applied-ai-018's picture
Add files using upload-large-folder tool
ac141ed verified
raw
history blame
188 kB
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import gc
import decimal
import json
import multiprocessing as mp
import sys
import warnings
from collections import OrderedDict
from datetime import date, datetime, time, timedelta, timezone
import hypothesis as h
import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
import pytest
from pyarrow.pandas_compat import get_logical_type, _pandas_api
from pyarrow.tests.util import invoke_script, random_ascii, rands
import pyarrow.tests.strategies as past
import pyarrow.tests.util as test_util
from pyarrow.vendored.version import Version
import pyarrow as pa
try:
from pyarrow import parquet as pq
except ImportError:
pass
try:
import pandas as pd
import pandas.testing as tm
from .pandas_examples import dataframe_with_arrays, dataframe_with_lists
except ImportError:
pass
try:
_np_VisibleDeprecationWarning = np.VisibleDeprecationWarning
except AttributeError:
from numpy.exceptions import (
VisibleDeprecationWarning as _np_VisibleDeprecationWarning
)
# Marks all of the tests in this module
pytestmark = pytest.mark.pandas
def _alltypes_example(size=100):
return pd.DataFrame({
'uint8': np.arange(size, dtype=np.uint8),
'uint16': np.arange(size, dtype=np.uint16),
'uint32': np.arange(size, dtype=np.uint32),
'uint64': np.arange(size, dtype=np.uint64),
'int8': np.arange(size, dtype=np.int16),
'int16': np.arange(size, dtype=np.int16),
'int32': np.arange(size, dtype=np.int32),
'int64': np.arange(size, dtype=np.int64),
'float32': np.arange(size, dtype=np.float32),
'float64': np.arange(size, dtype=np.float64),
'bool': np.random.randn(size) > 0,
'datetime[s]': np.arange("2016-01-01T00:00:00.001", size,
dtype='datetime64[s]'),
'datetime[ms]': np.arange("2016-01-01T00:00:00.001", size,
dtype='datetime64[ms]'),
'datetime[us]': np.arange("2016-01-01T00:00:00.001", size,
dtype='datetime64[us]'),
'datetime[ns]': np.arange("2016-01-01T00:00:00.001", size,
dtype='datetime64[ns]'),
'timedelta64[s]': np.arange(0, size, dtype='timedelta64[s]'),
'timedelta64[ms]': np.arange(0, size, dtype='timedelta64[ms]'),
'timedelta64[us]': np.arange(0, size, dtype='timedelta64[us]'),
'timedelta64[ns]': np.arange(0, size, dtype='timedelta64[ns]'),
'str': [str(x) for x in range(size)],
'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None],
'empty_str': [''] * size
})
def _check_pandas_roundtrip(df, expected=None, use_threads=False,
expected_schema=None,
check_dtype=True, schema=None,
preserve_index=False,
as_batch=False):
klass = pa.RecordBatch if as_batch else pa.Table
table = klass.from_pandas(df, schema=schema,
preserve_index=preserve_index,
nthreads=2 if use_threads else 1)
result = table.to_pandas(use_threads=use_threads)
if expected_schema:
# all occurrences of _check_pandas_roundtrip passes expected_schema
# without the pandas generated key-value metadata
assert table.schema.equals(expected_schema)
if expected is None:
expected = df
for col in expected.columns:
if expected[col].dtype == 'object':
expected[col] = expected[col].replace({np.nan: None})
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "elementwise comparison failed", DeprecationWarning)
tm.assert_frame_equal(result, expected, check_dtype=check_dtype,
check_index_type=('equiv' if preserve_index
else False))
def _check_series_roundtrip(s, type_=None, expected_pa_type=None):
arr = pa.array(s, from_pandas=True, type=type_)
if type_ is not None and expected_pa_type is None:
expected_pa_type = type_
if expected_pa_type is not None:
assert arr.type == expected_pa_type
result = pd.Series(arr.to_pandas(), name=s.name)
tm.assert_series_equal(s, result)
def _check_array_roundtrip(values, expected=None, mask=None,
type=None):
arr = pa.array(values, from_pandas=True, mask=mask, type=type)
result = arr.to_pandas()
values_nulls = pd.isnull(values)
if mask is None:
assert arr.null_count == values_nulls.sum()
else:
assert arr.null_count == (mask | values_nulls).sum()
if expected is None:
if mask is None:
expected = pd.Series(values)
else:
expected = pd.Series(values).copy()
expected[mask.copy()] = None
if expected.dtype == 'object':
expected = expected.replace({np.nan: None})
tm.assert_series_equal(pd.Series(result), expected, check_names=False)
def _check_array_from_pandas_roundtrip(np_array, type=None):
arr = pa.array(np_array, from_pandas=True, type=type)
result = arr.to_pandas()
npt.assert_array_equal(result, np_array)
class TestConvertMetadata:
"""
Conversion tests for Pandas metadata & indices.
"""
def test_non_string_columns(self):
df = pd.DataFrame({0: [1, 2, 3]})
table = pa.Table.from_pandas(df)
assert table.field(0).name == '0'
def test_non_string_columns_with_index(self):
df = pd.DataFrame({0: [1.0, 2.0, 3.0], 1: [4.0, 5.0, 6.0]})
df = df.set_index(0)
# assert that the from_pandas raises the warning
with pytest.warns(UserWarning):
table = pa.Table.from_pandas(df)
assert table.field(0).name == '1'
expected = df.copy()
# non-str index name will be converted to str
expected.index.name = str(expected.index.name)
with pytest.warns(UserWarning):
_check_pandas_roundtrip(df, expected=expected,
preserve_index=True)
def test_from_pandas_with_columns(self):
df = pd.DataFrame({0: [1, 2, 3], 1: [1, 3, 3], 2: [2, 4, 5]},
columns=[1, 0])
table = pa.Table.from_pandas(df, columns=[0, 1])
expected = pa.Table.from_pandas(df[[0, 1]])
assert expected.equals(table)
record_batch_table = pa.RecordBatch.from_pandas(df, columns=[0, 1])
record_batch_expected = pa.RecordBatch.from_pandas(df[[0, 1]])
assert record_batch_expected.equals(record_batch_table)
def test_column_index_names_are_preserved(self):
df = pd.DataFrame({'data': [1, 2, 3]})
df.columns.names = ['a']
_check_pandas_roundtrip(df, preserve_index=True)
def test_column_index_names_with_tz(self):
# ARROW-13756
# Bug if index is timezone aware DataTimeIndex
df = pd.DataFrame(
np.random.randn(5, 3),
columns=pd.date_range("2021-01-01", periods=3, freq="50D", tz="CET")
)
_check_pandas_roundtrip(df, preserve_index=True)
def test_range_index_shortcut(self):
# ARROW-1639
index_name = 'foo'
df = pd.DataFrame({'a': [1, 2, 3, 4]},
index=pd.RangeIndex(0, 8, step=2, name=index_name))
df2 = pd.DataFrame({'a': [4, 5, 6, 7]},
index=pd.RangeIndex(0, 4))
table = pa.Table.from_pandas(df)
table_no_index_name = pa.Table.from_pandas(df2)
# The RangeIndex is tracked in the metadata only
assert len(table.schema) == 1
result = table.to_pandas()
tm.assert_frame_equal(result, df)
assert isinstance(result.index, pd.RangeIndex)
assert _pandas_api.get_rangeindex_attribute(result.index, 'step') == 2
assert result.index.name == index_name
result2 = table_no_index_name.to_pandas()
tm.assert_frame_equal(result2, df2)
assert isinstance(result2.index, pd.RangeIndex)
assert _pandas_api.get_rangeindex_attribute(result2.index, 'step') == 1
assert result2.index.name is None
def test_range_index_force_serialization(self):
# ARROW-5427: preserve_index=True will force the RangeIndex to
# be serialized as a column rather than tracked more
# efficiently as metadata
df = pd.DataFrame({'a': [1, 2, 3, 4]},
index=pd.RangeIndex(0, 8, step=2, name='foo'))
table = pa.Table.from_pandas(df, preserve_index=True)
assert table.num_columns == 2
assert 'foo' in table.column_names
restored = table.to_pandas()
tm.assert_frame_equal(restored, df)
def test_rangeindex_doesnt_warn(self):
# ARROW-5606: pandas 0.25 deprecated private _start/stop/step
# attributes -> can be removed if support < pd 0.25 is dropped
df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
with warnings.catch_warnings():
warnings.simplefilter(action="error")
# make_block deprecation in pandas, still under discussion
# https://github.com/pandas-dev/pandas/pull/56422
# https://github.com/pandas-dev/pandas/issues/40226
warnings.filterwarnings(
"ignore", "make_block is deprecated", DeprecationWarning
)
_check_pandas_roundtrip(df, preserve_index=True)
def test_multiindex_columns(self):
columns = pd.MultiIndex.from_arrays([
['one', 'two'], ['X', 'Y']
])
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns)
_check_pandas_roundtrip(df, preserve_index=True)
def test_multiindex_columns_with_dtypes(self):
columns = pd.MultiIndex.from_arrays(
[
['one', 'two'],
pd.DatetimeIndex(['2017-08-01', '2017-08-02']),
],
names=['level_1', 'level_2'],
)
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns)
_check_pandas_roundtrip(df, preserve_index=True)
def test_multiindex_with_column_dtype_object(self):
# ARROW-3651 & ARROW-9096
# Bug when dtype of the columns is object.
# uinderlying dtype: integer
df = pd.DataFrame([1], columns=pd.Index([1], dtype=object))
_check_pandas_roundtrip(df, preserve_index=True)
# underlying dtype: floating
df = pd.DataFrame([1], columns=pd.Index([1.1], dtype=object))
_check_pandas_roundtrip(df, preserve_index=True)
# underlying dtype: datetime
# ARROW-9096: a simple roundtrip now works
df = pd.DataFrame([1], columns=pd.Index(
[datetime(2018, 1, 1)], dtype="object"))
_check_pandas_roundtrip(df, preserve_index=True)
def test_multiindex_columns_unicode(self):
columns = pd.MultiIndex.from_arrays([['あ', 'い'], ['X', 'Y']])
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns)
_check_pandas_roundtrip(df, preserve_index=True)
def test_multiindex_doesnt_warn(self):
# ARROW-3953: pandas 0.24 rename of MultiIndex labels to codes
columns = pd.MultiIndex.from_arrays([['one', 'two'], ['X', 'Y']])
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns)
with warnings.catch_warnings():
warnings.simplefilter(action="error")
# make_block deprecation in pandas, still under discussion
# https://github.com/pandas-dev/pandas/pull/56422
# https://github.com/pandas-dev/pandas/issues/40226
warnings.filterwarnings(
"ignore", "make_block is deprecated", DeprecationWarning
)
_check_pandas_roundtrip(df, preserve_index=True)
def test_integer_index_column(self):
df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')])
_check_pandas_roundtrip(df, preserve_index=True)
def test_index_metadata_field_name(self):
# test None case, and strangely named non-index columns
df = pd.DataFrame(
[(1, 'a', 3.1), (2, 'b', 2.2), (3, 'c', 1.3)],
index=pd.MultiIndex.from_arrays(
[['c', 'b', 'a'], [3, 2, 1]],
names=[None, 'foo']
),
columns=['a', None, '__index_level_0__'],
)
with pytest.warns(UserWarning):
t = pa.Table.from_pandas(df, preserve_index=True)
js = t.schema.pandas_metadata
col1, col2, col3, idx0, foo = js['columns']
assert col1['name'] == 'a'
assert col1['name'] == col1['field_name']
assert col2['name'] is None
assert col2['field_name'] == 'None'
assert col3['name'] == '__index_level_0__'
assert col3['name'] == col3['field_name']
idx0_descr, foo_descr = js['index_columns']
assert idx0_descr == '__index_level_0__'
assert idx0['field_name'] == idx0_descr
assert idx0['name'] is None
assert foo_descr == 'foo'
assert foo['field_name'] == foo_descr
assert foo['name'] == foo_descr
def test_categorical_column_index(self):
df = pd.DataFrame(
[(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)],
columns=pd.Index(list('def'), dtype='category')
)
t = pa.Table.from_pandas(df, preserve_index=True)
js = t.schema.pandas_metadata
column_indexes, = js['column_indexes']
assert column_indexes['name'] is None
assert column_indexes['pandas_type'] == 'categorical'
assert column_indexes['numpy_type'] == 'int8'
md = column_indexes['metadata']
assert md['num_categories'] == 3
assert md['ordered'] is False
def test_string_column_index(self):
df = pd.DataFrame(
[(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)],
columns=pd.Index(list('def'), name='stringz')
)
t = pa.Table.from_pandas(df, preserve_index=True)
js = t.schema.pandas_metadata
column_indexes, = js['column_indexes']
assert column_indexes['name'] == 'stringz'
assert column_indexes['name'] == column_indexes['field_name']
assert column_indexes['numpy_type'] == 'object'
assert column_indexes['pandas_type'] == 'unicode'
md = column_indexes['metadata']
assert len(md) == 1
assert md['encoding'] == 'UTF-8'
def test_datetimetz_column_index(self):
df = pd.DataFrame(
[(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)],
columns=pd.date_range(
start='2017-01-01', periods=3, tz='America/New_York'
)
)
t = pa.Table.from_pandas(df, preserve_index=True)
js = t.schema.pandas_metadata
column_indexes, = js['column_indexes']
assert column_indexes['name'] is None
assert column_indexes['pandas_type'] == 'datetimetz'
assert column_indexes['numpy_type'] == 'datetime64[ns]'
md = column_indexes['metadata']
assert md['timezone'] == 'America/New_York'
def test_datetimetz_row_index(self):
df = pd.DataFrame({
'a': pd.date_range(
start='2017-01-01', periods=3, tz='America/New_York'
)
})
df = df.set_index('a')
_check_pandas_roundtrip(df, preserve_index=True)
def test_categorical_row_index(self):
df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]})
df['a'] = df.a.astype('category')
df = df.set_index('a')
_check_pandas_roundtrip(df, preserve_index=True)
def test_duplicate_column_names_does_not_crash(self):
df = pd.DataFrame([(1, 'a'), (2, 'b')], columns=list('aa'))
with pytest.raises(ValueError):
pa.Table.from_pandas(df)
def test_dictionary_indices_boundscheck(self):
# ARROW-1658. No validation of indices leads to segfaults in pandas
indices = [[0, 1], [0, -1]]
for inds in indices:
arr = pa.DictionaryArray.from_arrays(inds, ['a'], safe=False)
batch = pa.RecordBatch.from_arrays([arr], ['foo'])
table = pa.Table.from_batches([batch, batch, batch])
with pytest.raises(IndexError):
arr.to_pandas()
with pytest.raises(IndexError):
table.to_pandas()
def test_unicode_with_unicode_column_and_index(self):
df = pd.DataFrame({'あ': ['い']}, index=['う'])
_check_pandas_roundtrip(df, preserve_index=True)
def test_mixed_column_names(self):
# mixed type column names are not reconstructed exactly
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
for cols in [['あ', b'a'], [1, '2'], [1, 1.5]]:
df.columns = pd.Index(cols, dtype=object)
# assert that the from_pandas raises the warning
with pytest.warns(UserWarning):
pa.Table.from_pandas(df)
expected = df.copy()
expected.columns = df.columns.values.astype(str)
with pytest.warns(UserWarning):
_check_pandas_roundtrip(df, expected=expected,
preserve_index=True)
def test_binary_column_name(self):
if Version("2.0.0") <= Version(pd.__version__) < Version("3.0.0"):
# TODO: regression in pandas, hopefully fixed in next version
# https://issues.apache.org/jira/browse/ARROW-18394
# https://github.com/pandas-dev/pandas/issues/50127
pytest.skip("Regression in pandas 2.0.0")
column_data = ['い']
key = 'あ'.encode()
data = {key: column_data}
df = pd.DataFrame(data)
# we can't use _check_pandas_roundtrip here because our metadata
# is always decoded as utf8: even if binary goes in, utf8 comes out
t = pa.Table.from_pandas(df, preserve_index=True)
df2 = t.to_pandas()
assert df.values[0] == df2.values[0]
assert df.index.values[0] == df2.index.values[0]
assert df.columns[0] == key
def test_multiindex_duplicate_values(self):
num_rows = 3
numbers = list(range(num_rows))
index = pd.MultiIndex.from_arrays(
[['foo', 'foo', 'bar'], numbers],
names=['foobar', 'some_numbers'],
)
df = pd.DataFrame({'numbers': numbers}, index=index)
_check_pandas_roundtrip(df, preserve_index=True)
def test_metadata_with_mixed_types(self):
df = pd.DataFrame({'data': [b'some_bytes', 'some_unicode']})
table = pa.Table.from_pandas(df)
js = table.schema.pandas_metadata
assert 'mixed' not in js
data_column = js['columns'][0]
assert data_column['pandas_type'] == 'bytes'
assert data_column['numpy_type'] == 'object'
def test_ignore_metadata(self):
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['foo', 'bar', 'baz']},
index=['one', 'two', 'three'])
table = pa.Table.from_pandas(df)
result = table.to_pandas(ignore_metadata=True)
expected = (table.cast(table.schema.remove_metadata())
.to_pandas())
tm.assert_frame_equal(result, expected)
def test_list_metadata(self):
df = pd.DataFrame({'data': [[1], [2, 3, 4], [5] * 7]})
schema = pa.schema([pa.field('data', type=pa.list_(pa.int64()))])
table = pa.Table.from_pandas(df, schema=schema)
js = table.schema.pandas_metadata
assert 'mixed' not in js
data_column = js['columns'][0]
assert data_column['pandas_type'] == 'list[int64]'
assert data_column['numpy_type'] == 'object'
def test_struct_metadata(self):
df = pd.DataFrame({'dicts': [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]})
table = pa.Table.from_pandas(df)
pandas_metadata = table.schema.pandas_metadata
assert pandas_metadata['columns'][0]['pandas_type'] == 'object'
def test_decimal_metadata(self):
expected = pd.DataFrame({
'decimals': [
decimal.Decimal('394092382910493.12341234678'),
-decimal.Decimal('314292388910493.12343437128'),
]
})
table = pa.Table.from_pandas(expected)
js = table.schema.pandas_metadata
assert 'mixed' not in js
data_column = js['columns'][0]
assert data_column['pandas_type'] == 'decimal'
assert data_column['numpy_type'] == 'object'
assert data_column['metadata'] == {'precision': 26, 'scale': 11}
def test_table_column_subset_metadata(self):
# ARROW-1883
# non-default index
for index in [
pd.Index(['a', 'b', 'c'], name='index'),
pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')]:
df = pd.DataFrame({'a': [1, 2, 3],
'b': [.1, .2, .3]}, index=index)
table = pa.Table.from_pandas(df)
table_subset = table.remove_column(1)
result = table_subset.to_pandas()
expected = df[['a']]
if isinstance(df.index, pd.DatetimeIndex):
df.index.freq = None
tm.assert_frame_equal(result, expected)
table_subset2 = table_subset.remove_column(1)
result = table_subset2.to_pandas()
tm.assert_frame_equal(result, df[['a']].reset_index(drop=True))
def test_to_pandas_column_subset_multiindex(self):
# ARROW-10122
df = pd.DataFrame(
{"first": list(range(5)),
"second": list(range(5)),
"value": np.arange(5)}
)
table = pa.Table.from_pandas(df.set_index(["first", "second"]))
subset = table.select(["first", "value"])
result = subset.to_pandas()
expected = df[["first", "value"]].set_index("first")
tm.assert_frame_equal(result, expected)
def test_empty_list_metadata(self):
# Create table with array of empty lists, forced to have type
# list(string) in pyarrow
c1 = [["test"], ["a", "b"], None]
c2 = [[], [], []]
arrays = OrderedDict([
('c1', pa.array(c1, type=pa.list_(pa.string()))),
('c2', pa.array(c2, type=pa.list_(pa.string()))),
])
rb = pa.RecordBatch.from_arrays(
list(arrays.values()),
list(arrays.keys())
)
tbl = pa.Table.from_batches([rb])
# First roundtrip changes schema, because pandas cannot preserve the
# type of empty lists
df = tbl.to_pandas()
tbl2 = pa.Table.from_pandas(df)
md2 = tbl2.schema.pandas_metadata
# Second roundtrip
df2 = tbl2.to_pandas()
expected = pd.DataFrame(OrderedDict([('c1', c1), ('c2', c2)]))
tm.assert_frame_equal(df2, expected)
assert md2['columns'] == [
{
'name': 'c1',
'field_name': 'c1',
'metadata': None,
'numpy_type': 'object',
'pandas_type': 'list[unicode]',
},
{
'name': 'c2',
'field_name': 'c2',
'metadata': None,
'numpy_type': 'object',
'pandas_type': 'list[empty]',
}
]
def test_metadata_pandas_version(self):
df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]})
table = pa.Table.from_pandas(df)
assert table.schema.pandas_metadata['pandas_version'] is not None
def test_mismatch_metadata_schema(self):
# ARROW-10511
# It is possible that the metadata and actual schema is not fully
# matching (eg no timezone information for tz-aware column)
# -> to_pandas() conversion should not fail on that
df = pd.DataFrame({"datetime": pd.date_range("2020-01-01", periods=3)})
# OPTION 1: casting after conversion
table = pa.Table.from_pandas(df)
# cast the "datetime" column to be tz-aware
new_col = table["datetime"].cast(pa.timestamp('ns', tz="UTC"))
new_table1 = table.set_column(
0, pa.field("datetime", new_col.type), new_col
)
# OPTION 2: specify schema during conversion
schema = pa.schema([("datetime", pa.timestamp('ns', tz="UTC"))])
new_table2 = pa.Table.from_pandas(df, schema=schema)
expected = df.copy()
expected["datetime"] = expected["datetime"].dt.tz_localize("UTC")
for new_table in [new_table1, new_table2]:
# ensure the new table still has the pandas metadata
assert new_table.schema.pandas_metadata is not None
# convert to pandas
result = new_table.to_pandas()
tm.assert_frame_equal(result, expected)
class TestConvertPrimitiveTypes:
"""
Conversion tests for primitive (e.g. numeric) types.
