |
expected = [np.bool_(True), None, np.bool_(False), None] | |
arr = pa.array(seq(expected)) | |
assert arr.type == pa.bool_() | |
assert arr.to_pylist() == [True, None, False, None] | |
def test_sequence_mixed_numpy_python_bools(seq): | |
values = np.array([True, False]) | |
arr = pa.array(seq([values[0], None, values[1], True, False])) | |
assert arr.type == pa.bool_() | |
assert arr.to_pylist() == [True, None, False, True, False] | |
def test_empty_list(seq): | |
arr = pa.array(seq([])) | |
assert len(arr) == 0 | |
assert arr.null_count == 0 | |
assert arr.type == pa.null() | |
assert arr.to_pylist() == [] | |
def test_nested_lists(seq): | |
data = [[], [1, 2], None] | |
arr = pa.array(seq(data)) | |
assert len(arr) == 3 | |
assert arr.null_count == 1 | |
assert arr.type == pa.list_(pa.int64()) | |
assert arr.to_pylist() == data | |
def test_nested_lists_with_explicit_type(seq, factory): | |
data = [[], [1, 2], None] | |
arr = pa.array(seq(data), type=factory(pa.int16())) | |
assert len(arr) == 3 | |
assert arr.null_count == 1 | |
assert arr.type == factory(pa.int16()) | |
assert arr.to_pylist() == data | |
def test_list_with_non_list(seq): | |
# List types don't accept non-sequences | |
with pytest.raises(TypeError): | |
pa.array(seq([[], [1, 2], 3]), type=pa.list_(pa.int64())) | |
with pytest.raises(TypeError): | |
pa.array(seq([[], [1, 2], 3]), type=pa.large_list(pa.int64())) | |
with pytest.raises(TypeError): | |
pa.array(seq([[], [1, 2], 3]), type=pa.list_view(pa.int64())) | |
with pytest.raises(TypeError): | |
pa.array(seq([[], [1, 2], 3]), type=pa.large_list_view(pa.int64())) | |
def test_nested_arrays(seq, factory): | |
arr = pa.array(seq([np.array([], dtype=np.int64), | |
np.array([1, 2], dtype=np.int64), None]), | |
type=factory(pa.int64())) | |
assert len(arr) == 3 | |
assert arr.null_count == 1 | |
assert arr.type == factory(pa.int64()) | |
assert arr.to_pylist() == [[], [1, 2], None] | |
def test_nested_fixed_size_list(seq): | |
# sequence of lists | |
data = [[1, 2], [3, None], None] | |
arr = pa.array(seq(data), type=pa.list_(pa.int64(), 2)) | |
assert len(arr) == 3 | |
assert arr.null_count == 1 | |
assert arr.type == pa.list_(pa.int64(), 2) | |
assert arr.to_pylist() == data | |
# sequence of numpy arrays | |
data = [np.array([1, 2], dtype='int64'), np.array([3, 4], dtype='int64'), | |
None] | |
arr = pa.array(seq(data), type=pa.list_(pa.int64(), 2)) | |
assert len(arr) == 3 | |
assert arr.null_count == 1 | |
assert arr.type == pa.list_(pa.int64(), 2) | |
assert arr.to_pylist() == [[1, 2], [3, 4], None] | |
# incorrect length of the lists or arrays | |
data = [[1, 2, 4], [3, None], None] | |
for data in [[[1, 2, 3]], [np.array([1, 2, 4], dtype='int64')]]: | |
with pytest.raises( | |
ValueError, match="Length of item not correct: expected 2"): | |
pa.array(seq(data), type=pa.list_(pa.int64(), 2)) | |
# with list size of 0 | |
data = [[], [], None] | |
arr = pa.array(seq(data), type=pa.list_(pa.int64(), 0)) | |
assert len(arr) == 3 | |
assert arr.null_count == 1 | |
assert arr.type == pa.list_(pa.int64(), 0) | |
assert arr.to_pylist() == [[], [], None] | |
def test_sequence_all_none(seq): | |
arr = pa.array(seq([None, None])) | |
assert len(arr) == 2 | |
assert arr.null_count == 2 | |
assert arr.type == pa.null() | |
assert arr.to_pylist() == [None, None] | |
def test_sequence_integer(seq, np_scalar_pa_type): | |
np_scalar, pa_type = np_scalar_pa_type | |
expected = [1, None, 3, None, | |
np.iinfo(np_scalar).min, np.iinfo(np_scalar).max] | |
arr = pa.array(seq(expected), type=pa_type) | |
assert len(arr) == 6 | |
assert arr.null_count == 2 | |
assert arr.type == pa_type | |
assert arr.to_pylist() == expected | |
def test_sequence_integer_np_nan(seq, np_scalar_pa_type): | |
# ARROW-2806: numpy.nan is a double value and thus should produce | |
# a double array. | |
_, pa_type = np_scalar_pa_type | |
with pytest.raises(ValueError): | |
pa.array(seq([np.nan]), type=pa_type, from_pandas=False) | |
arr = pa.array(seq([np.nan]), type=pa_type, from_pandas=True) | |
expected = [None] | |
assert len(arr) == 1 | |
assert arr.null_count == 1 | |
assert arr.type == pa_type | |
assert arr.to_pylist() == expected | |
def test_sequence_integer_nested_np_nan(seq, np_scalar_pa_type): | |
# ARROW-2806: numpy.nan is a double value and thus should produce | |
# a double array. | |
_, pa_type = np_scalar_pa_type | |
with pytest.raises(ValueError): | |
pa.array(seq([[np.nan]]), type=pa.list_(pa_type), from_pandas=False) | |
arr = pa.array(seq([[np.nan]]), type=pa.list_(pa_type), from_pandas=True) | |
expected = [[None]] | |
assert len(arr) == 1 | |
assert arr.null_count == 0 | |
assert arr.type == pa.list_(pa_type) | |
assert arr.to_pylist() == expected | |
def test_sequence_integer_inferred(seq): | |
expected = [1, None, 3, None] | |
arr = pa.array(seq(expected)) | |
assert len(arr) == 4 | |
assert arr.null_count == 2 | |
assert arr.type == pa.int64() | |
assert arr.to_pylist() == expected | |
def test_sequence_numpy_integer(seq, np_scalar_pa_type): | |
np_scalar, pa_type = np_scalar_pa_type | |
expected = [np_scalar(1), None, np_scalar(3), None, | |
np_scalar(np.iinfo(np_scalar).min), | |
np_scalar(np.iinfo(np_scalar).max)] | |
arr = pa.array(seq(expected), type=pa_type) | |
assert len(arr) == 6 | |
assert arr.null_count == 2 | |
assert arr.type == pa_type | |
assert arr.to_pylist() == expected | |
def test_sequence_numpy_integer_inferred(seq, np_scalar_pa_type): | |
np_scalar, pa_type = np_scalar_pa_type | |
expected = [np_scalar(1), None, np_scalar(3), None] | |
expected += [np_scalar(np.iinfo(np_scalar).min), | |
np_scalar(np.iinfo(np_scalar).max)] | |
arr = pa.array(seq(expected)) | |
assert len(arr) == 6 | |
assert arr.null_count == 2 | |
assert arr.type == pa_type | |
assert arr.to_pylist() == expected | |
def test_sequence_custom_integers(seq): | |
expected = [0, 42, 2**33 + 1, -2**63] | |
data = list(map(MyInt, expected)) | |
arr = pa.array(seq(data), type=pa.int64()) | |
assert arr.to_pylist() == expected | |
def test_broken_integers(seq): | |
data = [MyBrokenInt()] | |
with pytest.raises(pa.ArrowInvalid, match="tried to convert to int"): | |
pa.array(seq(data), type=pa.int64()) | |
def test_numpy_scalars_mixed_type(): | |
# ARROW-4324 | |
data = [np.int32(10), np.float32(0.5)] | |
arr = pa.array(data) | |
expected = pa.array([10, 0.5], type="float64") | |
assert arr.equals(expected) | |
# ARROW-9490 | |
data = [np.int8(10), np.float32(0.5)] | |
arr = pa.array(data) | |
expected = pa.array([10, 0.5], type="float32") | |
assert arr.equals(expected) | |
def test_uint64_max_convert(): | |
data = [0, np.iinfo(np.uint64).max] | |
arr = pa.array(data, type=pa.uint64()) | |
expected = pa.array(np.array(data, dtype='uint64')) | |
assert arr.equals(expected) | |
arr_inferred = pa.array(data) | |
assert arr_inferred.equals(expected) | |
def test_signed_integer_overflow(bits): | |
ty = getattr(pa, "int%d" % bits)() | |
# XXX ideally would always raise OverflowError | |
with pytest.raises((OverflowError, pa.ArrowInvalid)): | |
pa.array([2 ** (bits - 1)], ty) | |
with pytest.raises((OverflowError, pa.ArrowInvalid)): | |
pa.array([-2 ** (bits - 1) - 1], ty) | |
def test_unsigned_integer_overflow(bits): | |
ty = getattr(pa, "uint%d" % bits)() | |
# XXX ideally would always raise OverflowError | |
with pytest.raises((OverflowError, pa.ArrowInvalid)): | |
pa.array([2 ** bits], ty) | |
with pytest.raises((OverflowError, pa.ArrowInvalid)): | |
pa.array([-1], ty) | |
def test_integer_from_string_error(seq, typ): | |
# ARROW-9451: pa.array(['1'], type=pa.uint32()) should not succeed | |
with pytest.raises(pa.ArrowInvalid): | |
pa.array(seq(['1']), type=typ) | |
def test_convert_with_mask(): | |
data = [1, 2, 3, 4, 5] | |