"""
def test_float_no_nulls(self):
data = {}
fields = []
dtypes = [('f2', pa.float16()),
('f4', pa.float32()),
('f8', pa.float64())]
num_values = 100
for numpy_dtype, arrow_dtype in dtypes:
values = np.random.randn(num_values)
data[numpy_dtype] = values.astype(numpy_dtype)
fields.append(pa.field(numpy_dtype, arrow_dtype))
df = pd.DataFrame(data)
schema = pa.schema(fields)
_check_pandas_roundtrip(df, expected_schema=schema)
def test_float_nulls(self):
num_values = 100
null_mask = np.random.randint(0, 10, size=num_values) < 3
dtypes = [('f2', pa.float16()),
('f4', pa.float32()),
('f8', pa.float64())]
names = ['f2', 'f4', 'f8']
expected_cols = []
arrays = []
fields = []
for name, arrow_dtype in dtypes:
values = np.random.randn(num_values).astype(name)
arr = pa.array(values, from_pandas=True, mask=null_mask)
arrays.append(arr)
fields.append(pa.field(name, arrow_dtype))
values[null_mask] = np.nan
expected_cols.append(values)
ex_frame = pd.DataFrame(dict(zip(names, expected_cols)),
columns=names)
table = pa.Table.from_arrays(arrays, names)
assert table.schema.equals(pa.schema(fields))
result = table.to_pandas()
tm.assert_frame_equal(result, ex_frame)
def test_float_nulls_to_ints(self):
# ARROW-2135
df = pd.DataFrame({"a": [1.0, 2.0, np.nan]})
schema = pa.schema([pa.field("a", pa.int16(), nullable=True)])
table = pa.Table.from_pandas(df, schema=schema, safe=False)
assert table[0].to_pylist() == [1, 2, None]
tm.assert_frame_equal(df, table.to_pandas())
def test_float_nulls_to_boolean(self):
s = pd.Series([0.0, 1.0, 2.0, None, -3.0])
expected = pd.Series([False, True, True, None, True])
_check_array_roundtrip(s, expected=expected, type=pa.bool_())
def test_series_from_pandas_false_respected(self):
# Check that explicit from_pandas=False is respected
s = pd.Series([0.0, np.nan])
arr = pa.array(s, from_pandas=False)
assert arr.null_count == 0
assert np.isnan(arr[1].as_py())
def test_integer_no_nulls(self):
data = OrderedDict()
fields = []
numpy_dtypes = [
('i1', pa.int8()), ('i2', pa.int16()),
('i4', pa.int32()), ('i8', pa.int64()),
('u1', pa.uint8()), ('u2', pa.uint16()),
('u4', pa.uint32()), ('u8', pa.uint64()),
('longlong', pa.int64()), ('ulonglong', pa.uint64())
]
num_values = 100
for dtype, arrow_dtype in numpy_dtypes:
info = np.iinfo(dtype)
values = np.random.randint(max(info.min, np.iinfo(np.int_).min),
min(info.max, np.iinfo(np.int_).max),
size=num_values)
data[dtype] = values.astype(dtype)
fields.append(pa.field(dtype, arrow_dtype))
df = pd.DataFrame(data)
schema = pa.schema(fields)
_check_pandas_roundtrip(df, expected_schema=schema)
def test_all_integer_types(self):
# Test all Numpy integer aliases
data = OrderedDict()
numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8',
'byte', 'ubyte', 'short', 'ushort', 'intc', 'uintc',
'int_', 'uint', 'longlong', 'ulonglong']
for dtype in numpy_dtypes:
data[dtype] = np.arange(12, dtype=dtype)
df = pd.DataFrame(data)
_check_pandas_roundtrip(df)
# Do the same with pa.array()
# (for some reason, it doesn't use the same code paths at all)
for np_arr in data.values():
arr = pa.array(np_arr)
assert arr.to_pylist() == np_arr.tolist()
def test_integer_byteorder(self):
# Byteswapped arrays are not supported yet
int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']
for dt in int_dtypes:
for order in '=<>':
data = np.array([1, 2, 42], dtype=order + dt)
for np_arr in (data, data[::2]):
if data.dtype.isnative:
arr = pa.array(data)
assert arr.to_pylist() == data.tolist()
else:
with pytest.raises(NotImplementedError):
arr = pa.array(data)
def test_integer_with_nulls(self):
# pandas requires upcast to float dtype
int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']
num_values = 100
null_mask = np.random.randint(0, 10, size=num_values) < 3
expected_cols = []
arrays = []
for name in int_dtypes:
values = np.random.randint(0, 100, size=num_values)
arr = pa.array(values, mask=null_mask)
arrays.append(arr)
expected = values.astype('f8')
expected[null_mask] = np.nan
expected_cols.append(expected)
ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)),
columns=int_dtypes)
table = pa.Table.from_arrays(arrays, int_dtypes)
result = table.to_pandas()
tm.assert_frame_equal(result, ex_frame)
def test_array_from_pandas_type_cast(self):
arr = np.arange(10, dtype='int64')
target_type = pa.int8()
result = pa.array(arr, type=target_type)
expected = pa.array(arr.astype('int8'))
assert result.equals(expected)
def test_boolean_no_nulls(self):
num_values = 100
np.random.seed(0)
df = pd.DataFrame({'bools': np.random.randn(num_values) > 0})
field = pa.field('bools', pa.bool_())
schema = pa.schema([field])
_check_pandas_roundtrip(df, expected_schema=schema)
def test_boolean_nulls(self):
# pandas requires upcast to object dtype
num_values = 100
np.random.seed(0)
mask = np.random.randint(0, 10, size=num_values) < 3
values = np.random.randint(0, 10, size=num_values) < 5
arr = pa.array(values, mask=mask)
expected = values.astype(object)
expected[mask] = None
field = pa.field('bools', pa.bool_())
schema = pa.schema([field])
ex_frame = pd.DataFrame({'bools': expected})
table = pa.Table.from_arrays([arr], ['bools'])
assert table.schema.equals(schema)
result = table.to_pandas()
tm.assert_frame_equal(result, ex_frame)
def test_boolean_to_int(self):
# test from dtype=bool
s = pd.Series([True, True, False, True, True] * 2)
expected = pd.Series([1, 1, 0, 1, 1] * 2)
_check_array_roundtrip(s, expected=expected, type=pa.int64())
def test_boolean_objects_to_int(self):
# test from dtype=object
s = pd.Series([True, True, False, True, True] * 2, dtype=object)
expected = pd.Series([1, 1, 0, 1, 1] * 2)
expected_msg = 'Expected integer, got bool'
with pytest.raises(pa.ArrowTypeError, match=expected_msg):
_check_array_roundtrip(s, expected=expected, type=pa.int64())
def test_boolean_nulls_to_float(self):
# test from dtype=object
s = pd.Series([True, True, False, None, True] * 2)
expected = pd.Series([1.0, 1.0, 0.0, None, 1.0] * 2)
_check_array_roundtrip(s, expected=expected, type=pa.float64())
def test_boolean_multiple_columns(self):
# ARROW-6325 (multiple columns resulting in strided conversion)
df = pd.DataFrame(np.ones((3, 2), dtype='bool'), columns=['a', 'b'])
_check_pandas_roundtrip(df)
def test_float_object_nulls(self):
arr = np.array([None, 1.5, np.float64(3.5)] * 5, dtype=object)
df = pd.DataFrame({'floats': arr})
expected = pd.DataFrame({'floats': pd.to_numeric(arr)})
field = pa.field('floats', pa.float64())
schema = pa.schema([field])
_check_pandas_roundtrip(df, expected=expected,
expected_schema=schema)
def test_float_with_null_as_integer(self):
# ARROW-2298
s = pd.Series([np.nan, 1., 2., np.nan])
types = [pa.int8(), pa.int16(), pa.int32(), pa.int64(),
pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()]
for ty in types:
result = pa.array(s, type=ty)
expected = pa.array([None, 1, 2, None], type=ty)
assert result.equals(expected)
df = pd.DataFrame({'has_nulls': s})
schema = pa.schema([pa.field('has_nulls', ty)])
result = pa.Table.from_pandas(df, schema=schema,
preserve_index=False)
assert result[0].chunk(0).equals(expected)
def test_int_object_nulls(self):
arr = np.array([None, 1, np.int64(3)] * 5, dtype=object)
df = pd.DataFrame({'ints': arr})
expected = pd.DataFrame({'ints': pd.to_numeric(arr)})
field = pa.field('ints', pa.int64())
schema = pa.schema([field])
_check_pandas_roundtrip(df, expected=expected,
expected_schema=schema)
def test_boolean_object_nulls(self):
arr = np.array([False, None, True] * 100, dtype=object)
df = pd.DataFrame({'bools': arr})
field = pa.field('bools', pa.bool_())
schema = pa.schema([field])
_check_pandas_roundtrip(df, expected_schema=schema)
def test_all_nulls_cast_numeric(self):
arr = np.array([None], dtype=object)
def _check_type(t):
a2 = pa.array(arr, type=t)
assert a2.type == t
assert a2[0].as_py() is None
_check_type(pa.int32())
_check_type(pa.float64())
def test_half_floats_from_numpy(self):
arr = np.array([1.5, np.nan], dtype=np.float16)
a = pa.array(arr, type=pa.float16())
x, y = a.to_pylist()
assert isinstance(x, np.float16)
assert x == 1.5
assert isinstance(y, np.float16)
assert np.isnan(y)
a = pa.array(arr, type=pa.float16(), from_pandas=True)
x, y = a.to_pylist()
assert isinstance(x, np.float16)
assert x == 1.5
assert y is None
@pytest.mark.parametrize('dtype',
['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'])
def test_array_integer_object_nulls_option(dtype):
num_values = 100
null_mask = np.random.randint(0, 10, size=num_values) < 3
values = np.random.randint(0, 100, size=num_values, dtype=dtype)
array = pa.array(values, mask=null_mask)
if null_mask.any():
expected = values.astype('O')
expected[null_mask] = None
else:
expected = values
result = array.to_pandas(integer_object_nulls=True)
np.testing.assert_equal(result, expected)
@pytest.mark.parametrize('dtype',
['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'])
def test_table_integer_object_nulls_option(dtype):
num_values = 100
null_mask = np.random.randint(0, 10, size=num_values) < 3
values = np.random.randint(0, 100, size=num_values, dtype=dtype)
array = pa.array(values, mask=null_mask)
if null_mask.any():
expected = values.astype('O')
expected[null_mask] = None
else:
expected = values
expected = pd.DataFrame({dtype: expected})
table = pa.Table.from_arrays([array], [dtype])
result = table.to_pandas(integer_object_nulls=True)
tm.assert_frame_equal(result, expected)
class TestConvertDateTimeLikeTypes:
"""
Conversion tests for datetime- and timestamp-like types (date64, etc.).
"""
def test_timestamps_notimezone_no_nulls(self):
df = pd.DataFrame({
'datetime64': np.array([
'2007-07-13T01:23:34.123456789',
'2006-01-13T12:34:56.432539784',
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ns]')
})
field = pa.field('datetime64', pa.timestamp('ns'))
schema = pa.schema([field])
_check_pandas_roundtrip(
df,
expected_schema=schema,
)
def test_timestamps_notimezone_nulls(self):
df = pd.DataFrame({
'datetime64': np.array([
'2007-07-13T01:23:34.123456789',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ns]')
})
field = pa.field('datetime64', pa.timestamp('ns'))
schema = pa.schema([field])
_check_pandas_roundtrip(
df,
expected_schema=schema,
)
@pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns'])
def test_timestamps_with_timezone(self, unit):
if Version(pd.__version__) < Version("2.0.0") and unit != 'ns':
pytest.skip("pandas < 2.0 only supports nanosecond datetime64")
df = pd.DataFrame({
'datetime64': np.array([
'2007-07-13T01:23:34.123',
'2006-01-13T12:34:56.432',
'2010-08-13T05:46:57.437'],
dtype=f'datetime64[{unit}]')
})
df['datetime64'] = df['datetime64'].dt.tz_localize('US/Eastern')
_check_pandas_roundtrip(df)
_check_series_roundtrip(df['datetime64'])
# drop-in a null
df = pd.DataFrame({
'datetime64': np.array([
'2007-07-13T01:23:34.123456789',
None,
'2006-01-13T12:34:56.432539784',
'2010-08-13T05:46:57.437699912'],
dtype=f'datetime64[{unit}]')
})
df['datetime64'] = df['datetime64'].dt.tz_localize('US/Eastern')
_check_pandas_roundtrip(df)
def test_python_datetime(self):
# ARROW-2106
date_array = [datetime.today() + timedelta(days=x) for x in range(10)]
df = pd.DataFrame({
'datetime': pd.Series(date_array, dtype=object)
})
table = pa.Table.from_pandas(df)
assert isinstance(table[0].chunk(0), pa.TimestampArray)
result = table.to_pandas()
# Pandas v2 defaults to [ns], but Arrow defaults to [us] time units
# so we need to cast the pandas dtype. Pandas v1 will always silently
# coerce to [ns] due to lack of non-[ns] support.
expected_df = pd.DataFrame({
'datetime': pd.Series(date_array, dtype='datetime64[us]')
})
tm.assert_frame_equal(expected_df, result)
def test_python_datetime_with_pytz_tzinfo(self):
pytz = pytest.importorskip("pytz")
for tz in [pytz.utc, pytz.timezone('US/Eastern'), pytz.FixedOffset(1)]:
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz)]
df = pd.DataFrame({'datetime': values})
_check_pandas_roundtrip(df)
@h.given(st.none() | past.timezones)
@h.settings(deadline=None)
def test_python_datetime_with_pytz_timezone(self, tz):
if str(tz) in ["build/etc/localtime", "Factory"]:
pytest.skip("Localtime timezone not supported")
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz)]
df = pd.DataFrame({'datetime': values})
_check_pandas_roundtrip(df, check_dtype=False)
def test_python_datetime_with_timezone_tzinfo(self):
pytz = pytest.importorskip("pytz")
from datetime import timezone
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=timezone.utc)]
# also test with index to ensure both paths roundtrip (ARROW-9962)
df = pd.DataFrame({'datetime': values}, index=values)
_check_pandas_roundtrip(df, preserve_index=True)
# datetime.timezone is going to be pytz.FixedOffset
hours = 1
tz_timezone = timezone(timedelta(hours=hours))
tz_pytz = pytz.FixedOffset(hours * 60)
values = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz_timezone)]
values_exp = [datetime(2018, 1, 1, 12, 23, 45, tzinfo=tz_pytz)]
df = pd.DataFrame({'datetime': values}, index=values)
df_exp = pd.DataFrame({'datetime': values_exp}, index=values_exp)
_check_pandas_roundtrip(df, expected=df_exp, preserve_index=True)
def test_python_datetime_subclass(self):
class MyDatetime(datetime):
# see https://github.com/pandas-dev/pandas/issues/21142
nanosecond = 0.0
date_array = [MyDatetime(2000, 1, 1, 1, 1, 1)]
df = pd.DataFrame({"datetime": pd.Series(date_array, dtype=object)})
table = pa.Table.from_pandas(df)
assert isinstance(table[0].chunk(0), pa.TimestampArray)
result = table.to_pandas()