mask = np.array([False, True, False, False, True]) | |
result = pa.array(data, mask=mask) | |
expected = pa.array([1, None, 3, 4, None]) | |
assert result.equals(expected) | |
# Mask wrong length | |
with pytest.raises(ValueError): | |
pa.array(data, mask=mask[1:]) | |
def test_garbage_collection(): | |
import gc | |
# Force the cyclic garbage collector to run | |
gc.collect() | |
bytes_before = pa.total_allocated_bytes() | |
pa.array([1, None, 3, None]) | |
gc.collect() | |
assert pa.total_allocated_bytes() == bytes_before | |
def test_sequence_double(): | |
data = [1.5, 1., None, 2.5, None, None] | |
arr = pa.array(data) | |
assert len(arr) == 6 | |
assert arr.null_count == 3 | |
assert arr.type == pa.float64() | |
assert arr.to_pylist() == data | |
def test_double_auto_coerce_from_integer(): | |
# Done as part of ARROW-2814 | |
data = [1.5, 1., None, 2.5, None, None] | |
arr = pa.array(data) | |
data2 = [1.5, 1, None, 2.5, None, None] | |
arr2 = pa.array(data2) | |
assert arr.equals(arr2) | |
data3 = [1, 1.5, None, 2.5, None, None] | |
arr3 = pa.array(data3) | |
data4 = [1., 1.5, None, 2.5, None, None] | |
arr4 = pa.array(data4) | |
assert arr3.equals(arr4) | |
def test_double_integer_coerce_representable_range(): | |
valid_values = [1.5, 1, 2, None, 1 << 53, -(1 << 53)] | |
invalid_values = [1.5, 1, 2, None, (1 << 53) + 1] | |
invalid_values2 = [1.5, 1, 2, None, -((1 << 53) + 1)] | |
# it works | |
pa.array(valid_values) | |
# it fails | |
with pytest.raises(ValueError): | |
pa.array(invalid_values) | |
with pytest.raises(ValueError): | |
pa.array(invalid_values2) | |
def test_float32_integer_coerce_representable_range(): | |
f32 = np.float32 | |
valid_values = [f32(1.5), 1 << 24, -(1 << 24)] | |
invalid_values = [f32(1.5), (1 << 24) + 1] | |
invalid_values2 = [f32(1.5), -((1 << 24) + 1)] | |
# it works | |
pa.array(valid_values, type=pa.float32()) | |
# it fails | |
with pytest.raises(ValueError): | |
pa.array(invalid_values, type=pa.float32()) | |
with pytest.raises(ValueError): | |
pa.array(invalid_values2, type=pa.float32()) | |
def test_mixed_sequence_errors(): | |
with pytest.raises(ValueError, match="tried to convert to boolean"): | |
pa.array([True, 'foo'], type=pa.bool_()) | |
with pytest.raises(ValueError, match="tried to convert to float32"): | |
pa.array([1.5, 'foo'], type=pa.float32()) | |
with pytest.raises(ValueError, match="tried to convert to double"): | |
pa.array([1.5, 'foo']) | |
def test_sequence_numpy_double(seq, np_scalar, pa_type, from_pandas): | |
data = [np_scalar(1.5), np_scalar(1), None, np_scalar(2.5), None, np.nan] | |
arr = pa.array(seq(data), from_pandas=from_pandas) | |
assert len(arr) == 6 | |
if from_pandas: | |
assert arr.null_count == 3 | |
else: | |
assert arr.null_count == 2 | |
if from_pandas: | |
# The NaN is skipped in type inference, otherwise it forces a | |
# float64 promotion | |
assert arr.type == pa_type | |
else: | |
assert arr.type == pa.float64() | |
assert arr.to_pylist()[:4] == data[:4] | |
if from_pandas: | |
assert arr.to_pylist()[5] is None | |
else: | |
assert np.isnan(arr.to_pylist()[5]) | |
def test_ndarray_nested_numpy_double(from_pandas, inner_seq): | |
# ARROW-2806 | |
data = np.array([ | |
inner_seq([1., 2.]), | |
inner_seq([1., 2., 3.]), | |
inner_seq([np.nan]), | |
None | |
], dtype=object) | |
arr = pa.array(data, from_pandas=from_pandas) | |
assert len(arr) == 4 | |
assert arr.null_count == 1 | |
assert arr.type == pa.list_(pa.float64()) | |
if from_pandas: | |
assert arr.to_pylist() == [[1.0, 2.0], [1.0, 2.0, 3.0], [None], None] | |
else: | |
np.testing.assert_equal(arr.to_pylist(), | |
[[1., 2.], [1., 2., 3.], [np.nan], None]) | |
def test_nested_ndarray_in_object_array(): | |
# ARROW-4350 | |
arr = np.empty(2, dtype=object) | |
arr[:] = [np.array([1, 2], dtype=np.int64), | |
np.array([2, 3], dtype=np.int64)] | |
arr2 = np.empty(2, dtype=object) | |
arr2[0] = [3, 4] | |
arr2[1] = [5, 6] | |
expected_type = pa.list_(pa.list_(pa.int64())) | |
assert pa.infer_type([arr]) == expected_type | |
result = pa.array([arr, arr2]) | |
expected = pa.array([[[1, 2], [2, 3]], [[3, 4], [5, 6]]], | |
type=expected_type) | |
assert result.equals(expected) | |
# test case for len-1 arrays to ensure they are interpreted as | |
# sublists and not scalars | |
arr = np.empty(2, dtype=object) | |
arr[:] = [np.array([1]), np.array([2])] | |
result = pa.array([arr, arr]) | |
assert result.to_pylist() == [[[1], [2]], [[1], [2]]] | |
def test_multidimensional_ndarray_as_nested_list(): | |
# TODO(wesm): see ARROW-5645 | |
arr = np.array([[1, 2], [2, 3]], dtype=np.int64) | |
arr2 = np.array([[3, 4], [5, 6]], dtype=np.int64) | |
expected_type = pa.list_(pa.list_(pa.int64())) | |
assert pa.infer_type([arr]) == expected_type | |
result = pa.array([arr, arr2]) | |
expected = pa.array([[[1, 2], [2, 3]], [[3, 4], [5, 6]]], | |
type=expected_type) | |
assert result.equals(expected) | |
def test_list_array_from_object_ndarray(data, value_type): | |
ty = pa.list_(value_type) | |
ndarray = np.array(data, dtype=object) | |
arr = pa.array([ndarray], type=ty) | |
assert arr.type.equals(ty) | |
assert arr.to_pylist() == [data] | |
def test_nested_list_array_from_object_ndarray(data, value_type): | |
ndarray = np.empty(len(data), dtype=object) | |
ndarray[:] = [np.array(item, dtype=object) for item in data] | |
ty = pa.list_(value_type) | |
arr = pa.array([ndarray], type=ty) | |
assert arr.type.equals(ty) | |
assert arr.to_pylist() == [data] | |
def test_array_ignore_nan_from_pandas(): | |
# See ARROW-4324, this reverts logic that was introduced in | |
# ARROW-2240 | |
with pytest.raises(ValueError): | |
pa.array([np.nan, 'str']) | |
arr = pa.array([np.nan, 'str'], from_pandas=True) | |
expected = pa.array([None, 'str']) | |
assert arr.equals(expected) | |
def test_nested_ndarray_different_dtypes(): | |
data = [ | |
np.array([1, 2, 3], dtype='int64'), | |
None, | |
np.array([4, 5, 6], dtype='uint32') | |
] | |
arr = pa.array(data) | |
expected = pa.array([[1, 2, 3], None, [4, 5, 6]], | |
type=pa.list_(pa.int64())) | |
assert arr.equals(expected) | |
t2 = pa.list_(pa.uint32()) | |
arr2 = pa.array(data, type=t2) | |
expected2 = expected.cast(t2) | |
assert arr2.equals(expected2) | |
def test_sequence_unicode(): | |
data = ['foo', 'bar', None, 'mañana'] | |
arr = pa.array(data) | |
assert len(arr) == 4 | |
assert arr.null_count == 1 | |
assert arr.type == pa.string() | |
assert arr.to_pylist() == data | |
def test_sequence_unicode_explicit_type(ty): | |
data = ['foo', 'bar', None, 'mañana'] | |
arr = pa.array(data, type=ty) | |
assert len(arr) == 4 | |
assert arr.null_count == 1 | |
assert arr.type == ty | |
assert arr.to_pylist() == data | |
def check_array_mixed_unicode_bytes(binary_type, string_type): | |
values = ['qux', b'foo', bytearray(b'barz')] | |
b_values = [b'qux', b'foo', b'barz'] | |
u_values = ['qux', 'foo', 'barz'] | |
arr = pa.array(values) | |
expected = pa.array(b_values, type=pa.binary()) | |
assert arr.type == pa.binary() | |
assert arr.equals(expected) | |
arr = pa.array(values, type=binary_type) | |
expected = pa.array(b_values, type=binary_type) | |
assert arr.type == binary_type | |
assert arr.equals(expected) | |
arr = pa.array(values, type=string_type) | |
expected = pa.array(u_values, type=string_type) | |
assert arr.type == string_type | |
assert arr.equals(expected) | |
def test_array_mixed_unicode_bytes(): | |
check_array_mixed_unicode_bytes(pa.binary(), pa.string()) | |
check_array_mixed_unicode_bytes(pa.large_binary(), pa.large_string()) | |
check_array_mixed_unicode_bytes(pa.binary_view(), pa.string_view()) | |
def test_large_binary_array(ty): | |
# Construct a large binary array with more than 4GB of data | |
s = b"0123456789abcdefghijklmnopqrstuvwxyz" * 10 | |