# Pandas v2 defaults to [ns], but Arrow defaults to [us] time units
# so we need to cast the pandas dtype. Pandas v1 will always silently
# coerce to [ns] due to lack of non-[ns] support.
expected_df = pd.DataFrame(
{"datetime": pd.Series(date_array, dtype='datetime64[us]')})
# https://github.com/pandas-dev/pandas/issues/21142
expected_df["datetime"] = pd.to_datetime(expected_df["datetime"])
tm.assert_frame_equal(expected_df, result)
def test_python_date_subclass(self):
class MyDate(date):
pass
date_array = [MyDate(2000, 1, 1)]
df = pd.DataFrame({"date": pd.Series(date_array, dtype=object)})
table = pa.Table.from_pandas(df)
assert isinstance(table[0].chunk(0), pa.Date32Array)
result = table.to_pandas()
expected_df = pd.DataFrame(
{"date": np.array([date(2000, 1, 1)], dtype=object)}
)
tm.assert_frame_equal(expected_df, result)
def test_datetime64_to_date32(self):
# ARROW-1718
arr = pa.array([date(2017, 10, 23), None])
c = pa.chunked_array([arr])
s = c.to_pandas()
arr2 = pa.Array.from_pandas(s, type=pa.date32())
assert arr2.equals(arr.cast('date32'))
@pytest.mark.parametrize('mask', [
None,
np.array([True, False, False, True, False, False]),
])
def test_pandas_datetime_to_date64(self, mask):
s = pd.to_datetime([
'2018-05-10T00:00:00',
'2018-05-11T00:00:00',
'2018-05-12T00:00:00',
'2018-05-10T10:24:01',
'2018-05-11T10:24:01',
'2018-05-12T10:24:01',
])
arr = pa.Array.from_pandas(s, type=pa.date64(), mask=mask)
data = np.array([
date(2018, 5, 10),
date(2018, 5, 11),
date(2018, 5, 12),
date(2018, 5, 10),
date(2018, 5, 11),
date(2018, 5, 12),
])
expected = pa.array(data, mask=mask, type=pa.date64())
assert arr.equals(expected)
@pytest.mark.parametrize("coerce_to_ns,expected_dtype",
[(False, 'datetime64[ms]'),
(True, 'datetime64[ns]')])
def test_array_types_date_as_object(self, coerce_to_ns, expected_dtype):
data = [date(2000, 1, 1),
None,
date(1970, 1, 1),
date(2040, 2, 26)]
expected_days = np.array(['2000-01-01', None, '1970-01-01',
'2040-02-26'], dtype='datetime64[D]')
if Version(pd.__version__) < Version("2.0.0"):
# ARROW-3789: Coerce date/timestamp types to datetime64[ns]
expected_dtype = 'datetime64[ns]'
expected = np.array(['2000-01-01', None, '1970-01-01',
'2040-02-26'], dtype=expected_dtype)
objects = [pa.array(data),
pa.chunked_array([data])]
for obj in objects:
result = obj.to_pandas(coerce_temporal_nanoseconds=coerce_to_ns)
expected_obj = expected_days.astype(object)
assert result.dtype == expected_obj.dtype
npt.assert_array_equal(result, expected_obj)
result = obj.to_pandas(date_as_object=False,
coerce_temporal_nanoseconds=coerce_to_ns)
assert result.dtype == expected.dtype
npt.assert_array_equal(result, expected)
@pytest.mark.parametrize("coerce_to_ns,expected_type",
[(False, 'datetime64[ms]'),
(True, 'datetime64[ns]')])
def test_table_convert_date_as_object(self, coerce_to_ns, expected_type):
df = pd.DataFrame({
'date': [date(2000, 1, 1),
None,
date(1970, 1, 1),
date(2040, 2, 26)]})
table = pa.Table.from_pandas(df, preserve_index=False)
df_datetime = table.to_pandas(date_as_object=False,
coerce_temporal_nanoseconds=coerce_to_ns)
df_object = table.to_pandas()
tm.assert_frame_equal(df.astype(expected_type), df_datetime,
check_dtype=True)
tm.assert_frame_equal(df, df_object, check_dtype=True)
@pytest.mark.parametrize("arrow_type",
[pa.date32(), pa.date64(), pa.timestamp('s'),
pa.timestamp('ms'), pa.timestamp('us'),
pa.timestamp('ns'), pa.timestamp('s', 'UTC'),
pa.timestamp('ms', 'UTC'), pa.timestamp('us', 'UTC'),
pa.timestamp('ns', 'UTC')])
def test_array_coerce_temporal_nanoseconds(self, arrow_type):
data = [date(2000, 1, 1), datetime(2001, 1, 1)]
expected = pd.Series(data)
arr = pa.array(data).cast(arrow_type)
result = arr.to_pandas(
coerce_temporal_nanoseconds=True, date_as_object=False)
expected_tz = None
if hasattr(arrow_type, 'tz') and arrow_type.tz is not None:
expected_tz = 'UTC'
expected_type = pa.timestamp('ns', expected_tz).to_pandas_dtype()
tm.assert_series_equal(result, expected.astype(expected_type))
@pytest.mark.parametrize("arrow_type",
[pa.date32(), pa.date64(), pa.timestamp('s'),
pa.timestamp('ms'), pa.timestamp('us'),
pa.timestamp('ns'), pa.timestamp('s', 'UTC'),
pa.timestamp('ms', 'UTC'), pa.timestamp('us', 'UTC'),
pa.timestamp('ns', 'UTC')])
def test_table_coerce_temporal_nanoseconds(self, arrow_type):
data = [date(2000, 1, 1), datetime(2001, 1, 1)]
schema = pa.schema([pa.field('date', arrow_type)])
expected_df = pd.DataFrame({'date': data})
table = pa.table([pa.array(data)], schema=schema)
result_df = table.to_pandas(
coerce_temporal_nanoseconds=True, date_as_object=False)
expected_tz = None
if hasattr(arrow_type, 'tz') and arrow_type.tz is not None:
expected_tz = 'UTC'
expected_type = pa.timestamp('ns', expected_tz).to_pandas_dtype()
tm.assert_frame_equal(result_df, expected_df.astype(expected_type))
def test_date_infer(self):
df = pd.DataFrame({
'date': [date(2000, 1, 1),
None,
date(1970, 1, 1),
date(2040, 2, 26)]})
table = pa.Table.from_pandas(df, preserve_index=False)
field = pa.field('date', pa.date32())
# schema's metadata is generated by from_pandas conversion
expected_schema = pa.schema([field], metadata=table.schema.metadata)
assert table.schema.equals(expected_schema)
result = table.to_pandas()
tm.assert_frame_equal(result, df)
def test_date_mask(self):
arr = np.array([date(2017, 4, 3), date(2017, 4, 4)],
dtype='datetime64[D]')
mask = [True, False]
result = pa.array(arr, mask=np.array(mask))
expected = np.array([None, date(2017, 4, 4)], dtype='datetime64[D]')
expected = pa.array(expected, from_pandas=True)
assert expected.equals(result)
def test_date_objects_typed(self):
arr = np.array([
date(2017, 4, 3),
None,
date(2017, 4, 4),
date(2017, 4, 5)], dtype=object)
arr_i4 = np.array([17259, -1, 17260, 17261], dtype='int32')
arr_i8 = arr_i4.astype('int64') * 86400000
mask = np.array([False, True, False, False])
t32 = pa.date32()
t64 = pa.date64()
a32 = pa.array(arr, type=t32)
a64 = pa.array(arr, type=t64)
a32_expected = pa.array(arr_i4, mask=mask, type=t32)
a64_expected = pa.array(arr_i8, mask=mask, type=t64)
assert a32.equals(a32_expected)
assert a64.equals(a64_expected)
# Test converting back to pandas
colnames = ['date32', 'date64']
table = pa.Table.from_arrays([a32, a64], colnames)
ex_values = (np.array(['2017-04-03', '2017-04-04', '2017-04-04',
'2017-04-05'],
dtype='datetime64[D]'))
ex_values[1] = pd.NaT.value
# date32 and date64 convert to [ms] in pandas v2, but
# in pandas v1 they are silently coerced to [ns]
ex_datetime64ms = ex_values.astype('datetime64[ms]')
expected_pandas = pd.DataFrame({'date32': ex_datetime64ms,
'date64': ex_datetime64ms},
columns=colnames)
table_pandas = table.to_pandas(date_as_object=False)
tm.assert_frame_equal(table_pandas, expected_pandas)
table_pandas_objects = table.to_pandas()
ex_objects = ex_values.astype('object')
expected_pandas_objects = pd.DataFrame({'date32': ex_objects,
'date64': ex_objects},
columns=colnames)
tm.assert_frame_equal(table_pandas_objects,
expected_pandas_objects)
def test_pandas_null_values(self):
# ARROW-842
pd_NA = getattr(pd, 'NA', None)
values = np.array([datetime(2000, 1, 1), pd.NaT, pd_NA], dtype=object)
values_with_none = np.array([datetime(2000, 1, 1), None, None],
dtype=object)
result = pa.array(values, from_pandas=True)
expected = pa.array(values_with_none, from_pandas=True)
assert result.equals(expected)
assert result.null_count == 2
# ARROW-9407
assert pa.array([pd.NaT], from_pandas=True).type == pa.null()
assert pa.array([pd_NA], from_pandas=True).type == pa.null()
def test_dates_from_integers(self):
t1 = pa.date32()
t2 = pa.date64()
arr = np.array([17259, 17260, 17261], dtype='int32')
arr2 = arr.astype('int64') * 86400000
a1 = pa.array(arr, type=t1)
a2 = pa.array(arr2, type=t2)
expected = date(2017, 4, 3)
assert a1[0].as_py() == expected
assert a2[0].as_py() == expected
def test_pytime_from_pandas(self):
pytimes = [time(1, 2, 3, 1356),
time(4, 5, 6, 1356)]
# microseconds
t1 = pa.time64('us')
aobjs = np.array(pytimes + [None], dtype=object)
parr = pa.array(aobjs)
assert parr.type == t1
assert parr[0].as_py() == pytimes[0]
assert parr[1].as_py() == pytimes[1]
assert parr[2].as_py() is None
# DataFrame
df = pd.DataFrame({'times': aobjs})
batch = pa.RecordBatch.from_pandas(df)
assert batch[0].equals(parr)
# Test ndarray of int64 values
arr = np.array([_pytime_to_micros(v) for v in pytimes],
dtype='int64')
a1 = pa.array(arr, type=pa.time64('us'))
assert a1[0].as_py() == pytimes[0]
a2 = pa.array(arr * 1000, type=pa.time64('ns'))
assert a2[0].as_py() == pytimes[0]
a3 = pa.array((arr / 1000).astype('i4'),
type=pa.time32('ms'))
assert a3[0].as_py() == pytimes[0].replace(microsecond=1000)
a4 = pa.array((arr / 1000000).astype('i4'),
type=pa.time32('s'))
assert a4[0].as_py() == pytimes[0].replace(microsecond=0)
def test_arrow_time_to_pandas(self):
pytimes = [time(1, 2, 3, 1356),
time(4, 5, 6, 1356),
time(0, 0, 0)]
expected = np.array(pytimes[:2] + [None])
expected_ms = np.array([x.replace(microsecond=1000)
for x in pytimes[:2]] +
[None])
expected_s = np.array([x.replace(microsecond=0)
for x in pytimes[:2]] +
[None])
arr = np.array([_pytime_to_micros(v) for v in pytimes],
dtype='int64')
arr = np.array([_pytime_to_micros(v) for v in pytimes],
dtype='int64')
null_mask = np.array([False, False, True], dtype=bool)
a1 = pa.array(arr, mask=null_mask, type=pa.time64('us'))
a2 = pa.array(arr * 1000, mask=null_mask,
type=pa.time64('ns'))
a3 = pa.array((arr / 1000).astype('i4'), mask=null_mask,
type=pa.time32('ms'))
a4 = pa.array((arr / 1000000).astype('i4'), mask=null_mask,
type=pa.time32('s'))
names = ['time64[us]', 'time64[ns]', 'time32[ms]', 'time32[s]']
batch = pa.RecordBatch.from_arrays([a1, a2, a3, a4], names)
for arr, expected_values in [(a1, expected),
(a2, expected),
(a3, expected_ms),
(a4, expected_s)]:
result_pandas = arr.to_pandas()
assert (result_pandas.values == expected_values).all()
df = batch.to_pandas()
expected_df = pd.DataFrame({'time64[us]': expected,
'time64[ns]': expected,
'time32[ms]': expected_ms,
'time32[s]': expected_s},
columns=names)
tm.assert_frame_equal(df, expected_df)
def test_numpy_datetime64_columns(self):
datetime64_ns = np.array([
'2007-07-13T01:23:34.123456789',
None,
'2006-01-13T12:34:56.432539784',
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ns]')
_check_array_from_pandas_roundtrip(datetime64_ns)
datetime64_us = np.array([
'2007-07-13T01:23:34.123456',
None,
'2006-01-13T12:34:56.432539',
'2010-08-13T05:46:57.437699'],
dtype='datetime64[us]')
_check_array_from_pandas_roundtrip(datetime64_us)
datetime64_ms = np.array([
'2007-07-13T01:23:34.123',
None,
'2006-01-13T12:34:56.432',
'2010-08-13T05:46:57.437'],
dtype='datetime64[ms]')
_check_array_from_pandas_roundtrip(datetime64_ms)
datetime64_s = np.array([
'2007-07-13T01:23:34',
None,
'2006-01-13T12:34:56',
'2010-08-13T05:46:57'],
dtype='datetime64[s]')
_check_array_from_pandas_roundtrip(datetime64_s)
def test_timestamp_to_pandas_coerces_to_ns(self):
# non-ns timestamp gets cast to ns on conversion to pandas
if Version(pd.__version__) >= Version("2.0.0"):
pytest.skip("pandas >= 2.0 supports non-nanosecond datetime64")
arr = pa.array([1, 2, 3], pa.timestamp('ms'))
expected = pd.Series(pd.to_datetime([1, 2, 3], unit='ms'))
s = arr.to_pandas()
tm.assert_series_equal(s, expected)
arr = pa.chunked_array([arr])
s = arr.to_pandas()
tm.assert_series_equal(s, expected)
def test_timestamp_to_pandas_out_of_bounds(self):
# ARROW-7758 check for out of bounds timestamps for non-ns timestamps
# that end up getting coerced into ns timestamps.
for unit in ['s', 'ms', 'us']:
for tz in [None, 'America/New_York']:
arr = pa.array([datetime(1, 1, 1)], pa.timestamp(unit, tz=tz))
table = pa.table({'a': arr})
msg = "would result in out of bounds timestamp"
with pytest.raises(ValueError, match=msg):
arr.to_pandas(coerce_temporal_nanoseconds=True)
with pytest.raises(ValueError, match=msg):
table.to_pandas(coerce_temporal_nanoseconds=True)
with pytest.raises(ValueError, match=msg):
# chunked array
table.column('a').to_pandas(coerce_temporal_nanoseconds=True)
# just ensure those don't give an error, but do not
# check actual garbage output
arr.to_pandas(safe=False, coerce_temporal_nanoseconds=True)
table.to_pandas(safe=False, coerce_temporal_nanoseconds=True)
table.column('a').to_pandas(
safe=False, coerce_temporal_nanoseconds=True)
def test_timestamp_to_pandas_empty_chunked(self):
# ARROW-7907 table with chunked array with 0 chunks
table = pa.table({'a': pa.chunked_array([], type=pa.timestamp('us'))})
result = table.to_pandas()
expected = pd.DataFrame({'a': pd.Series([], dtype="datetime64[us]")})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('dtype', [pa.date32(), pa.date64()])
def test_numpy_datetime64_day_unit(self, dtype):
datetime64_d = np.array([
'2007-07-13',
None,
'2006-01-15',
'2010-08-19'],
dtype='datetime64[D]')
_check_array_from_pandas_roundtrip(datetime64_d, type=dtype)
def test_array_from_pandas_date_with_mask(self):
m = np.array([True, False, True])
data = pd.Series([
date(1990, 1, 1),
date(1991, 1, 1),
date(1992, 1, 1)
])
result = pa.Array.from_pandas(data, mask=m)
expected = pd.Series([None, date(1991, 1, 1), None])
assert pa.Array.from_pandas(expected).equals(result)
@pytest.mark.skipif(
Version('1.16.0') <= Version(np.__version__) < Version('1.16.1'),
reason='Until numpy/numpy#12745 is resolved')
def test_fixed_offset_timezone(self):
df = pd.DataFrame({
'a': [
pd.Timestamp('2012-11-11 00:00:00+01:00'),
pd.NaT
]
})
# 'check_dtype=False' because pandas >= 2 uses datetime.timezone
# instead of pytz.FixedOffset, and thus the dtype is not exactly
# identical (pyarrow still defaults to pytz)
# TODO remove if https://github.com/apache/arrow/issues/15047 is fixed
_check_pandas_roundtrip(df, check_dtype=False)
@pytest.mark.parametrize("unit", ['s', 'ms', 'us', 'ns'])
def test_timedeltas_no_nulls(self, unit):
if Version(pd.__version__) < Version("2.0.0"):
unit = 'ns'
df = pd.DataFrame({
'timedelta64': np.array([0, 3600000000000, 7200000000000],
dtype=f'timedelta64[{unit}]')
})
field = pa.field('timedelta64', pa.duration(unit))
schema = pa.schema([field])
_check_pandas_roundtrip(
df,
expected_schema=schema,
)
@pytest.mark.parametrize("unit", ['s', 'ms', 'us', 'ns'])
def test_timedeltas_nulls(self, unit):
if Version(pd.__version__) < Version("2.0.0"):
unit = 'ns'
df = pd.DataFrame({
'timedelta64': np.array([0, None, 7200000000000],
dtype=f'timedelta64[{unit}]')
})
field = pa.field('timedelta64', pa.duration(unit))
schema = pa.schema([field])
_check_pandas_roundtrip(
df,
expected_schema=schema,
)
def test_month_day_nano_interval(self):
from pandas.tseries.offsets import DateOffset
df = pd.DataFrame({
'date_offset': [None,
DateOffset(days=3600, months=3600, microseconds=3,
nanoseconds=600)]
})
schema = pa.schema([('date_offset', pa.month_day_nano_interval())])
_check_pandas_roundtrip(
df,
expected_schema=schema)
# ----------------------------------------------------------------------
# Conversion tests for string and binary types.
class TestConvertStringLikeTypes:
def test_pandas_unicode(self):
repeats = 1000
values = ['foo', None, 'bar', 'mañana', np.nan]
df = pd.DataFrame({'strings': values * repeats})
field = pa.field('strings', pa.string())
schema = pa.schema([field])
ex_values = ['foo', None, 'bar', 'mañana', None]
expected = pd.DataFrame({'strings': ex_values * repeats})
_check_pandas_roundtrip(df, expected=expected, expected_schema=schema)
def test_bytes_to_binary(self):
values = ['qux', b'foo', None, bytearray(b'barz'), 'qux', np.nan]
df = pd.DataFrame({'strings': values})
table = pa.Table.from_pandas(df)
assert table[0].type == pa.binary()
values2 = [b'qux', b'foo', None, b'barz', b'qux', None]
expected = pd.DataFrame({'strings': values2})
_check_pandas_roundtrip(df, expected)
@pytest.mark.large_memory
def test_bytes_exceed_2gb(self):
v1 = b'x' * 100000000
v2 = b'x' * 147483646
# ARROW-2227, hit exactly 2GB on the nose
df = pd.DataFrame({
'strings': [v1] * 20 + [v2] + ['x'] * 20
})
arr = pa.array(df['strings'])
assert isinstance(arr, pa.ChunkedArray)
assert arr.num_chunks == 2
arr = None
table = pa.Table.from_pandas(df)
assert table[0].num_chunks == 2
@pytest.mark.large_memory
@pytest.mark.parametrize('char', ['x', b'x'])
def test_auto_chunking_pandas_series_of_strings(self, char):
# ARROW-2367
v1 = char * 100000000
v2 = char * 147483646
df = pd.DataFrame({
'strings': [[v1]] * 20 + [[v2]] + [[b'x']]
})
arr = pa.array(df['strings'], from_pandas=True)
arr.validate(full=True)
assert isinstance(arr, pa.ChunkedArray)
assert arr.num_chunks == 2
assert len(arr.chunk(0)) == 21
assert len(arr.chunk(1)) == 1
def test_fixed_size_bytes(self):
values = [b'foo', None, bytearray(b'bar'), None, None, b'hey']
df = pd.DataFrame({'strings': values})
schema = pa.schema([pa.field('strings', pa.binary(3))])
table = pa.Table.from_pandas(df, schema=schema)
assert table.schema[0].type == schema[0].type
assert table.schema[0].name == schema[0].name
result = table.to_pandas()
tm.assert_frame_equal(result, df)
def test_fixed_size_bytes_does_not_accept_varying_lengths(self):
values = [b'foo', None, b'ba', None, None, b'hey']
df = pd.DataFrame({'strings': values})
schema = pa.schema([pa.field('strings', pa.binary(3))])
with pytest.raises(pa.ArrowInvalid):
pa.Table.from_pandas(df, schema=schema)
def test_variable_size_bytes(self):
s = pd.Series([b'123', b'', b'a', None])
_check_series_roundtrip(s, type_=pa.binary())
def test_binary_from_bytearray(self):
s = pd.Series([bytearray(b'123'), bytearray(b''), bytearray(b'a'),
None])
# Explicitly set type
_check_series_roundtrip(s, type_=pa.binary())
# Infer type from bytearrays
_check_series_roundtrip(s, expected_pa_type=pa.binary())
def test_large_binary(self):
s = pd.Series([b'123', b'', b'a', None])
_check_series_roundtrip(s, type_=pa.large_binary())
df = pd.DataFrame({'a': s})
_check_pandas_roundtrip(
df, schema=pa.schema([('a', pa.large_binary())]))
def test_large_string(self):
s = pd.Series(['123', '', 'a', None])
_check_series_roundtrip(s, type_=pa.large_string())
df = pd.DataFrame({'a': s})
_check_pandas_roundtrip(
df, schema=pa.schema([('a', pa.large_string())]))
def test_binary_view(self):
s = pd.Series([b'123', b'', b'a', None])
_check_series_roundtrip(s, type_=pa.binary_view())
df = pd.DataFrame({'a': s})
_check_pandas_roundtrip(
df, schema=pa.schema([('a', pa.binary_view())]))
def test_string_view(self):
s = pd.Series(['123', '', 'a', None])
_check_series_roundtrip(s, type_=pa.string_view())
df = pd.DataFrame({'a': s})
_check_pandas_roundtrip(
df, schema=pa.schema([('a', pa.string_view())]))
def test_table_empty_str(self):
values = ['', '', '', '', '']
df = pd.DataFrame({'strings': values})
field = pa.field('strings', pa.string())
schema = pa.schema([field])
table = pa.Table.from_pandas(df, schema=schema)
result1 = table.to_pandas(strings_to_categorical=False)
expected1 = pd.DataFrame({'strings': values})
tm.assert_frame_equal(result1, expected1, check_dtype=True)
result2 = table.to_pandas(strings_to_categorical=True)
expected2 = pd.DataFrame({'strings': pd.Categorical(values)})
tm.assert_frame_equal(result2, expected2, check_dtype=True)
def test_selective_categoricals(self):
values = ['', '', '', '', '']
df = pd.DataFrame({'strings': values})
field = pa.field('strings', pa.string())
schema = pa.schema([field])
table = pa.Table.from_pandas(df, schema=schema)
expected_str = pd.DataFrame({'strings': values})
expected_cat = pd.DataFrame({'strings': pd.Categorical(values)})
result1 = table.to_pandas(categories=['strings'])
tm.assert_frame_equal(result1, expected_cat, check_dtype=True)
result2 = table.to_pandas(categories=[])
tm.assert_frame_equal(result2, expected_str, check_dtype=True)
result3 = table.to_pandas(categories=('strings',))
tm.assert_frame_equal(result3, expected_cat, check_dtype=True)
result4 = table.to_pandas(categories=tuple())
tm.assert_frame_equal(result4, expected_str, check_dtype=True)
def test_to_pandas_categorical_zero_length(self):
# ARROW-3586
array = pa.array([], type=pa.int32())
table = pa.Table.from_arrays(arrays=[array], names=['col'])
# This would segfault under 0.11.0
table.to_pandas(categories=['col'])
def test_to_pandas_categories_already_dictionary(self):
# Showed up in ARROW-6434, ARROW-6435
array = pa.array(['foo', 'foo', 'foo', 'bar']).dictionary_encode()
table = pa.Table.from_arrays(arrays=[array], names=['col'])
result = table.to_pandas(categories=['col'])
assert table.to_pandas().equals(result)
def test_table_str_to_categorical_without_na(self):
values = ['a', 'a', 'b', 'b', 'c']
df = pd.DataFrame({'strings': values})
field = pa.field('strings', pa.string())
schema = pa.schema([field])
table = pa.Table.from_pandas(df, schema=schema)
result = table.to_pandas(strings_to_categorical=True)
expected = pd.DataFrame({'strings': pd.Categorical(values)})
tm.assert_frame_equal(result, expected, check_dtype=True)
with pytest.raises(pa.ArrowInvalid):
table.to_pandas(strings_to_categorical=True,
zero_copy_only=True)
def test_table_str_to_categorical_with_na(self):
values = [None, 'a', 'b', np.nan]
df = pd.DataFrame({'strings': values})
field = pa.field('strings', pa.string())
schema = pa.schema([field])
table = pa.Table.from_pandas(df, schema=schema)
result = table.to_pandas(strings_to_categorical=True)
expected = pd.DataFrame({'strings': pd.Categorical(values)})
tm.assert_frame_equal(result, expected, check_dtype=True)
with pytest.raises(pa.ArrowInvalid):
table.to_pandas(strings_to_categorical=True,
zero_copy_only=True)
# Regression test for ARROW-2101
def test_array_of_bytes_to_strings(self):
converted = pa.array(np.array([b'x'], dtype=object), pa.string())
assert converted.type == pa.string()
# Make sure that if an ndarray of bytes is passed to the array
# constructor and the type is string, it will fail if those bytes
# cannot be converted to utf-8
def test_array_of_bytes_to_strings_bad_data(self):
with pytest.raises(
pa.lib.ArrowInvalid,
match="was not a utf8 string"):
pa.array(np.array([b'\x80\x81'], dtype=object), pa.string())
def test_numpy_string_array_to_fixed_size_binary(self):
arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3')
converted = pa.array(arr, type=pa.binary(3))
expected = pa.array(list(arr), type=pa.binary(3))
assert converted.equals(expected)
mask = np.array([False, True, False])
converted = pa.array(arr, type=pa.binary(3), mask=mask)
expected = pa.array([b'foo', None, b'baz'], type=pa.binary(3))
assert converted.equals(expected)
with pytest.raises(pa.lib.ArrowInvalid,
match=r'Got bytestring of length 3 \(expected 4\)'):
arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3')
pa.array(arr, type=pa.binary(4))
with pytest.raises(
pa.lib.ArrowInvalid,
match=r'Got bytestring of length 12 \(expected 3\)'):
arr = np.array([b'foo', b'bar', b'baz'], dtype='|U3')
pa.array(arr, type=pa.binary(3))
class TestConvertDecimalTypes:
"""
Conversion test for decimal types.
"""
decimal32 = [
decimal.Decimal('-1234.123'),
decimal.Decimal('1234.439')
]
decimal64 = [
decimal.Decimal('-129934.123331'),
decimal.Decimal('129534.123731')
]
decimal128 = [
decimal.Decimal('394092382910493.12341234678'),
decimal.Decimal('-314292388910493.12343437128')
]
@pytest.mark.parametrize(('values', 'expected_type'), [
pytest.param(decimal32, pa.decimal128(7, 3), id='decimal32'),
pytest.param(decimal64, pa.decimal128(12, 6), id='decimal64'),
pytest.param(decimal128, pa.decimal128(26, 11), id='decimal128')
])
def test_decimal_from_pandas(self, values, expected_type):
expected = pd.DataFrame({'decimals': values})
table = pa.Table.from_pandas(expected, preserve_index=False)
field = pa.field('decimals', expected_type)
# schema's metadata is generated by from_pandas conversion
expected_schema = pa.schema([field], metadata=table.schema.metadata)
assert table.schema.equals(expected_schema)
@pytest.mark.parametrize('values', [
pytest.param(decimal32, id='decimal32'),
pytest.param(decimal64, id='decimal64'),
pytest.param(decimal128, id='decimal128')
])
def test_decimal_to_pandas(self, values):
expected = pd.DataFrame({'decimals': values})
converted = pa.Table.from_pandas(expected)
df = converted.to_pandas()
tm.assert_frame_equal(df, expected)
def test_decimal_fails_with_truncation(self):
data1 = [decimal.Decimal('1.234')]
type1 = pa.decimal128(10, 2)
with pytest.raises(pa.ArrowInvalid):
pa.array(data1, type=type1)
data2 = [decimal.Decimal('1.2345')]
type2 = pa.decimal128(10, 3)
with pytest.raises(pa.ArrowInvalid):
pa.array(data2, type=type2)
def test_decimal_with_different_precisions(self):
data = [
decimal.Decimal('0.01'),
decimal.Decimal('0.001'),
]
series = pd.Series(data)
array = pa.array(series)
assert array.to_pylist() == data
assert array.type == pa.decimal128(3, 3)
array = pa.array(data, type=pa.decimal128(12, 5))
expected = [decimal.Decimal('0.01000'), decimal.Decimal('0.00100')]
assert array.to_pylist() == expected
def test_decimal_with_None_explicit_type(self):
series = pd.Series([decimal.Decimal('3.14'), None])
_check_series_roundtrip(series, type_=pa.decimal128(12, 5))
# Test that having all None values still produces decimal array
series = pd.Series([None] * 2)
_check_series_roundtrip(series, type_=pa.decimal128(12, 5))
def test_decimal_with_None_infer_type(self):
series = pd.Series([decimal.Decimal('3.14'), None])
_check_series_roundtrip(series, expected_pa_type=pa.decimal128(3, 2))
def test_strided_objects(self, tmpdir):
# see ARROW-3053
data = {
'a': {0: 'a'},
'b': {0: decimal.Decimal('0.0')}
}
# This yields strided objects
df = pd.DataFrame.from_dict(data)
_check_pandas_roundtrip(df)
class TestConvertListTypes:
"""
Conversion tests for list<> types.
"""
def test_column_of_arrays(self):
df, schema = dataframe_with_arrays()
_check_pandas_roundtrip(df, schema=schema, expected_schema=schema)
table = pa.Table.from_pandas(df, schema=schema, preserve_index=False)
# schema's metadata is generated by from_pandas conversion
expected_schema = schema.with_metadata(table.schema.metadata)
assert table.schema.equals(expected_schema)
for column in df.columns:
field = schema.field(column)
_check_array_roundtrip(df[column], type=field.type)
def test_column_of_arrays_to_py(self):
# Test regression in ARROW-1199 not caught in above test
dtype = 'i1'
arr = np.array([
np.arange(10, dtype=dtype),
np.arange(5, dtype=dtype),
None,
np.arange(1, dtype=dtype)
], dtype=object)
type_ = pa.list_(pa.int8())
parr = pa.array(arr, type=type_)
assert parr[0].as_py() == list(range(10))
assert parr[1].as_py() == list(range(5))
assert parr[2].as_py() is None
assert parr[3].as_py() == [0]
def test_column_of_boolean_list(self):
# ARROW-4370: Table to pandas conversion fails for list of bool
array = pa.array([[True, False], [True]], type=pa.list_(pa.bool_()))
table = pa.Table.from_arrays([array], names=['col1'])
df = table.to_pandas()
expected_df = pd.DataFrame({'col1': [[True, False], [True]]})
tm.assert_frame_equal(df, expected_df)
s = table[0].to_pandas()
tm.assert_series_equal(pd.Series(s), df['col1'], check_names=False)
def test_column_of_decimal_list(self):
array = pa.array([[decimal.Decimal('1'), decimal.Decimal('2')],
[decimal.Decimal('3.3')]],
type=pa.list_(pa.decimal128(2, 1)))
table = pa.Table.from_arrays([array], names=['col1'])
df = table.to_pandas()
expected_df = pd.DataFrame(
{'col1': [[decimal.Decimal('1'), decimal.Decimal('2')],
[decimal.Decimal('3.3')]]})
tm.assert_frame_equal(df, expected_df)
def test_nested_types_from_ndarray_null_entries(self):
# Root cause of ARROW-6435
s = pd.Series(np.array([np.nan, np.nan], dtype=object))
for ty in [pa.list_(pa.int64()),
pa.large_list(pa.int64()),
pa.struct([pa.field('f0', 'int32')])]:
result = pa.array(s, type=ty)
expected = pa.array([None, None], type=ty)
assert result.equals(expected)
with pytest.raises(TypeError):
pa.array(s.values, type=ty)
def test_column_of_lists(self):
df, schema = dataframe_with_lists()
_check_pandas_roundtrip(df, schema=schema, expected_schema=schema)
table = pa.Table.from_pandas(df, schema=schema, preserve_index=False)
# schema's metadata is generated by from_pandas conversion
expected_schema = schema.with_metadata(table.schema.metadata)
assert table.schema.equals(expected_schema)
for column in df.columns:
field = schema.field(column)
_check_array_roundtrip(df[column], type=field.type)
def test_column_of_lists_first_empty(self):
# ARROW-2124
num_lists = [[], [2, 3, 4], [3, 6, 7, 8], [], [2]]
series = pd.Series([np.array(s, dtype=float) for s in num_lists])
arr = pa.array(series)
result = pd.Series(arr.to_pandas())
tm.assert_series_equal(result, series)
def test_column_of_lists_chunked(self):
# ARROW-1357
df = pd.DataFrame({
'lists': np.array([
[1, 2],
None,
[2, 3],
[4, 5],
[6, 7],
[8, 9]
], dtype=object)
})
schema = pa.schema([
pa.field('lists', pa.list_(pa.int64()))
])
t1 = pa.Table.from_pandas(df[:2], schema=schema)
t2 = pa.Table.from_pandas(df[2:], schema=schema)
table = pa.concat_tables([t1, t2])
result = table.to_pandas()
tm.assert_frame_equal(result, df)
def test_empty_column_of_lists_chunked(self):
df = pd.DataFrame({
'lists': np.array([], dtype=object)
})
schema = pa.schema([
pa.field('lists', pa.list_(pa.int64()))
])
table = pa.Table.from_pandas(df, schema=schema)
result = table.to_pandas()
tm.assert_frame_equal(result, df)
def test_column_of_lists_chunked2(self):
data1 = [[0, 1], [2, 3], [4, 5], [6, 7], [10, 11],
[12, 13], [14, 15], [16, 17]]
data2 = [[8, 9], [18, 19]]
a1 = pa.array(data1)
a2 = pa.array(data2)
t1 = pa.Table.from_arrays([a1], names=['a'])
t2 = pa.Table.from_arrays([a2], names=['a'])
concatenated = pa.concat_tables([t1, t2])
result = concatenated.to_pandas()
expected = pd.DataFrame({'a': data1 + data2})
tm.assert_frame_equal(result, expected)
def test_column_of_lists_strided(self):
df, schema = dataframe_with_lists()
df = pd.concat([df] * 6, ignore_index=True)
arr = df['int64'].values[::3]
assert arr.strides[0] != 8
_check_array_roundtrip(arr)
def test_nested_lists_all_none(self):
data = np.array([[None, None], None], dtype=object)
arr = pa.array(data)
expected = pa.array(list(data))
assert arr.equals(expected)
assert arr.type == pa.list_(pa.null())
data2 = np.array([None, None, [None, None],
np.array([None, None], dtype=object)],
dtype=object)
arr = pa.array(data2)
expected = pa.array([None, None, [None, None], [None, None]])
assert arr.equals(expected)
def test_nested_lists_all_empty(self):
# ARROW-2128
data = pd.Series([[], [], []])
arr = pa.array(data)
expected = pa.array(list(data))
assert arr.equals(expected)
assert arr.type == pa.list_(pa.null())
def test_nested_list_first_empty(self):
# ARROW-2711
data = pd.Series([[], ["a"]])
arr = pa.array(data)
expected = pa.array(list(data))
assert arr.equals(expected)
assert arr.type == pa.list_(pa.string())
def test_nested_smaller_ints(self):
# ARROW-1345, ARROW-2008, there were some type inference bugs happening
# before
data = pd.Series([np.array([1, 2, 3], dtype='i1'), None])
result = pa.array(data)
result2 = pa.array(data.values)
expected = pa.array([[1, 2, 3], None], type=pa.list_(pa.int8()))
assert result.equals(expected)
assert result2.equals(expected)
data3 = pd.Series([np.array([1, 2, 3], dtype='f4'), None])
result3 = pa.array(data3)
expected3 = pa.array([[1, 2, 3], None], type=pa.list_(pa.float32()))
assert result3.equals(expected3)
def test_infer_lists(self):
data = OrderedDict([
('nan_ints', [[np.nan, 1], [2, 3]]),
('ints', [[0, 1], [2, 3]]),
('strs', [[None, 'b'], ['c', 'd']]),
('nested_strs', [[[None, 'b'], ['c', 'd']], None])
])
df = pd.DataFrame(data)
expected_schema = pa.schema([
pa.field('nan_ints', pa.list_(pa.int64())),
pa.field('ints', pa.list_(pa.int64())),
pa.field('strs', pa.list_(pa.string())),
pa.field('nested_strs', pa.list_(pa.list_(pa.string())))
])
_check_pandas_roundtrip(df, expected_schema=expected_schema)
def test_fixed_size_list(self):
# ARROW-7365
fixed_ty = pa.list_(pa.int64(), list_size=4)
variable_ty = pa.list_(pa.int64())
data = [[0, 1, 2, 3], None, [4, 5, 6, 7], [8, 9, 10, 11]]
fixed_arr = pa.array(data, type=fixed_ty)
variable_arr = pa.array(data, type=variable_ty)
result = fixed_arr.to_pandas()
expected = variable_arr.to_pandas()