nrepeats = math.ceil((2**32 + 5) / len(s)) | |
data = [s] * nrepeats | |
arr = pa.array(data, type=ty) | |
assert isinstance(arr, pa.Array) | |
assert arr.type == ty | |
assert len(arr) == nrepeats | |
def test_large_binary_value(ty): | |
# Construct a large binary array with a single value larger than 4GB | |
s = b"0123456789abcdefghijklmnopqrstuvwxyz" | |
nrepeats = math.ceil((2**32 + 5) / len(s)) | |
arr = pa.array([b"foo", s * nrepeats, None, b"bar"], type=ty) | |
assert isinstance(arr, pa.Array) | |
assert arr.type == ty | |
assert len(arr) == 4 | |
buf = arr[1].as_buffer() | |
assert len(buf) == len(s) * nrepeats | |
def test_string_too_large(ty): | |
# Construct a binary array with a single value larger than 4GB | |
s = b"0123456789abcdefghijklmnopqrstuvwxyz" | |
nrepeats = math.ceil((2**32 + 5) / len(s)) | |
with pytest.raises(pa.ArrowCapacityError): | |
pa.array([b"foo", s * nrepeats, None, b"bar"], type=ty) | |
def test_sequence_bytes(): | |
u1 = b'ma\xc3\xb1ana' | |
data = [b'foo', | |
memoryview(b'dada'), | |
memoryview(b'd-a-t-a')[::2], # non-contiguous is made contiguous | |
u1.decode('utf-8'), # unicode gets encoded, | |
bytearray(b'bar'), | |
None] | |
for ty in [None, pa.binary(), pa.large_binary(), pa.binary_view()]: | |
arr = pa.array(data, type=ty) | |
assert len(arr) == 6 | |
assert arr.null_count == 1 | |
assert arr.type == ty or pa.binary() | |
assert arr.to_pylist() == [b'foo', b'dada', b'data', u1, b'bar', None] | |
def test_sequence_utf8_to_unicode(ty): | |
# ARROW-1225 | |
data = [b'foo', None, b'bar'] | |
arr = pa.array(data, type=ty) | |
assert arr.type == ty | |
assert arr[0].as_py() == 'foo' | |
# test a non-utf8 unicode string | |
val = ('mañana').encode('utf-16-le') | |
with pytest.raises(pa.ArrowInvalid): | |
pa.array([val], type=ty) | |
def test_sequence_fixed_size_bytes(): | |
data = [b'foof', None, bytearray(b'barb'), b'2346'] | |
arr = pa.array(data, type=pa.binary(4)) | |
assert len(arr) == 4 | |
assert arr.null_count == 1 | |
assert arr.type == pa.binary(4) | |
assert arr.to_pylist() == [b'foof', None, b'barb', b'2346'] | |
def test_fixed_size_bytes_does_not_accept_varying_lengths(): | |
data = [b'foo', None, b'barb', b'2346'] | |
with pytest.raises(pa.ArrowInvalid): | |
pa.array(data, type=pa.binary(4)) | |
def test_fixed_size_binary_length_check(): | |
# ARROW-10193 | |
data = [b'\x19h\r\x9e\x00\x00\x00\x00\x01\x9b\x9fA'] | |
assert len(data[0]) == 12 | |
ty = pa.binary(12) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == data | |
def test_sequence_date(): | |
data = [datetime.date(2000, 1, 1), None, datetime.date(1970, 1, 1), | |
datetime.date(2040, 2, 26)] | |
arr = pa.array(data) | |
assert len(arr) == 4 | |
assert arr.type == pa.date32() | |
assert arr.null_count == 1 | |
assert arr[0].as_py() == datetime.date(2000, 1, 1) | |
assert arr[1].as_py() is None | |
assert arr[2].as_py() == datetime.date(1970, 1, 1) | |
assert arr[3].as_py() == datetime.date(2040, 2, 26) | |
def test_sequence_explicit_types(input): | |
t, ex_values = input | |
data = [datetime.date(2000, 1, 1), None] | |
arr = pa.array(data, type=t) | |
arr2 = pa.array(ex_values, type=t) | |
for x in [arr, arr2]: | |
assert len(x) == 2 | |
assert x.type == t | |
assert x.null_count == 1 | |
assert x[0].as_py() == datetime.date(2000, 1, 1) | |
assert x[1].as_py() is None | |
def test_date32_overflow(): | |
# Overflow | |
data3 = [2**32, None] | |
with pytest.raises((OverflowError, pa.ArrowException)): | |
pa.array(data3, type=pa.date32()) | |
def test_sequence_time_with_timezone(time_type, unit, int_type): | |
def expected_integer_value(t): | |
# only use with utc time object because it doesn't adjust with the | |
# offset | |
units = ['s', 'ms', 'us', 'ns'] | |
multiplier = 10**(units.index(unit) * 3) | |
if t is None: | |
return None | |
seconds = ( | |
t.hour * 3600 + | |
t.minute * 60 + | |
t.second + | |
t.microsecond * 10**-6 | |
) | |
return int(seconds * multiplier) | |
def expected_time_value(t): | |
# only use with utc time object because it doesn't adjust with the | |
# time objects tzdata | |
if unit == 's': | |
return t.replace(microsecond=0) | |
elif unit == 'ms': | |
return t.replace(microsecond=(t.microsecond // 1000) * 1000) | |
else: | |
return t | |
# only timezone naive times are supported in arrow | |
data = [ | |
datetime.time(8, 23, 34, 123456), | |
datetime.time(5, 0, 0, 1000), | |
None, | |
datetime.time(1, 11, 56, 432539), | |
datetime.time(23, 10, 0, 437699) | |
] | |
ty = time_type(unit) | |
arr = pa.array(data, type=ty) | |
assert len(arr) == 5 | |
assert arr.type == ty | |
assert arr.null_count == 1 | |
# test that the underlying integers are UTC values | |
values = arr.cast(int_type) | |
expected = list(map(expected_integer_value, data)) | |
assert values.to_pylist() == expected | |
# test that the scalars are datetime.time objects with UTC timezone | |
assert arr[0].as_py() == expected_time_value(data[0]) | |
assert arr[1].as_py() == expected_time_value(data[1]) | |
assert arr[2].as_py() is None | |
assert arr[3].as_py() == expected_time_value(data[3]) | |
assert arr[4].as_py() == expected_time_value(data[4]) | |
def tz(hours, minutes=0): | |
offset = datetime.timedelta(hours=hours, minutes=minutes) | |
return datetime.timezone(offset) | |
def test_sequence_timestamp(): | |
data = [ | |
datetime.datetime(2007, 7, 13, 1, 23, 34, 123456), | |
None, | |
datetime.datetime(2006, 1, 13, 12, 34, 56, 432539), | |
datetime.datetime(2010, 8, 13, 5, 46, 57, 437699) | |
] | |
arr = pa.array(data) | |
assert len(arr) == 4 | |
assert arr.type == pa.timestamp('us') | |
assert arr.null_count == 1 | |
assert arr[0].as_py() == datetime.datetime(2007, 7, 13, 1, | |
23, 34, 123456) | |
assert arr[1].as_py() is None | |
assert arr[2].as_py() == datetime.datetime(2006, 1, 13, 12, | |
34, 56, 432539) | |
assert arr[3].as_py() == datetime.datetime(2010, 8, 13, 5, | |
46, 57, 437699) | |
def test_sequence_timestamp_with_timezone(timezone, unit): | |
pytz = pytest.importorskip("pytz") | |
def expected_integer_value(dt): | |
units = ['s', 'ms', 'us', 'ns'] | |
multiplier = 10**(units.index(unit) * 3) | |
if dt is None: | |
return None | |
else: | |
# avoid float precision issues | |
ts = decimal.Decimal(str(dt.timestamp())) | |
return int(ts * multiplier) | |
def expected_datetime_value(dt): | |
if dt is None: | |
return None | |
if unit == 's': | |
dt = dt.replace(microsecond=0) | |
elif unit == 'ms': | |
dt = dt.replace(microsecond=(dt.microsecond // 1000) * 1000) | |
# adjust the timezone | |
if timezone is None: | |
# make datetime timezone unaware | |
return dt.replace(tzinfo=None) | |
else: | |
# convert to the expected timezone | |
return dt.astimezone(pytz.timezone(timezone)) | |
data = [ | |
datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive | |
pytz.utc.localize( | |
datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) | |
), | |
None, | |
pytz.timezone('US/Eastern').localize( | |
datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) | |
), | |
pytz.timezone('Europe/Moscow').localize( | |
datetime.datetime(2010, 8, 13, 5, 0, 0, 437699) | |
), | |
] | |
utcdata = [ | |
pytz.utc.localize(data[0]), | |
data[1], | |
None, | |
data[3].astimezone(pytz.utc), | |
data[4].astimezone(pytz.utc), | |
] | |
ty = pa.timestamp(unit, tz=timezone) | |
arr = pa.array(data, type=ty) | |
assert len(arr) == 5 | |
assert arr.type == ty | |
assert arr.null_count == 1 | |
# test that the underlying integers are UTC values | |
values = arr.cast('int64') | |
expected = list(map(expected_integer_value, utcdata)) | |
assert values.to_pylist() == expected | |
# test that the scalars are datetimes with the correct timezone | |
for i in range(len(arr)): | |
assert arr[i].as_py() == expected_datetime_value(utcdata[i]) | |
def test_pyarrow_ignore_timezone_environment_variable(monkeypatch, timezone): | |
# note that any non-empty value will evaluate to true | |
pytest.importorskip("pytz") | |
import pytz | |
monkeypatch.setenv("PYARROW_IGNORE_TIMEZONE", "1") | |
data = [ | |
datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive | |
pytz.utc.localize( | |
datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) | |
), | |
pytz.timezone('US/Eastern').localize( | |
datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) | |
), | |
pytz.timezone('Europe/Moscow').localize( | |
datetime.datetime(2010, 8, 13, 5, 0, 0, 437699) | |
), | |
] | |
expected = [dt.replace(tzinfo=None) for dt in data] | |
if timezone is not None: | |
tzinfo = pytz.timezone(timezone) | |
expected = [tzinfo.fromutc(dt) for dt in expected] | |
ty = pa.timestamp('us', tz=timezone) | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == expected | |
def test_sequence_timestamp_with_timezone_inference(): | |
pytest.importorskip("pytz") | |
import pytz | |
data = [ | |
datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive | |
pytz.utc.localize( | |
datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) | |
), | |
None, | |
pytz.timezone('US/Eastern').localize( | |
datetime.datetime(2006, 1, 13, 12, 34, 56, 432539) | |
), | |
pytz.timezone('Europe/Moscow').localize( | |
datetime.datetime(2010, 8, 13, 5, 0, 0, 437699) | |
), | |
] | |
expected = [ | |
pa.timestamp('us', tz=None), | |
pa.timestamp('us', tz='UTC'), | |
pa.timestamp('us', tz=None), | |
pa.timestamp('us', tz='US/Eastern'), | |
pa.timestamp('us', tz='Europe/Moscow') | |
] | |
for dt, expected_type in zip(data, expected): | |
prepended = [dt] + data | |
arr = pa.array(prepended) | |
assert arr.type == expected_type | |
def test_sequence_timestamp_with_zoneinfo_timezone_inference(): | |
pytest.importorskip("zoneinfo") | |
import zoneinfo | |
data = [ | |
datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive | |
datetime.datetime(2008, 1, 5, 5, 0, 0, 1000, | |
tzinfo=datetime.timezone.utc), | |
None, | |
datetime.datetime(2006, 1, 13, 12, 34, 56, 432539, | |
tzinfo=zoneinfo.ZoneInfo(key='US/Eastern')), | |
datetime.datetime(2010, 8, 13, 5, 0, 0, 437699, | |
tzinfo=zoneinfo.ZoneInfo(key='Europe/Moscow')), | |
] | |
expected = [ | |
pa.timestamp('us', tz=None), | |
pa.timestamp('us', tz='UTC'), | |
pa.timestamp('us', tz=None), | |
pa.timestamp('us', tz='US/Eastern'), | |
pa.timestamp('us', tz='Europe/Moscow') | |
] | |
for dt, expected_type in zip(data, expected): | |
prepended = [dt] + data | |
arr = pa.array(prepended) | |
assert arr.type == expected_type | |
def test_sequence_timestamp_from_mixed_builtin_and_pandas_datetimes(): | |
pytest.importorskip("pytz") | |
import pytz | |
import pandas as pd | |
data = [ | |
pd.Timestamp(1184307814123456123, tz=pytz.timezone('US/Eastern'), | |
unit='ns'), | |
datetime.datetime(2007, 7, 13, 8, 23, 34, 123456), # naive | |
pytz.utc.localize( | |
datetime.datetime(2008, 1, 5, 5, 0, 0, 1000) | |
), | |
None, | |
] | |
utcdata = [ | |
data[0].astimezone(pytz.utc), | |
pytz.utc.localize(data[1]), | |
data[2].astimezone(pytz.utc), | |
None, | |
] | |
arr = pa.array(data) | |
assert arr.type == pa.timestamp('us', tz='US/Eastern') | |
values = arr.cast('int64') | |
expected = [int(dt.timestamp() * 10**6) if dt else None for dt in utcdata] | |
assert values.to_pylist() == expected | |
def test_sequence_timestamp_out_of_bounds_nanosecond(): | |
# https://issues.apache.org/jira/browse/ARROW-9768 | |
# datetime outside of range supported for nanosecond resolution | |
data = [datetime.datetime(2262, 4, 12)] | |
with pytest.raises(ValueError, match="out of bounds"): | |
pa.array(data, type=pa.timestamp('ns')) | |
# with microsecond resolution it works fine | |
arr = pa.array(data, type=pa.timestamp('us')) | |
assert arr.to_pylist() == data | |
# case where the naive is within bounds, but converted to UTC not | |
tz = datetime.timezone(datetime.timedelta(hours=-1)) | |
data = [datetime.datetime(2262, 4, 11, 23, tzinfo=tz)] | |
with pytest.raises(ValueError, match="out of bounds"): | |
pa.array(data, type=pa.timestamp('ns')) | |
arr = pa.array(data, type=pa.timestamp('us')) | |
assert arr.to_pylist()[0] == datetime.datetime(2262, 4, 12) | |
def test_sequence_numpy_timestamp(): | |
data = [ | |
np.datetime64(datetime.datetime(2007, 7, 13, 1, 23, 34, 123456)), | |
None, | |
np.datetime64(datetime.datetime(2006, 1, 13, 12, 34, 56, 432539)), | |
np.datetime64(datetime.datetime(2010, 8, 13, 5, 46, 57, 437699)) | |
] | |
arr = pa.array(data) | |
assert len(arr) == 4 | |
assert arr.type == pa.timestamp('us') | |
assert arr.null_count == 1 | |
assert arr[0].as_py() == datetime.datetime(2007, 7, 13, 1, | |
23, 34, 123456) | |
assert arr[1].as_py() is None | |
assert arr[2].as_py() == datetime.datetime(2006, 1, 13, 12, | |
34, 56, 432539) | |
assert arr[3].as_py() == datetime.datetime(2010, 8, 13, 5, | |
46, 57, 437699) | |
class MyDate(datetime.date): | |
pass | |
class MyDatetime(datetime.datetime): | |
pass | |
class MyTimedelta(datetime.timedelta): | |
pass | |
def test_datetime_subclassing(): | |
data = [ | |
MyDate(2007, 7, 13), | |
] | |
date_type = pa.date32() | |
arr_date = pa.array(data, type=date_type) | |
assert len(arr_date) == 1 | |
assert arr_date.type == date_type | |
assert arr_date[0].as_py() == datetime.date(2007, 7, 13) | |
data = [ | |
MyDatetime(2007, 7, 13, 1, 23, 34, 123456), | |
] | |
s = pa.timestamp('s') | |
ms = pa.timestamp('ms') | |
us = pa.timestamp('us') | |
arr_s = pa.array(data, type=s) | |
assert len(arr_s) == 1 | |
assert arr_s.type == s | |
assert arr_s[0].as_py() == datetime.datetime(2007, 7, 13, 1, | |
23, 34, 0) | |
arr_ms = pa.array(data, type=ms) | |
assert len(arr_ms) == 1 | |
assert arr_ms.type == ms | |
assert arr_ms[0].as_py() == datetime.datetime(2007, 7, 13, 1, | |
23, 34, 123000) | |
arr_us = pa.array(data, type=us) | |
assert len(arr_us) == 1 | |
assert arr_us.type == us | |
assert arr_us[0].as_py() == datetime.datetime(2007, 7, 13, 1, | |
23, 34, 123456) | |
data = [ | |
MyTimedelta(123, 456, 1002), | |
] | |
s = pa.duration('s') | |
ms = pa.duration('ms') | |
us = pa.duration('us') | |
arr_s = pa.array(data) | |
assert len(arr_s) == 1 | |
assert arr_s.type == us | |
assert arr_s[0].as_py() == datetime.timedelta(123, 456, 1002) | |
arr_s = pa.array(data, type=s) | |
assert len(arr_s) == 1 | |
assert arr_s.type == s | |
assert arr_s[0].as_py() == datetime.timedelta(123, 456) | |
arr_ms = pa.array(data, type=ms) | |
assert len(arr_ms) == 1 | |
assert arr_ms.type == ms | |
assert arr_ms[0].as_py() == datetime.timedelta(123, 456, 1000) | |
arr_us = pa.array(data, type=us) | |
assert len(arr_us) == 1 | |
assert arr_us.type == us | |
assert arr_us[0].as_py() == datetime.timedelta(123, 456, 1002) | |
def test_sequence_timestamp_nanoseconds(): | |
inputs = [ | |
[datetime.datetime(2007, 7, 13, 1, 23, 34, 123456)], | |
[MyDatetime(2007, 7, 13, 1, 23, 34, 123456)] | |
] | |
for data in inputs: | |
ns = pa.timestamp('ns') | |
arr_ns = pa.array(data, type=ns) | |
assert len(arr_ns) == 1 | |
assert arr_ns.type == ns | |
assert arr_ns[0].as_py() == datetime.datetime(2007, 7, 13, 1, | |
23, 34, 123456) | |
def test_sequence_timestamp_from_int_with_unit(): | |
# TODO(wesm): This test might be rewritten to assert the actual behavior | |
# when pandas is not installed | |
data = [1] | |
s = pa.timestamp('s') | |
ms = pa.timestamp('ms') | |
us = pa.timestamp('us') | |
ns = pa.timestamp('ns') | |
arr_s = pa.array(data, type=s) | |
assert len(arr_s) == 1 | |
assert arr_s.type == s | |
assert repr(arr_s[0]) == ( | |
"<pyarrow.TimestampScalar: '1970-01-01T00:00:01'>" | |