for left, right in zip(result, expected):
if left is None:
assert right is None
npt.assert_array_equal(left, right)
def test_infer_numpy_array(self):
data = OrderedDict([
('ints', [
np.array([0, 1], dtype=np.int64),
np.array([2, 3], dtype=np.int64)
])
])
df = pd.DataFrame(data)
expected_schema = pa.schema([
pa.field('ints', pa.list_(pa.int64()))
])
_check_pandas_roundtrip(df, expected_schema=expected_schema)
def test_to_list_of_structs_pandas(self):
ints = pa.array([1, 2, 3], pa.int32())
strings = pa.array([['a', 'b'], ['c', 'd'], ['e', 'f']],
pa.list_(pa.string()))
structs = pa.StructArray.from_arrays([ints, strings], ['f1', 'f2'])
data = pa.ListArray.from_arrays([0, 1, 3], structs)
expected = pd.Series([
[{'f1': 1, 'f2': ['a', 'b']}],
[{'f1': 2, 'f2': ['c', 'd']},
{'f1': 3, 'f2': ['e', 'f']}]
])
series = pd.Series(data.to_pandas())
# pandas.testing generates a
# DeprecationWarning: elementwise comparison failed
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "elementwise comparison failed",
DeprecationWarning)
tm.assert_series_equal(series, expected)
def test_to_list_of_maps_pandas(self):
if ((Version(np.__version__) >= Version("1.25.0.dev0")) and
(Version(pd.__version__) < Version("2.0.0"))):
# TODO: regression in pandas with numpy 1.25dev
# https://github.com/pandas-dev/pandas/issues/50360
pytest.skip("Regression in pandas with numpy 1.25")
data = [
[[('foo', ['a', 'b']), ('bar', ['c', 'd'])]],
[[('baz', []), ('qux', None), ('quux', [None, 'e'])], [('quz', ['f', 'g'])]]
]
arr = pa.array(data, pa.list_(pa.map_(pa.utf8(), pa.list_(pa.utf8()))))
series = arr.to_pandas()
expected = pd.Series(data)
# pandas.testing generates a
# DeprecationWarning: elementwise comparison failed
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "elementwise comparison failed",
DeprecationWarning)
tm.assert_series_equal(series, expected)
def test_to_list_of_maps_pandas_sliced(self):
"""
A slightly more rigorous test for chunk/slice combinations
"""
if ((Version(np.__version__) >= Version("1.25.0.dev0")) and
(Version(pd.__version__) < Version("2.0.0"))):
# TODO: regression in pandas with numpy 1.25dev
# https://github.com/pandas-dev/pandas/issues/50360
pytest.skip("Regression in pandas with numpy 1.25")
keys = pa.array(['ignore', 'foo', 'bar', 'baz',
'qux', 'quux', 'ignore']).slice(1, 5)
items = pa.array(
[['ignore'], ['ignore'], ['a', 'b'], ['c', 'd'], [], None, [None, 'e']],
pa.list_(pa.string()),
).slice(2, 5)
map = pa.MapArray.from_arrays([0, 2, 4], keys, items)
arr = pa.ListArray.from_arrays([0, 1, 2], map)
series = arr.to_pandas()
expected = pd.Series([
[[('foo', ['a', 'b']), ('bar', ['c', 'd'])]],
[[('baz', []), ('qux', None)]],
])
series_sliced = arr.slice(1, 2).to_pandas()
expected_sliced = pd.Series([
[[('baz', []), ('qux', None)]],
])
# pandas.testing generates a
# DeprecationWarning: elementwise comparison failed
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "elementwise comparison failed",
DeprecationWarning)
tm.assert_series_equal(series, expected)
tm.assert_series_equal(series_sliced, expected_sliced)
@pytest.mark.parametrize('t,data,expected', [
(
pa.int64,
[[1, 2], [3], None],
[None, [3], None]
),
(
pa.string,
[['aaa', 'bb'], ['c'], None],
[None, ['c'], None]
),
(
pa.null,
[[None, None], [None], None],
[None, [None], None]
)
])
def test_array_from_pandas_typed_array_with_mask(self, t, data, expected):
m = np.array([True, False, True])
s = pd.Series(data)
result = pa.Array.from_pandas(s, mask=m, type=pa.list_(t()))
assert pa.Array.from_pandas(expected,
type=pa.list_(t())).equals(result)
def test_empty_list_roundtrip(self):
empty_list_array = np.empty((3,), dtype=object)
empty_list_array.fill([])
df = pd.DataFrame({'a': np.array(['1', '2', '3']),
'b': empty_list_array})
tbl = pa.Table.from_pandas(df)
result = tbl.to_pandas()
tm.assert_frame_equal(result, df)
def test_array_from_nested_arrays(self):
df, schema = dataframe_with_arrays()
for field in schema:
arr = df[field.name].values
expected = pa.array(list(arr), type=field.type)
result = pa.array(arr)
assert result.type == field.type # == list<scalar>
assert result.equals(expected)
def test_nested_large_list(self):
s = (pa.array([[[1, 2, 3], [4]], None],
type=pa.large_list(pa.large_list(pa.int64())))
.to_pandas())
with warnings.catch_warnings():
warnings.filterwarnings("ignore",
"Creating an ndarray from ragged nested",
_np_VisibleDeprecationWarning)
warnings.filterwarnings("ignore", "elementwise comparison failed",
DeprecationWarning)
tm.assert_series_equal(
s, pd.Series([[[1, 2, 3], [4]], None], dtype=object),
check_names=False)
def test_large_binary_list(self):
for list_type_factory in (pa.list_, pa.large_list):
s = (pa.array([["aa", "bb"], None, ["cc"], []],
type=list_type_factory(pa.large_binary()))
.to_pandas())
tm.assert_series_equal(
s, pd.Series([[b"aa", b"bb"], None, [b"cc"], []]),
check_names=False)
s = (pa.array([["aa", "bb"], None, ["cc"], []],
type=list_type_factory(pa.large_string()))
.to_pandas())
tm.assert_series_equal(
s, pd.Series([["aa", "bb"], None, ["cc"], []]),
check_names=False)
def test_list_of_dictionary(self):
child = pa.array(["foo", "bar", None, "foo"]).dictionary_encode()
arr = pa.ListArray.from_arrays([0, 1, 3, 3, 4], child)
# Expected a Series of lists
expected = pd.Series(arr.to_pylist())
tm.assert_series_equal(arr.to_pandas(), expected)
# Same but with nulls
arr = arr.take([0, 1, None, 3])
expected[2] = None
tm.assert_series_equal(arr.to_pandas(), expected)
@pytest.mark.large_memory
def test_auto_chunking_on_list_overflow(self):
# ARROW-9976
n = 2**21
df = pd.DataFrame.from_dict({
"a": list(np.zeros((n, 2**10), dtype='uint8')),
"b": range(n)
})
table = pa.Table.from_pandas(df)
table.validate(full=True)
column_a = table[0]
assert column_a.num_chunks == 2
assert len(column_a.chunk(0)) == 2**21 - 1
assert len(column_a.chunk(1)) == 1
def test_map_array_roundtrip(self):
data = [[(b'a', 1), (b'b', 2)],
[(b'c', 3)],
[(b'd', 4), (b'e', 5), (b'f', 6)],
[(b'g', 7)]]
df = pd.DataFrame({"map": data})
schema = pa.schema([("map", pa.map_(pa.binary(), pa.int32()))])
_check_pandas_roundtrip(df, schema=schema)
def test_map_array_chunked(self):
data1 = [[(b'a', 1), (b'b', 2)],
[(b'c', 3)],
[(b'd', 4), (b'e', 5), (b'f', 6)],
[(b'g', 7)]]
data2 = [[(k, v * 2) for k, v in row] for row in data1]
arr1 = pa.array(data1, type=pa.map_(pa.binary(), pa.int32()))
arr2 = pa.array(data2, type=pa.map_(pa.binary(), pa.int32()))
arr = pa.chunked_array([arr1, arr2])
expected = pd.Series(data1 + data2)
actual = arr.to_pandas()
tm.assert_series_equal(actual, expected, check_names=False)
def test_map_array_with_nulls(self):
data = [[(b'a', 1), (b'b', 2)],
None,
[(b'd', 4), (b'e', 5), (b'f', None)],
[(b'g', 7)]]
# None value in item array causes upcast to float
expected = [[(k, float(v) if v is not None else None) for k, v in row]
if row is not None else None for row in data]
expected = pd.Series(expected)
arr = pa.array(data, type=pa.map_(pa.binary(), pa.int32()))
actual = arr.to_pandas()
tm.assert_series_equal(actual, expected, check_names=False)
def test_map_array_dictionary_encoded(self):
offsets = pa.array([0, 3, 5])
items = pa.array(['a', 'b', 'c', 'a', 'd']).dictionary_encode()
keys = pa.array(list(range(len(items))))
arr = pa.MapArray.from_arrays(offsets, keys, items)
# Dictionary encoded values converted to dense
expected = pd.Series(
[[(0, 'a'), (1, 'b'), (2, 'c')], [(3, 'a'), (4, 'd')]])
actual = arr.to_pandas()
tm.assert_series_equal(actual, expected, check_names=False)
def test_list_no_duplicate_base(self):
# ARROW-18400
arr = pa.array([[1, 2], [3, 4, 5], None, [6, None], [7, 8]])
chunked_arr = pa.chunked_array([arr.slice(0, 3), arr.slice(3, 1)])
np_arr = chunked_arr.to_numpy()
expected = np.array([[1., 2.], [3., 4., 5.], None,
[6., np.nan]], dtype="object")
for left, right in zip(np_arr, expected):
if right is None:
assert left == right
else:
npt.assert_array_equal(left, right)
expected_base = np.array([[1., 2., 3., 4., 5., 6., np.nan]])
npt.assert_array_equal(np_arr[0].base, expected_base)
np_arr_sliced = chunked_arr.slice(1, 3).to_numpy()
expected = np.array([[3, 4, 5], None, [6, np.nan]], dtype="object")
for left, right in zip(np_arr_sliced, expected):
if right is None:
assert left == right
else:
npt.assert_array_equal(left, right)
expected_base = np.array([[3., 4., 5., 6., np.nan]])
npt.assert_array_equal(np_arr_sliced[0].base, expected_base)
def test_list_values_behind_null(self):
arr = pa.ListArray.from_arrays(
offsets=pa.array([0, 2, 4, 6]),
values=pa.array([1, 2, 99, 99, 3, None]),
mask=pa.array([False, True, False])
)
np_arr = arr.to_numpy(zero_copy_only=False)
expected = np.array([[1., 2.], None, [3., np.nan]], dtype="object")
for left, right in zip(np_arr, expected):
if right is None:
assert left == right
else:
npt.assert_array_equal(left, right)
@pytest.mark.parametrize("klass", [pa.ListViewArray, pa.LargeListViewArray])
def test_list_view_to_pandas_with_in_order_offsets(self, klass):
arr = klass.from_arrays(
offsets=pa.array([0, 2, 4]),
sizes=pa.array([2, 2, 2]),
values=pa.array([1, 2, 3, 4, 5, 6]),
)
actual = arr.to_pandas()
expected = pd.Series([[1, 2], [3, 4], [5, 6]])
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize("klass", [pa.ListViewArray, pa.LargeListViewArray])
def test_list_view_to_pandas_with_out_of_order_offsets(self, klass):
arr = klass.from_arrays(
offsets=pa.array([2, 4, 0]),
sizes=pa.array([2, 2, 2]),
values=pa.array([1, 2, 3, 4, 5, 6]),
)
actual = arr.to_pandas()
expected = pd.Series([[3, 4], [5, 6], [1, 2]])
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize("klass", [pa.ListViewArray, pa.LargeListViewArray])
def test_list_view_to_pandas_with_overlapping_offsets(self, klass):
arr = klass.from_arrays(
offsets=pa.array([0, 1, 2]),
sizes=pa.array([4, 4, 4]),
values=pa.array([1, 2, 3, 4, 5, 6]),
)
actual = arr.to_pandas()
expected = pd.Series([[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]])
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize("klass", [pa.ListViewArray, pa.LargeListViewArray])
def test_list_view_to_pandas_with_null_values(self, klass):
arr = klass.from_arrays(
offsets=pa.array([0, 2, 2]),
sizes=pa.array([2, 0, 0]),
values=pa.array([1, None]),
mask=pa.array([False, False, True])
)
actual = arr.to_pandas()
expected = pd.Series([[1, np.nan], [], None])
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize("klass", [pa.ListViewArray, pa.LargeListViewArray])
def test_list_view_to_pandas_multiple_chunks(self, klass):
gc.collect()
bytes_start = pa.total_allocated_bytes()
arr1 = klass.from_arrays(
offsets=pa.array([2, 1, 0]),
sizes=pa.array([2, 2, 2]),
values=pa.array([1, 2, 3, 4])
)
arr2 = klass.from_arrays(
offsets=pa.array([0, 1, 1]),
sizes=pa.array([3, 3, 0]),
values=pa.array([5, 6, 7, None]),
mask=pa.array([False, False, True])
)
arr = pa.chunked_array([arr1, arr2])
actual = arr.to_pandas()
expected = pd.Series([[3, 4], [2, 3], [1, 2], [5, 6, 7], [6, 7, np.nan], None])
tm.assert_series_equal(actual, expected)
del actual
del arr
del arr1
del arr2
bytes_end = pa.total_allocated_bytes()
assert bytes_end == bytes_start
class TestConvertStructTypes:
"""
Conversion tests for struct types.
"""
def test_pandas_roundtrip(self):
df = pd.DataFrame({'dicts': [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]})
expected_schema = pa.schema([
('dicts', pa.struct([('a', pa.int64()), ('b', pa.int64())])),
])
_check_pandas_roundtrip(df, expected_schema=expected_schema)
# specifying schema explicitly in from_pandas
_check_pandas_roundtrip(
df, schema=expected_schema, expected_schema=expected_schema)
def test_to_pandas(self):
ints = pa.array([None, 2, 3], type=pa.int64())
strs = pa.array(['a', None, 'c'], type=pa.string())
bools = pa.array([True, False, None], type=pa.bool_())
arr = pa.StructArray.from_arrays(
[ints, strs, bools],
['ints', 'strs', 'bools'])
expected = pd.Series([
{'ints': None, 'strs': 'a', 'bools': True},
{'ints': 2, 'strs': None, 'bools': False},
{'ints': 3, 'strs': 'c', 'bools': None},
])
series = pd.Series(arr.to_pandas())
tm.assert_series_equal(series, expected)
def test_to_pandas_multiple_chunks(self):
# ARROW-11855
gc.collect()
bytes_start = pa.total_allocated_bytes()
ints1 = pa.array([1], type=pa.int64())
ints2 = pa.array([2], type=pa.int64())
arr1 = pa.StructArray.from_arrays([ints1], ['ints'])
arr2 = pa.StructArray.from_arrays([ints2], ['ints'])
arr = pa.chunked_array([arr1, arr2])
expected = pd.Series([
{'ints': 1},
{'ints': 2}
])
series = pd.Series(arr.to_pandas())
tm.assert_series_equal(series, expected)
del series
del arr
del arr1
del arr2
del ints1
del ints2
bytes_end = pa.total_allocated_bytes()
assert bytes_end == bytes_start
def test_from_numpy(self):
dt = np.dtype([('x', np.int32),
(('y_title', 'y'), np.bool_)])
ty = pa.struct([pa.field('x', pa.int32()),
pa.field('y', pa.bool_())])
data = np.array([], dtype=dt)
arr = pa.array(data, type=ty)
assert arr.to_pylist() == []
data = np.array([(42, True), (43, False)], dtype=dt)
arr = pa.array(data, type=ty)
assert arr.to_pylist() == [{'x': 42, 'y': True},
{'x': 43, 'y': False}]
# With mask
arr = pa.array(data, mask=np.bool_([False, True]), type=ty)
assert arr.to_pylist() == [{'x': 42, 'y': True}, None]
# Trivial struct type
dt = np.dtype([])
ty = pa.struct([])
data = np.array([], dtype=dt)
arr = pa.array(data, type=ty)
assert arr.to_pylist() == []
data = np.array([(), ()], dtype=dt)
arr = pa.array(data, type=ty)
assert arr.to_pylist() == [{}, {}]
def test_from_numpy_nested(self):
# Note: an object field inside a struct
dt = np.dtype([('x', np.dtype([('xx', np.int8),
('yy', np.bool_)])),
('y', np.int16),
('z', np.object_)])
# Note: itemsize is not necessarily a multiple of sizeof(object)
# object_ is 8 bytes on 64-bit systems, 4 bytes on 32-bit systems
assert dt.itemsize == (12 if sys.maxsize > 2**32 else 8)
ty = pa.struct([pa.field('x', pa.struct([pa.field('xx', pa.int8()),
pa.field('yy', pa.bool_())])),
pa.field('y', pa.int16()),
pa.field('z', pa.string())])
data = np.array([], dtype=dt)
arr = pa.array(data, type=ty)
assert arr.to_pylist() == []
data = np.array([
((1, True), 2, 'foo'),
((3, False), 4, 'bar')], dtype=dt)
arr = pa.array(data, type=ty)
assert arr.to_pylist() == [
{'x': {'xx': 1, 'yy': True}, 'y': 2, 'z': 'foo'},
{'x': {'xx': 3, 'yy': False}, 'y': 4, 'z': 'bar'}]
@pytest.mark.slow
@pytest.mark.large_memory
def test_from_numpy_large(self):
# Exercise rechunking + nulls
target_size = 3 * 1024**3 # 4GB
dt = np.dtype([('x', np.float64), ('y', 'object')])
bs = 65536 - dt.itemsize
block = b'.' * bs
n = target_size // (bs + dt.itemsize)
data = np.zeros(n, dtype=dt)
data['x'] = np.random.random_sample(n)
data['y'] = block
# Add implicit nulls
data['x'][data['x'] < 0.2] = np.nan
ty = pa.struct([pa.field('x', pa.float64()),
pa.field('y', pa.binary())])
arr = pa.array(data, type=ty, from_pandas=True)
arr.validate(full=True)
assert arr.num_chunks == 2
def iter_chunked_array(arr):
for chunk in arr.iterchunks():
yield from chunk
def check(arr, data, mask=None):
assert len(arr) == len(data)
xs = data['x']
ys = data['y']
for i, obj in enumerate(iter_chunked_array(arr)):
try:
d = obj.as_py()
if mask is not None and mask[i]:
assert d is None
else:
x = xs[i]
if np.isnan(x):
assert d['x'] is None
else:
assert d['x'] == x
assert d['y'] == ys[i]
except Exception:
print("Failed at index", i)
raise
check(arr, data)
del arr
# Now with explicit mask
mask = np.random.random_sample(n) < 0.2
arr = pa.array(data, type=ty, mask=mask, from_pandas=True)
arr.validate(full=True)
assert arr.num_chunks == 2
check(arr, data, mask)
del arr
def test_from_numpy_bad_input(self):
ty = pa.struct([pa.field('x', pa.int32()),
pa.field('y', pa.bool_())])
dt = np.dtype([('x', np.int32),
('z', np.bool_)])
data = np.array([], dtype=dt)
with pytest.raises(ValueError,
match="Missing field 'y'"):
pa.array(data, type=ty)
data = np.int32([])
with pytest.raises(TypeError,
match="Expected struct array"):
pa.array(data, type=ty)
def test_from_tuples(self):
df = pd.DataFrame({'tuples': [(1, 2), (3, 4)]})
expected_df = pd.DataFrame(
{'tuples': [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]})
# conversion from tuples works when specifying expected struct type
struct_type = pa.struct([('a', pa.int64()), ('b', pa.int64())])
arr = np.asarray(df['tuples'])
_check_array_roundtrip(
arr, expected=expected_df['tuples'], type=struct_type)
expected_schema = pa.schema([('tuples', struct_type)])
_check_pandas_roundtrip(
df, expected=expected_df, schema=expected_schema,
expected_schema=expected_schema)
def test_struct_of_dictionary(self):
names = ['ints', 'strs']
children = [pa.array([456, 789, 456]).dictionary_encode(),
pa.array(["foo", "foo", None]).dictionary_encode()]
arr = pa.StructArray.from_arrays(children, names=names)
# Expected a Series of {field name: field value} dicts
rows_as_tuples = zip(*(child.to_pylist() for child in children))
rows_as_dicts = [dict(zip(names, row)) for row in rows_as_tuples]
expected = pd.Series(rows_as_dicts)
tm.assert_series_equal(arr.to_pandas(), expected)
# Same but with nulls
arr = arr.take([0, None, 2])
expected[1] = None
tm.assert_series_equal(arr.to_pandas(), expected)
class TestZeroCopyConversion:
"""
Tests that zero-copy conversion works with some types.