) | |
assert str(arr_s[0]) == "1970-01-01 00:00:01" | |
arr_ms = pa.array(data, type=ms) | |
assert len(arr_ms) == 1 | |
assert arr_ms.type == ms | |
assert repr(arr_ms[0].as_py()) == ( | |
"datetime.datetime(1970, 1, 1, 0, 0, 0, 1000)" | |
) | |
assert str(arr_ms[0]) == "1970-01-01 00:00:00.001000" | |
arr_us = pa.array(data, type=us) | |
assert len(arr_us) == 1 | |
assert arr_us.type == us | |
assert repr(arr_us[0].as_py()) == ( | |
"datetime.datetime(1970, 1, 1, 0, 0, 0, 1)" | |
) | |
assert str(arr_us[0]) == "1970-01-01 00:00:00.000001" | |
arr_ns = pa.array(data, type=ns) | |
assert len(arr_ns) == 1 | |
assert arr_ns.type == ns | |
assert repr(arr_ns[0].as_py()) == ( | |
"Timestamp('1970-01-01 00:00:00.000000001')" | |
) | |
assert str(arr_ns[0]) == "1970-01-01 00:00:00.000000001" | |
expected_exc = TypeError | |
class CustomClass(): | |
pass | |
for ty in [ns, pa.date32(), pa.date64()]: | |
with pytest.raises(expected_exc): | |
pa.array([1, CustomClass()], type=ty) | |
def test_sequence_duration(np_scalar): | |
td1 = datetime.timedelta(2, 3601, 1) | |
td2 = datetime.timedelta(1, 100, 1000) | |
if np_scalar: | |
data = [np.timedelta64(td1), None, np.timedelta64(td2)] | |
else: | |
data = [td1, None, td2] | |
arr = pa.array(data) | |
assert len(arr) == 3 | |
assert arr.type == pa.duration('us') | |
assert arr.null_count == 1 | |
assert arr[0].as_py() == td1 | |
assert arr[1].as_py() is None | |
assert arr[2].as_py() == td2 | |
def test_sequence_duration_with_unit(unit): | |
data = [ | |
datetime.timedelta(3, 22, 1001), | |
] | |
expected = {'s': datetime.timedelta(3, 22), | |
'ms': datetime.timedelta(3, 22, 1000), | |
'us': datetime.timedelta(3, 22, 1001), | |
'ns': datetime.timedelta(3, 22, 1001)} | |
ty = pa.duration(unit) | |
arr_s = pa.array(data, type=ty) | |
assert len(arr_s) == 1 | |
assert arr_s.type == ty | |
assert arr_s[0].as_py() == expected[unit] | |
def test_sequence_duration_from_int_with_unit(unit): | |
data = [5] | |
ty = pa.duration(unit) | |
arr = pa.array(data, type=ty) | |
assert len(arr) == 1 | |
assert arr.type == ty | |
assert arr[0].value == 5 | |
def test_sequence_duration_nested_lists(): | |
td1 = datetime.timedelta(1, 1, 1000) | |
td2 = datetime.timedelta(1, 100) | |
data = [[td1, None], [td1, td2]] | |
arr = pa.array(data) | |
assert len(arr) == 2 | |
assert arr.type == pa.list_(pa.duration('us')) | |
assert arr.to_pylist() == data | |
def test_sequence_duration_nested_lists_with_explicit_type(factory): | |
td1 = datetime.timedelta(1, 1, 1000) | |
td2 = datetime.timedelta(1, 100) | |
data = [[td1, None], [td1, td2]] | |
arr = pa.array(data, type=factory(pa.duration('ms'))) | |
assert len(arr) == 2 | |
assert arr.type == factory(pa.duration('ms')) | |
assert arr.to_pylist() == data | |
def test_sequence_duration_nested_lists_numpy(): | |
td1 = datetime.timedelta(1, 1, 1000) | |
td2 = datetime.timedelta(1, 100) | |
data = [[np.timedelta64(td1), None], | |
[np.timedelta64(td1), np.timedelta64(td2)]] | |
arr = pa.array(data) | |
assert len(arr) == 2 | |
assert arr.type == pa.list_(pa.duration('us')) | |
assert arr.to_pylist() == [[td1, None], [td1, td2]] | |
data = [np.array([np.timedelta64(td1), None], dtype='timedelta64[us]'), | |
np.array([np.timedelta64(td1), np.timedelta64(td2)])] | |
arr = pa.array(data) | |
assert len(arr) == 2 | |
assert arr.type == pa.list_(pa.duration('us')) | |
assert arr.to_pylist() == [[td1, None], [td1, td2]] | |
def test_sequence_nesting_levels(): | |
data = [1, 2, None] | |
arr = pa.array(data) | |
assert arr.type == pa.int64() | |
assert arr.to_pylist() == data | |
data = [[1], [2], None] | |
arr = pa.array(data) | |
assert arr.type == pa.list_(pa.int64()) | |
assert arr.to_pylist() == data | |
data = [[1], [2, 3, 4], [None]] | |
arr = pa.array(data) | |
assert arr.type == pa.list_(pa.int64()) | |
assert arr.to_pylist() == data | |
data = [None, [[None, 1]], [[2, 3, 4], None], [None]] | |
arr = pa.array(data) | |
assert arr.type == pa.list_(pa.list_(pa.int64())) | |
assert arr.to_pylist() == data | |
exceptions = (pa.ArrowInvalid, pa.ArrowTypeError) | |
# Mixed nesting levels are rejected | |
with pytest.raises(exceptions): | |
pa.array([1, 2, [1]]) | |
with pytest.raises(exceptions): | |
pa.array([1, 2, []]) | |
with pytest.raises(exceptions): | |
pa.array([[1], [2], [None, [1]]]) | |
def test_sequence_mixed_types_fails(): | |
data = ['a', 1, 2.0] | |
with pytest.raises(pa.ArrowTypeError): | |
pa.array(data) | |
def test_sequence_mixed_types_with_specified_type_fails(): | |
data = ['-10', '-5', {'a': 1}, '0', '5', '10'] | |
type = pa.string() | |
with pytest.raises(TypeError): | |
pa.array(data, type=type) | |
def test_sequence_decimal(): | |
data = [decimal.Decimal('1234.183'), decimal.Decimal('8094.234')] | |
for type in [pa.decimal128, pa.decimal256]: | |
arr = pa.array(data, type=type(precision=7, scale=3)) | |
assert arr.to_pylist() == data | |
def test_sequence_decimal_different_precisions(): | |
data = [ | |
decimal.Decimal('1234234983.183'), decimal.Decimal('80943244.234') | |
] | |
for type in [pa.decimal128, pa.decimal256]: | |
arr = pa.array(data, type=type(precision=13, scale=3)) | |
assert arr.to_pylist() == data | |
def test_sequence_decimal_no_scale(): | |
data = [decimal.Decimal('1234234983'), decimal.Decimal('8094324')] | |
for type in [pa.decimal128, pa.decimal256]: | |
arr = pa.array(data, type=type(precision=10)) | |
assert arr.to_pylist() == data | |
def test_sequence_decimal_negative(): | |
data = [decimal.Decimal('-1234.234983'), decimal.Decimal('-8.094324')] | |
for type in [pa.decimal128, pa.decimal256]: | |
arr = pa.array(data, type=type(precision=10, scale=6)) | |
assert arr.to_pylist() == data | |
def test_sequence_decimal_no_whole_part(): | |
data = [decimal.Decimal('-.4234983'), decimal.Decimal('.0103943')] | |
for type in [pa.decimal128, pa.decimal256]: | |
arr = pa.array(data, type=type(precision=7, scale=7)) | |
assert arr.to_pylist() == data | |
def test_sequence_decimal_large_integer(): | |
data = [decimal.Decimal('-394029506937548693.42983'), | |
decimal.Decimal('32358695912932.01033')] | |
for type in [pa.decimal128, pa.decimal256]: | |
arr = pa.array(data, type=type(precision=23, scale=5)) | |
assert arr.to_pylist() == data | |
def test_sequence_decimal_from_integers(): | |
data = [0, 1, -39402950693754869342983] | |
expected = [decimal.Decimal(x) for x in data] | |
for type in [pa.decimal128, pa.decimal256]: | |
arr = pa.array(data, type=type(precision=28, scale=5)) | |
assert arr.to_pylist() == expected | |
def test_sequence_decimal_too_high_precision(): | |
# ARROW-6989 python decimal has too high precision | |
with pytest.raises(ValueError, match="precision out of range"): | |
pa.array([decimal.Decimal('1' * 80)]) | |
def test_sequence_decimal_infer(): | |
for data, typ in [ | |
# simple case | |
(decimal.Decimal('1.234'), pa.decimal128(4, 3)), | |
# trailing zeros | |
(decimal.Decimal('12300'), pa.decimal128(5, 0)), | |
(decimal.Decimal('12300.0'), pa.decimal128(6, 1)), | |
# scientific power notation | |
(decimal.Decimal('1.23E+4'), pa.decimal128(5, 0)), | |
(decimal.Decimal('123E+2'), pa.decimal128(5, 0)), | |
(decimal.Decimal('123E+4'), pa.decimal128(7, 0)), | |
# leading zeros | |
(decimal.Decimal('0.0123'), pa.decimal128(4, 4)), | |
(decimal.Decimal('0.01230'), pa.decimal128(5, 5)), | |
(decimal.Decimal('1.230E-2'), pa.decimal128(5, 5)), | |
]: | |
assert pa.infer_type([data]) == typ | |
arr = pa.array([data]) | |
assert arr.type == typ | |
assert arr.to_pylist()[0] == data | |
def test_sequence_decimal_infer_mixed(): | |
# ARROW-12150 - ensure mixed precision gets correctly inferred to | |
# common type that can hold all input values | |
cases = [ | |
([decimal.Decimal('1.234'), decimal.Decimal('3.456')], | |
pa.decimal128(4, 3)), | |
([decimal.Decimal('1.234'), decimal.Decimal('456.7')], | |
pa.decimal128(6, 3)), | |
([decimal.Decimal('123.4'), decimal.Decimal('4.567')], | |
pa.decimal128(6, 3)), | |
([decimal.Decimal('123e2'), decimal.Decimal('4567e3')], | |
pa.decimal128(7, 0)), | |
([decimal.Decimal('123e4'), decimal.Decimal('4567e2')], | |
pa.decimal128(7, 0)), | |
([decimal.Decimal('0.123'), decimal.Decimal('0.04567')], | |
pa.decimal128(5, 5)), | |
([decimal.Decimal('0.001'), decimal.Decimal('1.01E5')], | |
pa.decimal128(9, 3)), | |
] | |
for data, typ in cases: | |
assert pa.infer_type(data) == typ | |
arr = pa.array(data) | |
assert arr.type == typ | |
assert arr.to_pylist() == data | |
def test_sequence_decimal_given_type(): | |
for data, typs, wrong_typs in [ | |
# simple case | |
( | |
decimal.Decimal('1.234'), | |
[pa.decimal128(4, 3), pa.decimal128(5, 3), pa.decimal128(5, 4)], | |
[pa.decimal128(4, 2), pa.decimal128(4, 4)] | |
), | |
# trailing zeros | |
( | |
decimal.Decimal('12300'), | |
[pa.decimal128(5, 0), pa.decimal128(6, 0), pa.decimal128(3, -2)], | |
[pa.decimal128(4, 0), pa.decimal128(3, -3)] | |
), | |
# scientific power notation | |
( | |
decimal.Decimal('1.23E+4'), | |
[pa.decimal128(5, 0), pa.decimal128(6, 0), pa.decimal128(3, -2)], | |
[pa.decimal128(4, 0), pa.decimal128(3, -3)] | |
), | |
]: | |
for typ in typs: | |
arr = pa.array([data], type=typ) | |
assert arr.type == typ | |
assert arr.to_pylist()[0] == data | |
for typ in wrong_typs: | |
with pytest.raises(ValueError): | |
pa.array([data], type=typ) | |
def test_range_types(): | |
arr1 = pa.array(range(3)) | |
arr2 = pa.array((0, 1, 2)) | |
assert arr1.equals(arr2) | |
def test_empty_range(): | |
arr = pa.array(range(0)) | |
assert len(arr) == 0 | |
assert arr.null_count == 0 | |
assert arr.type == pa.null() | |
assert arr.to_pylist() == [] | |
def test_structarray(): | |
arr = pa.StructArray.from_arrays([], names=[]) | |
assert arr.type == pa.struct([]) | |
assert len(arr) == 0 | |
assert arr.to_pylist() == [] | |
ints = pa.array([None, 2, 3], type=pa.int64()) | |
strs = pa.array(['a', None, 'c'], type=pa.string()) | |
bools = pa.array([True, False, None], type=pa.bool_()) | |
arr = pa.StructArray.from_arrays( | |
[ints, strs, bools], | |
['ints', 'strs', 'bools']) | |
expected = [ | |
{'ints': None, 'strs': 'a', 'bools': True}, | |
{'ints': 2, 'strs': None, 'bools': False}, | |
{'ints': 3, 'strs': 'c', 'bools': None}, | |
] | |
pylist = arr.to_pylist() | |
assert pylist == expected, (pylist, expected) | |
# len(names) != len(arrays) | |
with pytest.raises(ValueError): | |
pa.StructArray.from_arrays([ints], ['ints', 'strs']) | |
def test_struct_from_dicts(): | |
ty = pa.struct([pa.field('a', pa.int32()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_())]) | |
arr = pa.array([], type=ty) | |
assert arr.to_pylist() == [] | |
data = [{'a': 5, 'b': 'foo', 'c': True}, | |
{'a': 6, 'b': 'bar', 'c': False}] | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == data | |
# With omitted values | |
data = [{'a': 5, 'c': True}, | |
None, | |
{}, | |
{'a': None, 'b': 'bar'}] | |
arr = pa.array(data, type=ty) | |
expected = [{'a': 5, 'b': None, 'c': True}, | |
None, | |
{'a': None, 'b': None, 'c': None}, | |
{'a': None, 'b': 'bar', 'c': None}] | |
assert arr.to_pylist() == expected | |
def test_struct_from_dicts_bytes_keys(): | |
# ARROW-6878 | |
ty = pa.struct([pa.field('a', pa.int32()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_())]) | |
arr = pa.array([], type=ty) | |
assert arr.to_pylist() == [] | |
data = [{b'a': 5, b'b': 'foo'}, | |
{b'a': 6, b'c': False}] | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [ | |
{'a': 5, 'b': 'foo', 'c': None}, | |
{'a': 6, 'b': None, 'c': False}, | |
] | |
def test_struct_from_tuples(): | |
ty = pa.struct([pa.field('a', pa.int32()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_())]) | |
data = [(5, 'foo', True), | |
(6, 'bar', False)] | |
expected = [{'a': 5, 'b': 'foo', 'c': True}, | |
{'a': 6, 'b': 'bar', 'c': False}] | |
arr = pa.array(data, type=ty) | |
data_as_ndarray = np.empty(len(data), dtype=object) | |
data_as_ndarray[:] = data | |
arr2 = pa.array(data_as_ndarray, type=ty) | |
assert arr.to_pylist() == expected | |
assert arr.equals(arr2) | |
# With omitted values | |
data = [(5, 'foo', None), | |
None, | |
(6, None, False)] | |
expected = [{'a': 5, 'b': 'foo', 'c': None}, | |
None, | |
{'a': 6, 'b': None, 'c': False}] | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == expected | |
# Invalid tuple size | |
for tup in [(5, 'foo'), (), ('5', 'foo', True, None)]: | |
with pytest.raises(ValueError, match="(?i)tuple size"): | |
pa.array([tup], type=ty) | |
def test_struct_from_list_of_pairs(): | |
ty = pa.struct([ | |
pa.field('a', pa.int32()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_()) | |
]) | |
data = [ | |
[('a', 5), ('b', 'foo'), ('c', True)], | |
[('a', 6), ('b', 'bar'), ('c', False)], | |
None | |
] | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == [ | |
{'a': 5, 'b': 'foo', 'c': True}, | |
{'a': 6, 'b': 'bar', 'c': False}, | |
None | |
] | |
# test with duplicated field names | |
ty = pa.struct([ | |
pa.field('a', pa.int32()), | |
pa.field('a', pa.string()), | |
pa.field('b', pa.bool_()) | |
]) | |
data = [ | |
[('a', 5), ('a', 'foo'), ('b', True)], | |
[('a', 6), ('a', 'bar'), ('b', False)], | |
] | |
arr = pa.array(data, type=ty) | |
with pytest.raises(ValueError): | |
# TODO(kszucs): ARROW-9997 | |
arr.to_pylist() | |
# test with empty elements | |
ty = pa.struct([ | |
pa.field('a', pa.int32()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_()) | |
]) | |
data = [ | |
[], | |
[('a', 5), ('b', 'foo'), ('c', True)], | |
[('a', 2), ('b', 'baz')], | |
[('a', 1), ('b', 'bar'), ('c', False), ('d', 'julia')], | |
] | |
expected = [ | |
{'a': None, 'b': None, 'c': None}, | |
{'a': 5, 'b': 'foo', 'c': True}, | |
{'a': 2, 'b': 'baz', 'c': None}, | |
{'a': 1, 'b': 'bar', 'c': False}, | |
] | |
arr = pa.array(data, type=ty) | |
assert arr.to_pylist() == expected | |
def test_struct_from_list_of_pairs_errors(): | |
ty = pa.struct([ | |
pa.field('a', pa.int32()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_()) | |
]) | |
# test that it raises if the key doesn't match the expected field name | |
data = [ | |
[], | |
[('a', 5), ('c', True), ('b', None)], | |
] | |
msg = "The expected field name is `b` but `c` was given" | |
with pytest.raises(ValueError, match=msg): | |
pa.array(data, type=ty) | |
# test various errors both at the first position and after because of key | |
# type inference | |
template = ( | |
r"Could not convert {} with type {}: was expecting tuple of " | |
r"(key, value) pair" | |
) | |
cases = [ | |
tuple(), # empty key-value pair | |
tuple('a',), # missing value | |
tuple('unknown-key',), # not known field name | |
'string', # not a tuple | |
] | |
for key_value_pair in cases: | |
msg = re.escape(template.format( | |
repr(key_value_pair), type(key_value_pair).__name__ | |
)) | |
with pytest.raises(TypeError, match=msg): | |
pa.array([ | |
[key_value_pair], | |
[('a', 5), ('b', 'foo'), ('c', None)], | |
], type=ty) | |
with pytest.raises(TypeError, match=msg): | |
pa.array([ | |
[('a', 5), ('b', 'foo'), ('c', None)], | |
[key_value_pair], | |
], type=ty) | |
def test_struct_from_mixed_sequence(): | |
# It is forbidden to mix dicts and tuples when initializing a struct array | |
ty = pa.struct([pa.field('a', pa.int32()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_())]) | |
data = [(5, 'foo', True), | |
{'a': 6, 'b': 'bar', 'c': False}] | |
with pytest.raises(TypeError): | |
pa.array(data, type=ty) | |
def test_struct_from_dicts_inference(): | |