"""
def test_zero_copy_success(self):
result = pa.array([0, 1, 2]).to_pandas(zero_copy_only=True)
npt.assert_array_equal(result, [0, 1, 2])
def test_zero_copy_dictionaries(self):
arr = pa.DictionaryArray.from_arrays(
np.array([0, 0]),
np.array([5], dtype="int64"),
)
result = arr.to_pandas(zero_copy_only=True)
values = pd.Categorical([5, 5])
tm.assert_series_equal(pd.Series(result), pd.Series(values),
check_names=False)
def test_zero_copy_timestamp(self):
arr = np.array(['2007-07-13'], dtype='datetime64[ns]')
result = pa.array(arr).to_pandas(zero_copy_only=True)
npt.assert_array_equal(result, arr)
def test_zero_copy_duration(self):
arr = np.array([1], dtype='timedelta64[ns]')
result = pa.array(arr).to_pandas(zero_copy_only=True)
npt.assert_array_equal(result, arr)
def check_zero_copy_failure(self, arr):
with pytest.raises(pa.ArrowInvalid):
arr.to_pandas(zero_copy_only=True)
def test_zero_copy_failure_on_object_types(self):
self.check_zero_copy_failure(pa.array(['A', 'B', 'C']))
def test_zero_copy_failure_with_int_when_nulls(self):
self.check_zero_copy_failure(pa.array([0, 1, None]))
def test_zero_copy_failure_with_float_when_nulls(self):
self.check_zero_copy_failure(pa.array([0.0, 1.0, None]))
def test_zero_copy_failure_on_bool_types(self):
self.check_zero_copy_failure(pa.array([True, False]))
def test_zero_copy_failure_on_list_types(self):
arr = pa.array([[1, 2], [8, 9]], type=pa.list_(pa.int64()))
self.check_zero_copy_failure(arr)
def test_zero_copy_failure_on_timestamp_with_nulls(self):
arr = np.array([1, None], dtype='datetime64[ns]')
self.check_zero_copy_failure(pa.array(arr))
def test_zero_copy_failure_on_duration_with_nulls(self):
arr = np.array([1, None], dtype='timedelta64[ns]')
self.check_zero_copy_failure(pa.array(arr))
def _non_threaded_conversion():
df = _alltypes_example()
_check_pandas_roundtrip(df, use_threads=False)
_check_pandas_roundtrip(df, use_threads=False, as_batch=True)
def _threaded_conversion():
df = _alltypes_example()
_check_pandas_roundtrip(df, use_threads=True)
_check_pandas_roundtrip(df, use_threads=True, as_batch=True)
class TestConvertMisc:
"""
Miscellaneous conversion tests.
"""
type_pairs = [
(np.int8, pa.int8()),
(np.int16, pa.int16()),
(np.int32, pa.int32()),
(np.int64, pa.int64()),
(np.uint8, pa.uint8()),
(np.uint16, pa.uint16()),
(np.uint32, pa.uint32()),
(np.uint64, pa.uint64()),
(np.float16, pa.float16()),
(np.float32, pa.float32()),
(np.float64, pa.float64()),
# XXX unsupported
# (np.dtype([('a', 'i2')]), pa.struct([pa.field('a', pa.int16())])),
(np.object_, pa.string()),
(np.object_, pa.binary()),
(np.object_, pa.binary(10)),
(np.object_, pa.list_(pa.int64())),
]
def test_all_none_objects(self):
df = pd.DataFrame({'a': [None, None, None]})
_check_pandas_roundtrip(df)
def test_all_none_category(self):
df = pd.DataFrame({'a': [None, None, None]})
df['a'] = df['a'].astype('category')
_check_pandas_roundtrip(df)
def test_empty_arrays(self):
for dtype, pa_type in self.type_pairs:
arr = np.array([], dtype=dtype)
_check_array_roundtrip(arr, type=pa_type)
def test_non_threaded_conversion(self):
_non_threaded_conversion()
def test_threaded_conversion_multiprocess(self):
# Parallel conversion should work from child processes too (ARROW-2963)
pool = mp.Pool(2)
try:
pool.apply(_threaded_conversion)
finally:
pool.close()
pool.join()
def test_category(self):
repeats = 5
v1 = ['foo', None, 'bar', 'qux', np.nan]
v2 = [4, 5, 6, 7, 8]
v3 = [b'foo', None, b'bar', b'qux', np.nan]
arrays = {
'cat_strings': pd.Categorical(v1 * repeats),
'cat_strings_with_na': pd.Categorical(v1 * repeats,
categories=['foo', 'bar']),
'cat_ints': pd.Categorical(v2 * repeats),
'cat_binary': pd.Categorical(v3 * repeats),
'cat_strings_ordered': pd.Categorical(
v1 * repeats, categories=['bar', 'qux', 'foo'],
ordered=True),
'ints': v2 * repeats,
'ints2': v2 * repeats,
'strings': v1 * repeats,
'strings2': v1 * repeats,
'strings3': v3 * repeats}
df = pd.DataFrame(arrays)
_check_pandas_roundtrip(df)
for k in arrays:
_check_array_roundtrip(arrays[k])
def test_category_implicit_from_pandas(self):
# ARROW-3374
def _check(v):
arr = pa.array(v)
result = arr.to_pandas()
tm.assert_series_equal(pd.Series(result), pd.Series(v))
arrays = [
pd.Categorical(['a', 'b', 'c'], categories=['a', 'b']),
pd.Categorical(['a', 'b', 'c'], categories=['a', 'b'],
ordered=True)
]
for arr in arrays:
_check(arr)
def test_empty_category(self):
# ARROW-2443
df = pd.DataFrame({'cat': pd.Categorical([])})
_check_pandas_roundtrip(df)
def test_category_zero_chunks(self):
# ARROW-5952
for pa_type, dtype in [(pa.string(), 'object'), (pa.int64(), 'int64')]:
a = pa.chunked_array([], pa.dictionary(pa.int8(), pa_type))
result = a.to_pandas()
expected = pd.Categorical([], categories=np.array([], dtype=dtype))
tm.assert_series_equal(pd.Series(result), pd.Series(expected))
table = pa.table({'a': a})
result = table.to_pandas()
expected = pd.DataFrame({'a': expected})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data,error_type",
[
({"a": ["a", 1, 2.0]}, pa.ArrowTypeError),
({"a": ["a", 1, 2.0]}, pa.ArrowTypeError),
({"a": [1, True]}, pa.ArrowTypeError),
({"a": [True, "a"]}, pa.ArrowInvalid),
({"a": [1, "a"]}, pa.ArrowInvalid),
({"a": [1.0, "a"]}, pa.ArrowInvalid),
],
)
def test_mixed_types_fails(self, data, error_type):
df = pd.DataFrame(data)
msg = "Conversion failed for column a with type object"
with pytest.raises(error_type, match=msg):
pa.Table.from_pandas(df)
def test_strided_data_import(self):
cases = []
columns = ['a', 'b', 'c']
N, K = 100, 3
random_numbers = np.random.randn(N, K).copy() * 100
numeric_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8',
'f4', 'f8']
for type_name in numeric_dtypes:
# Casting np.float64 -> uint32 or uint64 throws a RuntimeWarning
with warnings.catch_warnings():
warnings.simplefilter("ignore")
cases.append(random_numbers.astype(type_name))
# strings
cases.append(np.array([random_ascii(10) for i in range(N * K)],
dtype=object)
.reshape(N, K).copy())
# booleans
boolean_objects = (np.array([True, False, True] * N, dtype=object)
.reshape(N, K).copy())
# add some nulls, so dtype comes back as objects
boolean_objects[5] = None
cases.append(boolean_objects)
cases.append(np.arange("2016-01-01T00:00:00.001", N * K,
dtype='datetime64[ms]')
.reshape(N, K).copy())
strided_mask = (random_numbers > 0).astype(bool)[:, 0]
for case in cases:
df = pd.DataFrame(case, columns=columns)
col = df['a']
_check_pandas_roundtrip(df)
_check_array_roundtrip(col)
_check_array_roundtrip(col, mask=strided_mask)
def test_all_nones(self):
def _check_series(s):
converted = pa.array(s)
assert isinstance(converted, pa.NullArray)
assert len(converted) == 3
assert converted.null_count == 3
for item in converted:
assert item is pa.NA
_check_series(pd.Series([None] * 3, dtype=object))
_check_series(pd.Series([np.nan] * 3, dtype=object))
_check_series(pd.Series([None, np.nan, None], dtype=object))
def test_partial_schema(self):
data = OrderedDict([
('a', [0, 1, 2, 3, 4]),
('b', np.array([-10, -5, 0, 5, 10], dtype=np.int32)),
('c', [-10, -5, 0, 5, 10])
])
df = pd.DataFrame(data)
partial_schema = pa.schema([
pa.field('c', pa.int64()),
pa.field('a', pa.int64())
])
_check_pandas_roundtrip(df, schema=partial_schema,
expected=df[['c', 'a']],
expected_schema=partial_schema)
def test_table_batch_empty_dataframe(self):
df = pd.DataFrame({})
_check_pandas_roundtrip(df, preserve_index=None)
_check_pandas_roundtrip(df, preserve_index=None, as_batch=True)
expected = pd.DataFrame(columns=pd.Index([]))
_check_pandas_roundtrip(df, expected, preserve_index=False)
_check_pandas_roundtrip(df, expected, preserve_index=False, as_batch=True)
df2 = pd.DataFrame({}, index=[0, 1, 2])
_check_pandas_roundtrip(df2, preserve_index=True)
_check_pandas_roundtrip(df2, as_batch=True, preserve_index=True)
def test_convert_empty_table(self):
arr = pa.array([], type=pa.int64())
empty_objects = pd.Series(np.array([], dtype=object))
tm.assert_series_equal(arr.to_pandas(),
pd.Series(np.array([], dtype=np.int64)))
arr = pa.array([], type=pa.string())
tm.assert_series_equal(arr.to_pandas(), empty_objects)
arr = pa.array([], type=pa.list_(pa.int64()))
tm.assert_series_equal(arr.to_pandas(), empty_objects)
arr = pa.array([], type=pa.struct([pa.field('a', pa.int64())]))
tm.assert_series_equal(arr.to_pandas(), empty_objects)
def test_non_natural_stride(self):
"""
ARROW-2172: converting from a Numpy array with a stride that's
not a multiple of itemsize.
"""
dtype = np.dtype([('x', np.int32), ('y', np.int16)])
data = np.array([(42, -1), (-43, 2)], dtype=dtype)
assert data.strides == (6,)
arr = pa.array(data['x'], type=pa.int32())
assert arr.to_pylist() == [42, -43]
arr = pa.array(data['y'], type=pa.int16())
assert arr.to_pylist() == [-1, 2]
def test_array_from_strided_numpy_array(self):
# ARROW-5651
np_arr = np.arange(0, 10, dtype=np.float32)[1:-1:2]
pa_arr = pa.array(np_arr, type=pa.float64())
expected = pa.array([1.0, 3.0, 5.0, 7.0], type=pa.float64())
pa_arr.equals(expected)
def test_safe_unsafe_casts(self):
# ARROW-2799
df = pd.DataFrame({
'A': list('abc'),
'B': np.linspace(0, 1, 3)
})
schema = pa.schema([
pa.field('A', pa.string()),
pa.field('B', pa.int32())
])
with pytest.raises(ValueError):
pa.Table.from_pandas(df, schema=schema)
table = pa.Table.from_pandas(df, schema=schema, safe=False)
assert table.column('B').type == pa.int32()
def test_error_sparse(self):
# ARROW-2818
try:
df = pd.DataFrame({'a': pd.arrays.SparseArray([1, np.nan, 3])})
except AttributeError:
# pandas.arrays module introduced in pandas 0.24
df = pd.DataFrame({'a': pd.SparseArray([1, np.nan, 3])})
with pytest.raises(TypeError, match="Sparse pandas data"):
pa.Table.from_pandas(df)
def test_safe_cast_from_float_with_nans_to_int():
# TODO(kszucs): write tests for creating Date32 and Date64 arrays, see
# ARROW-4258 and https://github.com/apache/arrow/pull/3395
values = pd.Series([1, 2, None, 4])
arr = pa.Array.from_pandas(values, type=pa.int32(), safe=True)
expected = pa.array([1, 2, None, 4], type=pa.int32())
assert arr.equals(expected)
def _fully_loaded_dataframe_example():
index = pd.MultiIndex.from_arrays([
pd.date_range('2000-01-01', periods=5).repeat(2),
np.tile(np.array(['foo', 'bar'], dtype=object), 5)
])
c1 = pd.date_range('2000-01-01', periods=10)
data = {
0: c1,
1: c1.tz_localize('utc'),
2: c1.tz_localize('US/Eastern'),
3: c1[::2].tz_localize('utc').repeat(2).astype('category'),
4: ['foo', 'bar'] * 5,
5: pd.Series(['foo', 'bar'] * 5).astype('category').values,
6: [True, False] * 5,
7: np.random.randn(10),
8: np.random.randint(0, 100, size=10),
9: pd.period_range('2013', periods=10, freq='M'),
10: pd.interval_range(start=1, freq=1, periods=10),
}
return pd.DataFrame(data, index=index)
@pytest.mark.parametrize('columns', ([b'foo'], ['foo']))
def test_roundtrip_with_bytes_unicode(columns):
if Version("2.0.0") <= Version(pd.__version__) < Version("3.0.0"):
# TODO: regression in pandas, hopefully fixed in next version
# https://issues.apache.org/jira/browse/ARROW-18394
# https://github.com/pandas-dev/pandas/issues/50127
pytest.skip("Regression in pandas 2.0.0")
df = pd.DataFrame(columns=columns)
table1 = pa.Table.from_pandas(df)
table2 = pa.Table.from_pandas(table1.to_pandas())
assert table1.equals(table2)
assert table1.schema.equals(table2.schema)
assert table1.schema.metadata == table2.schema.metadata
def _pytime_from_micros(val):
microseconds = val % 1000000
val //= 1000000
seconds = val % 60
val //= 60
minutes = val % 60
hours = val // 60
return time(hours, minutes, seconds, microseconds)
def _pytime_to_micros(pytime):
return (pytime.hour * 3600000000 +
pytime.minute * 60000000 +
pytime.second * 1000000 +
pytime.microsecond)
def test_convert_unsupported_type_error_message():
# ARROW-1454
# custom python objects
class A:
pass
df = pd.DataFrame({'a': [A(), A()]})
msg = 'Conversion failed for column a with type object'
with pytest.raises(ValueError, match=msg):
pa.Table.from_pandas(df)
# ----------------------------------------------------------------------
# Hypothesis tests
@h.given(past.arrays(past.pandas_compatible_types))
def test_array_to_pandas_roundtrip(arr):
s = arr.to_pandas()
restored = pa.array(s, type=arr.type, from_pandas=True)
assert restored.equals(arr)
# ----------------------------------------------------------------------
# Test object deduplication in to_pandas
def _generate_dedup_example(nunique, repeats):
unique_values = [rands(10) for i in range(nunique)]
return unique_values * repeats
def _assert_nunique(obj, expected):
assert len({id(x) for x in obj}) == expected
def test_to_pandas_deduplicate_strings_array_types():
nunique = 100
repeats = 10
values = _generate_dedup_example(nunique, repeats)
for arr in [pa.array(values, type=pa.binary()),
pa.array(values, type=pa.utf8()),
pa.chunked_array([values, values])]:
_assert_nunique(arr.to_pandas(), nunique)
_assert_nunique(arr.to_pandas(deduplicate_objects=False), len(arr))
def test_to_pandas_deduplicate_strings_table_types():
nunique = 100
repeats = 10
values = _generate_dedup_example(nunique, repeats)
arr = pa.array(values)
rb = pa.RecordBatch.from_arrays([arr], ['foo'])
tbl = pa.Table.from_batches([rb])
for obj in [rb, tbl]:
_assert_nunique(obj.to_pandas()['foo'], nunique)
_assert_nunique(obj.to_pandas(deduplicate_objects=False)['foo'],
len(obj))
def test_to_pandas_deduplicate_integers_as_objects():
nunique = 100
repeats = 10
# Python automatically interns smaller integers
unique_values = list(np.random.randint(10000000, 1000000000, size=nunique))
unique_values[nunique // 2] = None
arr = pa.array(unique_values * repeats)
_assert_nunique(arr.to_pandas(integer_object_nulls=True), nunique)
_assert_nunique(arr.to_pandas(integer_object_nulls=True,
deduplicate_objects=False),
# Account for None
(nunique - 1) * repeats + 1)
def test_to_pandas_deduplicate_date_time():
nunique = 100
repeats = 10
unique_values = list(range(nunique))
cases = [
# raw type, array type, to_pandas options
('int32', 'date32', {'date_as_object': True}),
('int64', 'date64', {'date_as_object': True}),
('int32', 'time32[ms]', {}),
('int64', 'time64[us]', {})
]
for raw_type, array_type, pandas_options in cases:
raw_arr = pa.array(unique_values * repeats, type=raw_type)
casted_arr = raw_arr.cast(array_type)
_assert_nunique(casted_arr.to_pandas(**pandas_options),
nunique)
_assert_nunique(casted_arr.to_pandas(deduplicate_objects=False,
**pandas_options),
len(casted_arr))
# ---------------------------------------------------------------------
def test_table_from_pandas_checks_field_nullability():
# ARROW-2136
df = pd.DataFrame({'a': [1.2, 2.1, 3.1],
'b': [np.nan, 'string', 'foo']})
schema = pa.schema([pa.field('a', pa.float64(), nullable=False),
pa.field('b', pa.utf8(), nullable=False)])
with pytest.raises(ValueError):
pa.Table.from_pandas(df, schema=schema)
def test_table_from_pandas_keeps_column_order_of_dataframe():
df1 = pd.DataFrame(OrderedDict([
('partition', [0, 0, 1, 1]),
('arrays', [[0, 1, 2], [3, 4], None, None]),
('floats', [None, None, 1.1, 3.3])
]))
df2 = df1[['floats', 'partition', 'arrays']]
schema1 = pa.schema([
('partition', pa.int64()),
('arrays', pa.list_(pa.int64())),
('floats', pa.float64()),
])
schema2 = pa.schema([
('floats', pa.float64()),
('partition', pa.int64()),
('arrays', pa.list_(pa.int64()))
])
table1 = pa.Table.from_pandas(df1, preserve_index=False)
table2 = pa.Table.from_pandas(df2, preserve_index=False)
assert table1.schema.equals(schema1)
assert table2.schema.equals(schema2)
def test_table_from_pandas_keeps_column_order_of_schema():