expected_type = pa.struct([pa.field('a', pa.int64()), | |
pa.field('b', pa.string()), | |
pa.field('c', pa.bool_())]) | |
data = [{'a': 5, 'b': 'foo', 'c': True}, | |
{'a': 6, 'b': 'bar', 'c': False}] | |
arr = pa.array(data) | |
check_struct_type(arr.type, expected_type) | |
assert arr.to_pylist() == data | |
# With omitted values | |
data = [{'a': 5, 'c': True}, | |
None, | |
{}, | |
{'a': None, 'b': 'bar'}] | |
expected = [{'a': 5, 'b': None, 'c': True}, | |
None, | |
{'a': None, 'b': None, 'c': None}, | |
{'a': None, 'b': 'bar', 'c': None}] | |
arr = pa.array(data) | |
data_as_ndarray = np.empty(len(data), dtype=object) | |
data_as_ndarray[:] = data | |
arr2 = pa.array(data) | |
check_struct_type(arr.type, expected_type) | |
assert arr.to_pylist() == expected | |
assert arr.equals(arr2) | |
# Nested | |
expected_type = pa.struct([ | |
pa.field('a', pa.struct([pa.field('aa', pa.list_(pa.int64())), | |
pa.field('ab', pa.bool_())])), | |
pa.field('b', pa.string())]) | |
data = [{'a': {'aa': [5, 6], 'ab': True}, 'b': 'foo'}, | |
{'a': {'aa': None, 'ab': False}, 'b': None}, | |
{'a': None, 'b': 'bar'}] | |
arr = pa.array(data) | |
assert arr.to_pylist() == data | |
# Edge cases | |
arr = pa.array([{}]) | |
assert arr.type == pa.struct([]) | |
assert arr.to_pylist() == [{}] | |
# Mixing structs and scalars is rejected | |
with pytest.raises((pa.ArrowInvalid, pa.ArrowTypeError)): | |
pa.array([1, {'a': 2}]) | |
def test_structarray_from_arrays_coerce(): | |
# ARROW-1706 | |
ints = [None, 2, 3] | |
strs = ['a', None, 'c'] | |
bools = [True, False, None] | |
ints_nonnull = [1, 2, 3] | |
arrays = [ints, strs, bools, ints_nonnull] | |
result = pa.StructArray.from_arrays(arrays, | |
['ints', 'strs', 'bools', | |
'int_nonnull']) | |
expected = pa.StructArray.from_arrays( | |
[pa.array(ints, type='int64'), | |
pa.array(strs, type='utf8'), | |
pa.array(bools), | |
pa.array(ints_nonnull, type='int64')], | |
['ints', 'strs', 'bools', 'int_nonnull']) | |
with pytest.raises(ValueError): | |
pa.StructArray.from_arrays(arrays) | |
assert result.equals(expected) | |
def test_decimal_array_with_none_and_nan(): | |
values = [decimal.Decimal('1.234'), None, np.nan, decimal.Decimal('nan')] | |
with pytest.raises(TypeError): | |
# ARROW-6227: Without from_pandas=True, NaN is considered a float | |
array = pa.array(values) | |
array = pa.array(values, from_pandas=True) | |
assert array.type == pa.decimal128(4, 3) | |
assert array.to_pylist() == values[:2] + [None, None] | |
array = pa.array(values, type=pa.decimal128(10, 4), from_pandas=True) | |
assert array.to_pylist() == [decimal.Decimal('1.2340'), None, None, None] | |
def test_map_from_dicts(): | |
data = [[{'key': b'a', 'value': 1}, {'key': b'b', 'value': 2}], | |
[{'key': b'c', 'value': 3}], | |
[{'key': b'd', 'value': 4}, {'key': b'e', 'value': 5}, | |
{'key': b'f', 'value': None}], | |
[{'key': b'g', 'value': 7}]] | |
expected = [[(d['key'], d['value']) for d in entry] for entry in data] | |
arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) | |
assert arr.to_pylist() == expected | |
# With omitted values | |
data[1] = None | |
expected[1] = None | |
arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) | |
assert arr.to_pylist() == expected | |
# Invalid dictionary | |
for entry in [[{'value': 5}], [{}], [{'k': 1, 'v': 2}]]: | |
with pytest.raises(ValueError, match="Invalid Map"): | |
pa.array([entry], type=pa.map_('i4', 'i4')) | |
# Invalid dictionary types | |
for entry in [[{'key': '1', 'value': 5}], [{'key': {'value': 2}}]]: | |
with pytest.raises(pa.ArrowInvalid, match="tried to convert to int"): | |
pa.array([entry], type=pa.map_('i4', 'i4')) | |
def test_map_from_tuples(): | |
expected = [[(b'a', 1), (b'b', 2)], | |
[(b'c', 3)], | |
[(b'd', 4), (b'e', 5), (b'f', None)], | |
[(b'g', 7)]] | |
arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) | |
assert arr.to_pylist() == expected | |
# With omitted values | |
expected[1] = None | |
arr = pa.array(expected, type=pa.map_(pa.binary(), pa.int32())) | |
assert arr.to_pylist() == expected | |
# Invalid tuple size | |
for entry in [[(5,)], [()], [('5', 'foo', True)]]: | |
with pytest.raises(ValueError, match="(?i)tuple size"): | |
pa.array([entry], type=pa.map_('i4', 'i4')) | |
def test_dictionary_from_boolean(): | |
typ = pa.dictionary(pa.int8(), value_type=pa.bool_()) | |
a = pa.array([False, False, True, False, True], type=typ) | |
assert isinstance(a.type, pa.DictionaryType) | |
assert a.type.equals(typ) | |
expected_indices = pa.array([0, 0, 1, 0, 1], type=pa.int8()) | |
expected_dictionary = pa.array([False, True], type=pa.bool_()) | |
assert a.indices.equals(expected_indices) | |
assert a.dictionary.equals(expected_dictionary) | |
def test_dictionary_from_integers(value_type): | |
typ = pa.dictionary(pa.int8(), value_type=value_type) | |
a = pa.array([1, 2, 1, 1, 2, 3], type=typ) | |
assert isinstance(a.type, pa.DictionaryType) | |
assert a.type.equals(typ) | |
expected_indices = pa.array([0, 1, 0, 0, 1, 2], type=pa.int8()) | |
expected_dictionary = pa.array([1, 2, 3], type=value_type) | |
assert a.indices.equals(expected_indices) | |
assert a.dictionary.equals(expected_dictionary) | |
def test_dictionary_index_type(input_index_type): | |
# dictionary array is constructed using adaptive index type builder, | |
# but the input index type is considered as the minimal width type to use | |
typ = pa.dictionary(input_index_type, value_type=pa.int64()) | |
arr = pa.array(range(10), type=typ) | |
assert arr.type.equals(typ) | |
def test_dictionary_is_always_adaptive(): | |
# dictionary array is constructed using adaptive index type builder, | |
# meaning that the output index type may be wider than the given index type | |
# since it depends on the input data | |
typ = pa.dictionary(pa.int8(), value_type=pa.int64()) | |
a = pa.array(range(2**7), type=typ) | |
expected = pa.dictionary(pa.int8(), pa.int64()) | |
assert a.type.equals(expected) | |
a = pa.array(range(2**7 + 1), type=typ) | |
expected = pa.dictionary(pa.int16(), pa.int64()) | |
assert a.type.equals(expected) | |
def test_dictionary_from_strings(): | |
for value_type in [pa.binary(), pa.string()]: | |
typ = pa.dictionary(pa.int8(), value_type) | |
a = pa.array(["", "a", "bb", "a", "bb", "ccc"], type=typ) | |
assert isinstance(a.type, pa.DictionaryType) | |
expected_indices = pa.array([0, 1, 2, 1, 2, 3], type=pa.int8()) | |
expected_dictionary = pa.array(["", "a", "bb", "ccc"], type=value_type) | |
assert a.indices.equals(expected_indices) | |
assert a.dictionary.equals(expected_dictionary) | |
# fixed size binary type | |
typ = pa.dictionary(pa.int8(), pa.binary(3)) | |
a = pa.array(["aaa", "aaa", "bbb", "ccc", "bbb"], type=typ) | |
assert isinstance(a.type, pa.DictionaryType) | |
expected_indices = pa.array([0, 0, 1, 2, 1], type=pa.int8()) | |
expected_dictionary = pa.array(["aaa", "bbb", "ccc"], type=pa.binary(3)) | |
assert a.indices.equals(expected_indices) | |
assert a.dictionary.equals(expected_dictionary) | |
def test_duration_array_roundtrip_corner_cases(unit, expected): | |
# Corner case discovered by hypothesis: there were implicit conversions to | |
# unsigned values resulting wrong values with wrong signs. | |
ty = pa.duration(unit) | |
arr = pa.array([-2147483000], type=ty) | |
restored = pa.array(arr.to_pylist(), type=ty) | |
assert arr.equals(restored) | |
expected_list = [expected] | |
if unit == 'ns': | |
# if pandas is available then a pandas Timedelta is returned | |
try: | |
import pandas as pd | |
except ImportError: | |
pass | |
else: | |
expected_list = [pd.Timedelta(-2147483000, unit='ns')] | |
assert restored.to_pylist() == expected_list | |
def test_roundtrip_nanosecond_resolution_pandas_temporal_objects(): | |
# corner case discovered by hypothesis: preserving the nanoseconds on | |
# conversion from a list of Timedelta and Timestamp objects | |
import pandas as pd | |
ty = pa.duration('ns') | |
arr = pa.array([9223371273709551616], type=ty) | |
data = arr.to_pylist() | |
assert isinstance(data[0], pd.Timedelta) | |
restored = pa.array(data, type=ty) | |
assert arr.equals(restored) | |
assert restored.to_pylist() == [ | |
pd.Timedelta(9223371273709551616, unit='ns') | |
] | |
ty = pa.timestamp('ns') | |
arr = pa.array([9223371273709551616], type=ty) | |
data = arr.to_pylist() | |
assert isinstance(data[0], pd.Timestamp) | |
restored = pa.array(data, type=ty) | |
assert arr.equals(restored) | |
assert restored.to_pylist() == [ | |
pd.Timestamp(9223371273709551616, unit='ns') | |
] | |
ty = pa.timestamp('ns', tz='US/Eastern') | |
value = 1604119893000000000 | |
arr = pa.array([value], type=ty) | |
data = arr.to_pylist() | |
assert isinstance(data[0], pd.Timestamp) | |
restored = pa.array(data, type=ty) | |
assert arr.equals(restored) | |
assert restored.to_pylist() == [ | |
pd.Timestamp(value, unit='ns').tz_localize( | |
"UTC").tz_convert('US/Eastern') | |
] | |
def test_array_to_pylist_roundtrip(arr): | |
seq = arr.to_pylist() | |
restored = pa.array(seq, type=arr.type) | |
assert restored.equals(arr) | |
def test_auto_chunking_binary_like(): | |
# single chunk | |
v1 = b'x' * 100000000 | |
v2 = b'x' * 147483646 | |
# single chunk | |
one_chunk_data = [v1] * 20 + [b'', None, v2] | |
arr = pa.array(one_chunk_data, type=pa.binary()) | |
assert isinstance(arr, pa.Array) | |
assert len(arr) == 23 | |
assert arr[20].as_py() == b'' | |
assert arr[21].as_py() is None | |
assert arr[22].as_py() == v2 | |
# two chunks | |
two_chunk_data = one_chunk_data + [b'two'] | |
arr = pa.array(two_chunk_data, type=pa.binary()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert arr.num_chunks == 2 | |
assert len(arr.chunk(0)) == 23 | |
assert len(arr.chunk(1)) == 1 | |
assert arr.chunk(0)[20].as_py() == b'' | |
assert arr.chunk(0)[21].as_py() is None | |
assert arr.chunk(0)[22].as_py() == v2 | |
assert arr.chunk(1).to_pylist() == [b'two'] | |
# three chunks | |
three_chunk_data = one_chunk_data * 2 + [b'three', b'three'] | |
arr = pa.array(three_chunk_data, type=pa.binary()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert arr.num_chunks == 3 | |
assert len(arr.chunk(0)) == 23 | |
assert len(arr.chunk(1)) == 23 | |
assert len(arr.chunk(2)) == 2 | |
for i in range(2): | |
assert arr.chunk(i)[20].as_py() == b'' | |
assert arr.chunk(i)[21].as_py() is None | |
assert arr.chunk(i)[22].as_py() == v2 | |
assert arr.chunk(2).to_pylist() == [b'three', b'three'] | |
def test_auto_chunking_list_of_binary(): | |
# ARROW-6281 | |
vals = [['x' * 1024]] * ((2 << 20) + 1) | |
arr = pa.array(vals) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert arr.num_chunks == 2 | |
assert len(arr.chunk(0)) == 2**21 - 1 | |
assert len(arr.chunk(1)) == 2 | |
assert arr.chunk(1).to_pylist() == [['x' * 1024]] * 2 | |
def test_auto_chunking_list_like(): | |
item = np.ones((2**28,), dtype='uint8') | |
data = [item] * (2**3 - 1) | |
arr = pa.array(data, type=pa.list_(pa.uint8())) | |
assert isinstance(arr, pa.Array) | |
assert len(arr) == 7 | |
item = np.ones((2**28,), dtype='uint8') | |
data = [item] * 2**3 | |
arr = pa.array(data, type=pa.list_(pa.uint8())) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert arr.num_chunks == 2 | |
assert len(arr.chunk(0)) == 7 | |
assert len(arr.chunk(1)) == 1 | |
chunk = arr.chunk(1) | |
scalar = chunk[0] | |
assert isinstance(scalar, pa.ListScalar) | |
expected = pa.array(item, type=pa.uint8()) | |
assert scalar.values == expected | |
def test_auto_chunking_map_type(): | |
# takes ~20 minutes locally | |
ty = pa.map_(pa.int8(), pa.int8()) | |
item = [(1, 1)] * 2**28 | |
data = [item] * 2**3 | |
arr = pa.array(data, type=ty) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr.chunk(0)) == 7 | |
assert len(arr.chunk(1)) == 1 | |
def test_nested_auto_chunking(ty, char): | |
v1 = char * 100000000 | |
v2 = char * 147483646 | |
struct_type = pa.struct([ | |
pa.field('bool', pa.bool_()), | |
pa.field('integer', pa.int64()), | |
pa.field('string-like', ty), | |
]) | |
data = [{'bool': True, 'integer': 1, 'string-like': v1}] * 20 | |
data.append({'bool': True, 'integer': 1, 'string-like': v2}) | |
arr = pa.array(data, type=struct_type) | |
assert isinstance(arr, pa.Array) | |
data.append({'bool': True, 'integer': 1, 'string-like': char}) | |
arr = pa.array(data, type=struct_type) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert arr.num_chunks == 2 | |
assert len(arr.chunk(0)) == 21 | |
assert len(arr.chunk(1)) == 1 | |
assert arr.chunk(1)[0].as_py() == { | |
'bool': True, | |
'integer': 1, | |
'string-like': char | |
} | |
def test_array_from_pylist_data_overflow(): | |
# Regression test for ARROW-12983 | |
# Data buffer overflow - should result in chunked array | |
items = [b'a' * 4096] * (2 ** 19) | |
arr = pa.array(items, type=pa.string()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr) == 2**19 | |
assert len(arr.chunks) > 1 | |
mask = np.zeros(2**19, bool) | |
arr = pa.array(items, mask=mask, type=pa.string()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr) == 2**19 | |
assert len(arr.chunks) > 1 | |
arr = pa.array(items, type=pa.binary()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr) == 2**19 | |
assert len(arr.chunks) > 1 | |
def test_array_from_pylist_offset_overflow(): | |
# Regression test for ARROW-12983 | |
# Offset buffer overflow - should result in chunked array | |
# Note this doesn't apply to primitive arrays | |
items = [b'a'] * (2 ** 31) | |
arr = pa.array(items, type=pa.string()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr) == 2**31 | |
assert len(arr.chunks) > 1 | |
mask = np.zeros(2**31, bool) | |
arr = pa.array(items, mask=mask, type=pa.string()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr) == 2**31 | |
assert len(arr.chunks) > 1 | |
arr = pa.array(items, type=pa.binary()) | |
assert isinstance(arr, pa.ChunkedArray) | |
assert len(arr) == 2**31 | |
assert len(arr.chunks) > 1 | |
def test_array_accepts_pyarrow_scalar(seq, data, scalar_data, value_type): | |
if type(seq(scalar_data)) == set: | |
pytest.skip("The elements in the set get reordered.") | |
expect = pa.array(data, type=value_type) | |
result = pa.array(seq(scalar_data)) | |
assert expect.equals(result) | |
result = pa.array(seq(scalar_data), type=value_type) | |
assert expect.equals(result) | |
def test_array_accepts_pyarrow_scalar_errors(seq): | |
sequence = seq([pa.scalar(1), pa.scalar("a"), pa.scalar(3.0)]) | |
with pytest.raises(pa.ArrowInvalid, | |
match="cannot mix scalars with different types"): | |
pa.array(sequence) | |
sequence = seq([1, pa.scalar("a"), None]) | |
with pytest.raises(pa.ArrowInvalid, | |
match="pyarrow scalars cannot be mixed with other " | |
"Python scalar values currently"): | |
pa.array(sequence) | |
sequence = seq([np.float16("0.1"), pa.scalar("a"), None]) | |
with pytest.raises(pa.ArrowInvalid, | |
match="pyarrow scalars cannot be mixed with other " | |
"Python scalar values currently"): | |
pa.array(sequence) | |
sequence = seq([pa.scalar("a"), np.float16("0.1"), None]) | |
with pytest.raises(pa.ArrowInvalid, | |
match="pyarrow scalars cannot be mixed with other " | |
"Python scalar values currently"): | |
pa.array(sequence) | |
with pytest.raises(pa.ArrowInvalid, | |
match="Cannot append scalar of type string " | |
"to builder for type int32"): | |
pa.array([pa.scalar("a")], type=pa.int32()) | |
with pytest.raises(pa.ArrowInvalid, | |
match="Cannot append scalar of type int64 " | |
"to builder for type null"): | |
pa.array([pa.scalar(1)], type=pa.null()) | |