# ARROW-3766
df = pd.DataFrame(OrderedDict([
('partition', [0, 0, 1, 1]),
('arrays', [[0, 1, 2], [3, 4], None, None]),
('floats', [None, None, 1.1, 3.3])
]))
schema = pa.schema([
('floats', pa.float64()),
('arrays', pa.list_(pa.int32())),
('partition', pa.int32())
])
df1 = df[df.partition == 0]
df2 = df[df.partition == 1][['floats', 'partition', 'arrays']]
table1 = pa.Table.from_pandas(df1, schema=schema, preserve_index=False)
table2 = pa.Table.from_pandas(df2, schema=schema, preserve_index=False)
assert table1.schema.equals(schema)
assert table1.schema.equals(table2.schema)
def test_table_from_pandas_columns_argument_only_does_filtering():
df = pd.DataFrame(OrderedDict([
('partition', [0, 0, 1, 1]),
('arrays', [[0, 1, 2], [3, 4], None, None]),
('floats', [None, None, 1.1, 3.3])
]))
columns1 = ['arrays', 'floats', 'partition']
schema1 = pa.schema([
('arrays', pa.list_(pa.int64())),
('floats', pa.float64()),
('partition', pa.int64())
])
columns2 = ['floats', 'partition']
schema2 = pa.schema([
('floats', pa.float64()),
('partition', pa.int64())
])
table1 = pa.Table.from_pandas(df, columns=columns1, preserve_index=False)
table2 = pa.Table.from_pandas(df, columns=columns2, preserve_index=False)
assert table1.schema.equals(schema1)
assert table2.schema.equals(schema2)
def test_table_from_pandas_columns_and_schema_are_mutually_exclusive():
df = pd.DataFrame(OrderedDict([
('partition', [0, 0, 1, 1]),
('arrays', [[0, 1, 2], [3, 4], None, None]),
('floats', [None, None, 1.1, 3.3])
]))
schema = pa.schema([
('partition', pa.int32()),
('arrays', pa.list_(pa.int32())),
('floats', pa.float64()),
])
columns = ['arrays', 'floats']
with pytest.raises(ValueError):
pa.Table.from_pandas(df, schema=schema, columns=columns)
def test_table_from_pandas_keeps_schema_nullability():
# ARROW-5169
df = pd.DataFrame({'a': [1, 2, 3, 4]})
schema = pa.schema([
pa.field('a', pa.int64(), nullable=False),
])
table = pa.Table.from_pandas(df)
assert table.schema.field('a').nullable is True
table = pa.Table.from_pandas(df, schema=schema)
assert table.schema.field('a').nullable is False
def test_table_from_pandas_schema_index_columns():
# ARROW-5220
df = pd.DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]})
schema = pa.schema([
('a', pa.int64()),
('b', pa.float64()),
('index', pa.int64()),
])
# schema includes index with name not in dataframe
with pytest.raises(KeyError, match="name 'index' present in the"):
pa.Table.from_pandas(df, schema=schema)
df.index.name = 'index'
# schema includes correct index name -> roundtrip works
_check_pandas_roundtrip(df, schema=schema, preserve_index=True,
expected_schema=schema)
# schema includes correct index name but preserve_index=False
with pytest.raises(ValueError, match="'preserve_index=False' was"):
pa.Table.from_pandas(df, schema=schema, preserve_index=False)
# in case of preserve_index=None -> RangeIndex serialized as metadata
# clashes with the index in the schema
with pytest.raises(ValueError, match="name 'index' is present in the "
"schema, but it is a RangeIndex"):
pa.Table.from_pandas(df, schema=schema, preserve_index=None)
df.index = pd.Index([0, 1, 2], name='index')
# for non-RangeIndex, both preserve_index=None and True work
_check_pandas_roundtrip(df, schema=schema, preserve_index=None,
expected_schema=schema)
_check_pandas_roundtrip(df, schema=schema, preserve_index=True,
expected_schema=schema)
# schema has different order (index column not at the end)
schema = pa.schema([
('index', pa.int64()),
('a', pa.int64()),
('b', pa.float64()),
])
_check_pandas_roundtrip(df, schema=schema, preserve_index=None,
expected_schema=schema)
_check_pandas_roundtrip(df, schema=schema, preserve_index=True,
expected_schema=schema)
# schema does not include the index -> index is not included as column
# even though preserve_index=True/None
schema = pa.schema([
('a', pa.int64()),
('b', pa.float64()),
])
expected = df.copy()
expected = expected.reset_index(drop=True)
_check_pandas_roundtrip(df, schema=schema, preserve_index=None,
expected_schema=schema, expected=expected)
_check_pandas_roundtrip(df, schema=schema, preserve_index=True,
expected_schema=schema, expected=expected)
# dataframe with a MultiIndex
df.index = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)],
names=['level1', 'level2'])
schema = pa.schema([
('level1', pa.string()),
('level2', pa.int64()),
('a', pa.int64()),
('b', pa.float64()),
])
_check_pandas_roundtrip(df, schema=schema, preserve_index=True,
expected_schema=schema)
_check_pandas_roundtrip(df, schema=schema, preserve_index=None,
expected_schema=schema)
# only one of the levels of the MultiIndex is included
schema = pa.schema([
('level2', pa.int64()),
('a', pa.int64()),
('b', pa.float64()),
])
expected = df.copy()
expected = expected.reset_index('level1', drop=True)
_check_pandas_roundtrip(df, schema=schema, preserve_index=True,
expected_schema=schema, expected=expected)
_check_pandas_roundtrip(df, schema=schema, preserve_index=None,
expected_schema=schema, expected=expected)
def test_table_from_pandas_schema_index_columns__unnamed_index():
# ARROW-6999 - unnamed indices in specified schema
df = pd.DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]})
expected_schema = pa.schema([
('a', pa.int64()),
('b', pa.float64()),
('__index_level_0__', pa.int64()),
])
schema = pa.Schema.from_pandas(df, preserve_index=True)
table = pa.Table.from_pandas(df, preserve_index=True, schema=schema)
assert table.schema.remove_metadata().equals(expected_schema)
# non-RangeIndex (preserved by default)
df = pd.DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]}, index=[0, 1, 2])
schema = pa.Schema.from_pandas(df)
table = pa.Table.from_pandas(df, schema=schema)
assert table.schema.remove_metadata().equals(expected_schema)
def test_table_from_pandas_schema_with_custom_metadata():
# ARROW-7087 - metadata disappear from pandas
df = pd.DataFrame()
schema = pa.Schema.from_pandas(df).with_metadata({'meta': 'True'})
table = pa.Table.from_pandas(df, schema=schema)
assert table.schema.metadata.get(b'meta') == b'True'
def test_table_from_pandas_schema_field_order_metadata():
# ARROW-10532
# ensure that a different field order in specified schema doesn't
# mangle metadata
df = pd.DataFrame({
"datetime": pd.date_range("2020-01-01T00:00:00Z", freq="h", periods=2),
"float": np.random.randn(2)
})
schema = pa.schema([
pa.field("float", pa.float32(), nullable=True),
pa.field("datetime", pa.timestamp("s", tz="UTC"), nullable=False)
])
table = pa.Table.from_pandas(df, schema=schema)
assert table.schema.equals(schema)
metadata_float = table.schema.pandas_metadata["columns"][0]
assert metadata_float["name"] == "float"
assert metadata_float["metadata"] is None
metadata_datetime = table.schema.pandas_metadata["columns"][1]
assert metadata_datetime["name"] == "datetime"
assert metadata_datetime["metadata"] == {'timezone': 'UTC'}
result = table.to_pandas()
coerce_cols_to_types = {"float": "float32"}
if Version(pd.__version__) >= Version("2.0.0"):
# Pandas v2 now support non-nanosecond time units
coerce_cols_to_types["datetime"] = "datetime64[s, UTC]"
expected = df[["float", "datetime"]].astype(coerce_cols_to_types)
tm.assert_frame_equal(result, expected)
# ----------------------------------------------------------------------
# RecordBatch, Table
def test_recordbatch_from_to_pandas():
data = pd.DataFrame({
'c1': np.array([1, 2, 3, 4, 5], dtype='int64'),
'c2': np.array([1, 2, 3, 4, 5], dtype='uint32'),
'c3': np.random.randn(5),
'c4': ['foo', 'bar', None, 'baz', 'qux'],
'c5': [False, True, False, True, False]
})
batch = pa.RecordBatch.from_pandas(data)
result = batch.to_pandas()
tm.assert_frame_equal(data, result)
def test_recordbatchlist_to_pandas():
data1 = pd.DataFrame({
'c1': np.array([1, 1, 2], dtype='uint32'),
'c2': np.array([1.0, 2.0, 3.0], dtype='float64'),
'c3': [True, None, False],
'c4': ['foo', 'bar', None]
})
data2 = pd.DataFrame({
'c1': np.array([3, 5], dtype='uint32'),
'c2': np.array([4.0, 5.0], dtype='float64'),
'c3': [True, True],
'c4': ['baz', 'qux']
})
batch1 = pa.RecordBatch.from_pandas(data1)
batch2 = pa.RecordBatch.from_pandas(data2)
table = pa.Table.from_batches([batch1, batch2])
result = table.to_pandas()
data = pd.concat([data1, data2]).reset_index(drop=True)
tm.assert_frame_equal(data, result)
def test_recordbatch_table_pass_name_to_pandas():
rb = pa.record_batch([pa.array([1, 2, 3, 4])], names=['a0'])
t = pa.table([pa.array([1, 2, 3, 4])], names=['a0'])
assert rb[0].to_pandas().name == 'a0'
assert t[0].to_pandas().name == 'a0'
# ----------------------------------------------------------------------
# Metadata serialization
@pytest.mark.parametrize(
('type', 'expected'),
[
(pa.null(), 'empty'),
(pa.bool_(), 'bool'),
(pa.int8(), 'int8'),
(pa.int16(), 'int16'),
(pa.int32(), 'int32'),
(pa.int64(), 'int64'),
(pa.uint8(), 'uint8'),
(pa.uint16(), 'uint16'),
(pa.uint32(), 'uint32'),
(pa.uint64(), 'uint64'),
(pa.float16(), 'float16'),
(pa.float32(), 'float32'),
(pa.float64(), 'float64'),
(pa.date32(), 'date'),
(pa.date64(), 'date'),
(pa.binary(), 'bytes'),
(pa.binary(length=4), 'bytes'),
(pa.string(), 'unicode'),
(pa.list_(pa.list_(pa.int16())), 'list[list[int16]]'),
(pa.decimal128(18, 3), 'decimal'),
(pa.timestamp('ms'), 'datetime'),
(pa.timestamp('us', 'UTC'), 'datetimetz'),
(pa.time32('s'), 'time'),
(pa.time64('us'), 'time')
]
)
def test_logical_type(type, expected):
assert get_logical_type(type) == expected
# ----------------------------------------------------------------------
# to_pandas uses MemoryPool
def test_array_uses_memory_pool():
# ARROW-6570
N = 10000
arr = pa.array(np.arange(N, dtype=np.int64),
mask=np.random.randint(0, 2, size=N).astype(np.bool_))
# In the case the gc is caught loading
gc.collect()
prior_allocation = pa.total_allocated_bytes()
x = arr.to_pandas()
assert pa.total_allocated_bytes() == (prior_allocation + N * 8)
x = None # noqa
gc.collect()
assert pa.total_allocated_bytes() == prior_allocation
# zero copy does not allocate memory
arr = pa.array(np.arange(N, dtype=np.int64))
prior_allocation = pa.total_allocated_bytes()
x = arr.to_pandas() # noqa
assert pa.total_allocated_bytes() == prior_allocation
def test_singleton_blocks_zero_copy():
# Part of ARROW-3789
t = pa.table([pa.array(np.arange(1000, dtype=np.int64))], ['f0'])
# Zero copy if split_blocks=True
_check_to_pandas_memory_unchanged(t, split_blocks=True)
prior_allocation = pa.total_allocated_bytes()
result = t.to_pandas()
# access private `_values` because the public `values` is made read-only by pandas
assert result['f0']._values.flags.writeable
assert pa.total_allocated_bytes() > prior_allocation
def _check_to_pandas_memory_unchanged(obj, **kwargs):
prior_allocation = pa.total_allocated_bytes()
x = obj.to_pandas(**kwargs) # noqa
# Memory allocation unchanged -- either zero copy or self-destructing
assert pa.total_allocated_bytes() == prior_allocation
def test_to_pandas_split_blocks():
# ARROW-3789
t = pa.table([
pa.array([1, 2, 3, 4, 5], type='i1'),
pa.array([1, 2, 3, 4, 5], type='i4'),
pa.array([1, 2, 3, 4, 5], type='i8'),
pa.array([1, 2, 3, 4, 5], type='f4'),
pa.array([1, 2, 3, 4, 5], type='f8'),
pa.array([1, 2, 3, 4, 5], type='f8'),
pa.array([1, 2, 3, 4, 5], type='f8'),
pa.array([1, 2, 3, 4, 5], type='f8'),
], ['f{}'.format(i) for i in range(8)])
_check_blocks_created(t, 8)
_check_to_pandas_memory_unchanged(t, split_blocks=True)
def _get_mgr(df):
if Version(pd.__version__) < Version("1.1.0"):
return df._data
else:
return df._mgr
def _check_blocks_created(t, number):
x = t.to_pandas(split_blocks=True)
assert len(_get_mgr(x).blocks) == number
def test_to_pandas_self_destruct():
K = 50
def _make_table():
return pa.table([
# Slice to force a copy
pa.array(np.random.randn(10000)[::2])
for i in range(K)
], ['f{}'.format(i) for i in range(K)])
t = _make_table()
_check_to_pandas_memory_unchanged(t, split_blocks=True, self_destruct=True)
# Check non-split-block behavior
t = _make_table()
_check_to_pandas_memory_unchanged(t, self_destruct=True)
def test_table_uses_memory_pool():
N = 10000
arr = pa.array(np.arange(N, dtype=np.int64))
t = pa.table([arr, arr, arr], ['f0', 'f1', 'f2'])
prior_allocation = pa.total_allocated_bytes()
x = t.to_pandas()
assert pa.total_allocated_bytes() == (prior_allocation + 3 * N * 8)
# Check successful garbage collection
x = None # noqa
gc.collect()
assert pa.total_allocated_bytes() == prior_allocation
def test_object_leak_in_numpy_array():
# ARROW-6876
arr = pa.array([{'a': 1}])
np_arr = arr.to_pandas()
assert np_arr.dtype == np.dtype('object')
obj = np_arr[0]
refcount = sys.getrefcount(obj)
assert sys.getrefcount(obj) == refcount
del np_arr
assert sys.getrefcount(obj) == refcount - 1
def test_object_leak_in_dataframe():
# ARROW-6876
arr = pa.array([{'a': 1}])
table = pa.table([arr], ['f0'])
col = table.to_pandas()['f0']
assert col.dtype == np.dtype('object')
obj = col[0]
refcount = sys.getrefcount(obj)
assert sys.getrefcount(obj) == refcount
del col
assert sys.getrefcount(obj) == refcount - 1
# ----------------------------------------------------------------------
# Some nested array tests array tests
def test_array_from_py_float32():
data = [[1.2, 3.4], [9.0, 42.0]]
t = pa.float32()
arr1 = pa.array(data[0], type=t)
arr2 = pa.array(data, type=pa.list_(t))
expected1 = np.array(data[0], dtype=np.float32)
expected2 = pd.Series([np.array(data[0], dtype=np.float32),
np.array(data[1], dtype=np.float32)])
assert arr1.type == t
assert arr1.equals(pa.array(expected1))
assert arr2.equals(pa.array(expected2))
# ----------------------------------------------------------------------
# Timestamp tests
def test_cast_timestamp_unit():
# ARROW-1680
val = datetime.now()
s = pd.Series([val])
s_nyc = s.dt.tz_localize('tzlocal()').dt.tz_convert('America/New_York')
us_with_tz = pa.timestamp('us', tz='America/New_York')
arr = pa.Array.from_pandas(s_nyc, type=us_with_tz)
# ARROW-1906
assert arr.type == us_with_tz
arr2 = pa.Array.from_pandas(s, type=pa.timestamp('us'))
assert arr[0].as_py() == s_nyc[0].to_pydatetime()
assert arr2[0].as_py() == s[0].to_pydatetime()
# Disallow truncation
arr = pa.array([123123], type='int64').cast(pa.timestamp('ms'))
expected = pa.array([123], type='int64').cast(pa.timestamp('s'))
# sanity check that the cast worked right
assert arr.type == pa.timestamp('ms')
target = pa.timestamp('s')
with pytest.raises(ValueError):
arr.cast(target)
result = arr.cast(target, safe=False)
assert result.equals(expected)
# ARROW-1949
series = pd.Series([pd.Timestamp(1), pd.Timestamp(10), pd.Timestamp(1000)])
expected = pa.array([0, 0, 1], type=pa.timestamp('us'))
with pytest.raises(ValueError):
pa.array(series, type=pa.timestamp('us'))
with pytest.raises(ValueError):
pa.Array.from_pandas(series, type=pa.timestamp('us'))
result = pa.Array.from_pandas(series, type=pa.timestamp('us'), safe=False)
assert result.equals(expected)
result = pa.array(series, type=pa.timestamp('us'), safe=False)
assert result.equals(expected)
def test_nested_with_timestamp_tz_round_trip():
ts = pd.Timestamp.now()
ts_dt = ts.to_pydatetime()
arr = pa.array([ts_dt], type=pa.timestamp('us', tz='America/New_York'))
struct = pa.StructArray.from_arrays([arr, arr], ['start', 'stop'])
result = struct.to_pandas()
restored = pa.array(result)
assert restored.equals(struct)
def test_nested_with_timestamp_tz():
# ARROW-7723
ts = pd.Timestamp.now()
ts_dt = ts.to_pydatetime()
# XXX: Ensure that this data does not get promoted to nanoseconds (and thus
# integers) to preserve behavior in 0.15.1
for unit in ['s', 'ms', 'us']:
if unit in ['s', 'ms']:
# This is used for verifying timezone conversion to micros are not
# important
def truncate(x): return x.replace(microsecond=0)
else:
def truncate(x): return x
arr = pa.array([ts], type=pa.timestamp(unit))
arr2 = pa.array([ts], type=pa.timestamp(unit, tz='America/New_York'))
arr3 = pa.StructArray.from_arrays([arr, arr], ['start', 'stop'])
arr4 = pa.StructArray.from_arrays([arr2, arr2], ['start', 'stop'])
result = arr3.to_pandas()
assert isinstance(result[0]['start'], datetime)
assert result[0]['start'].tzinfo is None
assert isinstance(result[0]['stop'], datetime)
assert result[0]['stop'].tzinfo is None
result = arr4.to_pandas()
assert isinstance(result[0]['start'], datetime)
assert result[0]['start'].tzinfo is not None
utc_dt = result[0]['start'].astimezone(timezone.utc)
assert truncate(utc_dt).replace(tzinfo=None) == truncate(ts_dt)
assert isinstance(result[0]['stop'], datetime)
assert result[0]['stop'].tzinfo is not None
# same conversion for table
result = pa.table({'a': arr3}).to_pandas()
assert isinstance(result['a'][0]['start'], datetime)
assert result['a'][0]['start'].tzinfo is None
assert isinstance(result['a'][0]['stop'], datetime)
assert result['a'][0]['stop'].tzinfo is None
result = pa.table({'a': arr4}).to_pandas()
assert isinstance(result['a'][0]['start'], datetime)
assert result['a'][0]['start'].tzinfo is not None
assert isinstance(result['a'][0]['stop'], datetime)
assert result['a'][0]['stop'].tzinfo is not None
# ----------------------------------------------------------------------
# DictionaryArray tests
def test_dictionary_with_pandas():
src_indices = np.repeat([0, 1, 2], 2)
dictionary = np.array(['foo', 'bar', 'baz'], dtype=object)
mask = np.array([False, False, True, False, False, False])
for index_type in ['uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32',
'uint64', 'int64']:
indices = src_indices.astype(index_type)
d1 = pa.DictionaryArray.from_arrays(indices, dictionary)
d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask)
if index_type[0] == 'u':
# TODO: unsigned dictionary indices to pandas
with pytest.raises(TypeError):
d1.to_pandas()
continue
pandas1 = d1.to_pandas()
ex_pandas1 = pd.Categorical.from_codes(indices, categories=dictionary)
tm.assert_series_equal(pd.Series(pandas1), pd.Series(ex_pandas1))
pandas2 = d2.to_pandas()
assert pandas2.isnull().sum() == 1
# Unsigned integers converted to signed
signed_indices = indices
if index_type[0] == 'u':
signed_indices = indices.astype(index_type[1:])
ex_pandas2 = pd.Categorical.from_codes(np.where(mask, -1,
signed_indices),
categories=dictionary)
tm.assert_series_equal(pd.Series(pandas2), pd.Series(ex_pandas2))
def random_strings(n, item_size, pct_null=0, dictionary=None):
if dictionary is not None:
result = dictionary[np.random.randint(0, len(dictionary), size=n)]
else:
result = np.array([random_ascii(item_size) for i in range(n)],
dtype=object)
if pct_null > 0:
result[np.random.rand(n) < pct_null] = None
return result
def test_variable_dictionary_to_pandas():
np.random.seed(12345)
d1 = pa.array(random_strings(100, 32), type='string')
d2 = pa.array(random_strings(100, 16), type='string')
d3 = pa.array(random_strings(10000, 10), type='string')
a1 = pa.DictionaryArray.from_arrays(
np.random.randint(0, len(d1), size=1000, dtype='i4'),
d1
)
a2 = pa.DictionaryArray.from_arrays(
np.random.randint(0, len(d2), size=1000, dtype='i4'),
d2
)
# With some nulls
a3 = pa.DictionaryArray.from_arrays(
np.random.randint(0, len(d3), size=1000, dtype='i4'), d3)
i4 = pa.array(
np.random.randint(0, len(d3), size=1000, dtype='i4'),
mask=np.random.rand(1000) < 0.1
)
a4 = pa.DictionaryArray.from_arrays(i4, d3)
expected_dict = pa.concat_arrays([d1, d2, d3])
a = pa.chunked_array([a1, a2, a3, a4])
a_dense = pa.chunked_array([a1.cast('string'),
a2.cast('string'),
a3.cast('string'),
a4.cast('string')])
result = a.to_pandas()
result_dense = a_dense.to_pandas()
assert (result.cat.categories == expected_dict.to_pandas()).all()
expected_dense = result.astype('str')
expected_dense[result_dense.isnull()] = None
tm.assert_series_equal(result_dense, expected_dense)
def test_dictionary_encoded_nested_to_pandas():
# ARROW-6899
child = pa.array(['a', 'a', 'a', 'b', 'b']).dictionary_encode()
arr = pa.ListArray.from_arrays([0, 3, 5], child)
result = arr.to_pandas()
expected = pd.Series([np.array(['a', 'a', 'a'], dtype=object),
np.array(['b', 'b'], dtype=object)])
tm.assert_series_equal(result, expected)
def test_dictionary_from_pandas():
cat = pd.Categorical(['a', 'b', 'a'])
expected_type = pa.dictionary(pa.int8(), pa.string())
result = pa.array(cat)
assert result.to_pylist() == ['a', 'b', 'a']
assert result.type.equals(expected_type)
# with missing values in categorical
cat = pd.Categorical(['a', 'b', None, 'a'])
result = pa.array(cat)
assert result.to_pylist() == ['a', 'b', None, 'a']
assert result.type.equals(expected_type)
# with additional mask
result = pa.array(cat, mask=np.array([False, False, False, True]))
assert result.to_pylist() == ['a', 'b', None, None]
assert result.type.equals(expected_type)
def test_dictionary_from_pandas_specified_type():
# ARROW-7168 - ensure specified type is always respected
# the same as cat = pd.Categorical(['a', 'b']) but explicit about dtypes
cat = pd.Categorical.from_codes(
np.array([0, 1], dtype='int8'), np.array(['a', 'b'], dtype=object))
# different index type -> allow this
# (the type of the 'codes' in pandas is not part of the data type)
typ = pa.dictionary(index_type=pa.int16(), value_type=pa.string())
result = pa.array(cat, type=typ)
assert result.type.equals(typ)
assert result.to_pylist() == ['a', 'b']
# mismatching values type -> raise error
typ = pa.dictionary(index_type=pa.int8(), value_type=pa.int64())
with pytest.raises(pa.ArrowInvalid):
result = pa.array(cat, type=typ)
# mismatching order -> raise error
typ = pa.dictionary(
index_type=pa.int8(), value_type=pa.string(), ordered=True)
msg = "The 'ordered' flag of the passed categorical values "
with pytest.raises(ValueError, match=msg):
result = pa.array(cat, type=typ)
assert result.to_pylist() == ['a', 'b']
# with mask
typ = pa.dictionary(index_type=pa.int16(), value_type=pa.string())
result = pa.array(cat, type=typ, mask=np.array([False, True]))
assert result.type.equals(typ)
assert result.to_pylist() == ['a', None]
# empty categorical -> be flexible in values type to allow
cat = pd.Categorical([])
typ = pa.dictionary(index_type=pa.int8(), value_type=pa.string())
result = pa.array(cat, type=typ)
assert result.type.equals(typ)
assert result.to_pylist() == []
typ = pa.dictionary(index_type=pa.int8(), value_type=pa.int64())
result = pa.array(cat, type=typ)
assert result.type.equals(typ)
assert result.to_pylist() == []
# passing non-dictionary type
cat = pd.Categorical(['a', 'b'])
result = pa.array(cat, type=pa.string())
expected = pa.array(['a', 'b'], type=pa.string())
assert result.equals(expected)
assert result.to_pylist() == ['a', 'b']
def test_convert_categories_to_array_with_string_pyarrow_dtype():
# gh-33727: categories should be converted to pa.Array
if Version(pd.__version__) < Version("1.3.0"):
pytest.skip("PyArrow backed string data type introduced in pandas 1.3.0")
df = pd.DataFrame({"x": ["foo", "bar", "foo"]}, dtype="string[pyarrow]")
df = df.astype("category")
indices = pa.array(df['x'].cat.codes)
dictionary = pa.array(df["x"].cat.categories.values)
assert isinstance(dictionary, pa.Array)
expected = pa.Array.from_pandas(df['x'])
result = pa.DictionaryArray.from_arrays(indices, dictionary)
assert result == expected
# ----------------------------------------------------------------------
# Array protocol in pandas conversions tests
def test_array_protocol():
df = pd.DataFrame({'a': pd.Series([1, 2, None], dtype='Int64')})
# __arrow_array__ added to pandas IntegerArray in 0.26.0.dev
# default conversion
result = pa.table(df)
expected = pa.array([1, 2, None], pa.int64())
assert result[0].chunk(0).equals(expected)
# with specifying schema
schema = pa.schema([('a', pa.float64())])
result = pa.table(df, schema=schema)
expected2 = pa.array([1, 2, None], pa.float64())
assert result[0].chunk(0).equals(expected2)
# pass Series to pa.array
result = pa.array(df['a'])
assert result.equals(expected)
result = pa.array(df['a'], type=pa.float64())
assert result.equals(expected2)
# pass actual ExtensionArray to pa.array
result = pa.array(df['a'].values)
assert result.equals(expected)
result = pa.array(df['a'].values, type=pa.float64())
assert result.equals(expected2)
class DummyExtensionType(pa.ExtensionType):
def __init__(self):
super().__init__(pa.int64(),
'pyarrow.tests.test_pandas.DummyExtensionType')
def __arrow_ext_serialize__(self):
return b''
@classmethod
def __arrow_ext_deserialize__(cls, storage_type, serialized):
assert serialized == b''
assert storage_type == pa.int64()
return cls()
def PandasArray__arrow_array__(self, type=None):
# hardcode dummy return regardless of self - we only want to check that
# this method is correctly called
storage = pa.array([1, 2, 3], type=pa.int64())
return pa.ExtensionArray.from_storage(DummyExtensionType(), storage)
def test_array_protocol_pandas_extension_types(monkeypatch):
# ARROW-7022 - ensure protocol works for Period / Interval extension dtypes
storage = pa.array([1, 2, 3], type=pa.int64())
expected = pa.ExtensionArray.from_storage(DummyExtensionType(), storage)
monkeypatch.setattr(pd.arrays.PeriodArray, "__arrow_array__",
PandasArray__arrow_array__, raising=False)
monkeypatch.setattr(pd.arrays.IntervalArray, "__arrow_array__",
PandasArray__arrow_array__, raising=False)
for arr in [pd.period_range("2012-01-01", periods=3, freq="D").array,
pd.interval_range(1, 4).array]:
result = pa.array(arr)
assert result.equals(expected)
result = pa.array(pd.Series(arr))
assert result.equals(expected)
result = pa.array(pd.Index(arr))
assert result.equals(expected)
result = pa.table(pd.DataFrame({'a': arr})).column('a').chunk(0)
assert result.equals(expected)
# ----------------------------------------------------------------------
# Pandas ExtensionArray support
def _Int64Dtype__from_arrow__(self, array):
# for test only deal with single chunk for now
# TODO: do we require handling of chunked arrays in the protocol?
if isinstance(array, pa.Array):
arr = array
else:
# ChunkedArray - here only deal with a single chunk for the test
arr = array.chunk(0)
buflist = arr.buffers()
data = np.frombuffer(buflist[-1], dtype='int64')[
arr.offset:arr.offset + len(arr)]
bitmask = buflist[0]
if bitmask is not None:
mask = pa.BooleanArray.from_buffers(
pa.bool_(), len(arr), [None, bitmask])
mask = np.asarray(mask)
else:
mask = np.ones(len(arr), dtype=bool)
int_arr = pd.arrays.IntegerArray(data.copy(), ~mask, copy=False)
return int_arr
def test_convert_to_extension_array(monkeypatch):
# table converted from dataframe with extension types (so pandas_metadata
# has this information)
df = pd.DataFrame(
{'a': [1, 2, 3], 'b': pd.array([2, 3, 4], dtype='Int64'),
'c': [4, 5, 6]})
table = pa.table(df)
# Int64Dtype is recognized -> convert to extension block by default
# for a proper roundtrip
result = table.to_pandas()
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64")
assert _get_mgr(result).blocks[1].values.dtype == pd.Int64Dtype()
tm.assert_frame_equal(result, df)
# test with missing values
df2 = pd.DataFrame({'a': pd.array([1, 2, None], dtype='Int64')})
table2 = pa.table(df2)
result = table2.to_pandas()
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype()
tm.assert_frame_equal(result, df2)
# monkeypatch pandas Int64Dtype to *not* have the protocol method
if Version(pd.__version__) < Version("1.3.0.dev"):
monkeypatch.delattr(
pd.core.arrays.integer._IntegerDtype, "__from_arrow__")
else:
monkeypatch.delattr(
pd.core.arrays.integer.NumericDtype, "__from_arrow__")
# Int64Dtype has no __from_arrow__ -> use normal conversion
result = table.to_pandas()
assert len(_get_mgr(result).blocks) == 1
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64")
class MyCustomIntegerType(pa.ExtensionType):
def __init__(self):
super().__init__(pa.int64(),
'pyarrow.tests.test_pandas.MyCustomIntegerType')
def __arrow_ext_serialize__(self):
return b''
def to_pandas_dtype(self):
return pd.Int64Dtype()
def test_conversion_extensiontype_to_extensionarray(monkeypatch):
# converting extension type to linked pandas ExtensionDtype/Array
storage = pa.array([1, 2, 3, 4], pa.int64())
arr = pa.ExtensionArray.from_storage(MyCustomIntegerType(), storage)
table = pa.table({'a': arr})
# extension type points to Int64Dtype, which knows how to create a
# pandas ExtensionArray
result = arr.to_pandas()
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype()
expected = pd.Series([1, 2, 3, 4], dtype='Int64')
tm.assert_series_equal(result, expected)
result = table.to_pandas()
assert _get_mgr(result).blocks[0].values.dtype == pd.Int64Dtype()
expected = pd.DataFrame({'a': pd.array([1, 2, 3, 4], dtype='Int64')})
tm.assert_frame_equal(result, expected)
# monkeypatch pandas Int64Dtype to *not* have the protocol method
# (remove the version added above and the actual version for recent pandas)
if Version(pd.__version__) < Version("1.3.0.dev"):
monkeypatch.delattr(
pd.core.arrays.integer._IntegerDtype, "__from_arrow__")
else:
monkeypatch.delattr(
pd.core.arrays.integer.NumericDtype, "__from_arrow__")
result = arr.to_pandas()
assert _get_mgr(result).blocks[0].values.dtype == np.dtype("int64")
expected = pd.Series([1, 2, 3, 4])
tm.assert_series_equal(result, expected)
with pytest.raises(ValueError):
table.to_pandas()
def test_to_pandas_extension_dtypes_mapping():
table = pa.table({'a': pa.array([1, 2, 3], pa.int64())})
# default use numpy dtype
result = table.to_pandas()
assert result['a'].dtype == np.dtype('int64')
# specify to override the default
result = table.to_pandas(types_mapper={pa.int64(): pd.Int64Dtype()}.get)
assert isinstance(result['a'].dtype, pd.Int64Dtype)
# types that return None in function get normal conversion
table = pa.table({'a': pa.array([1, 2, 3], pa.int32())})
result = table.to_pandas(types_mapper={pa.int64(): pd.Int64Dtype()}.get)
assert result['a'].dtype == np.dtype('int32')
# `types_mapper` overrules the pandas metadata
table = pa.table(pd.DataFrame({'a': pd.array([1, 2, 3], dtype="Int64")}))
result = table.to_pandas()
assert isinstance(result['a'].dtype, pd.Int64Dtype)
result = table.to_pandas(
types_mapper={pa.int64(): pd.PeriodDtype('D')}.get)
assert isinstance(result['a'].dtype, pd.PeriodDtype)
def test_array_to_pandas():
if Version(pd.__version__) < Version("1.1"):
pytest.skip("ExtensionDtype to_pandas method missing")
for arr in [pd.period_range("2012-01-01", periods=3, freq="D").array,
pd.interval_range(1, 4).array]:
result = pa.array(arr).to_pandas()
expected = pd.Series(arr)
tm.assert_series_equal(result, expected)
result = pa.table({"col": arr})["col"].to_pandas()
expected = pd.Series(arr, name="col")
tm.assert_series_equal(result, expected)
def test_roundtrip_empty_table_with_extension_dtype_index():
df = pd.DataFrame(index=pd.interval_range(start=0, end=3))
table = pa.table(df)
if Version(pd.__version__) > Version("1.0"):
tm.assert_index_equal(table.to_pandas().index, df.index)
else:
tm.assert_index_equal(table.to_pandas().index,
pd.Index([{'left': 0, 'right': 1},
{'left': 1, 'right': 2},
{'left': 2, 'right': 3}],
dtype='object'))
@pytest.mark.parametrize("index", ["a", ["a", "b"]])
def test_to_pandas_types_mapper_index(index):
if Version(pd.__version__) < Version("1.5.0"):
pytest.skip("ArrowDtype missing")
df = pd.DataFrame(
{
"a": [1, 2],
"b": [3, 4],
"c": [5, 6],
},
dtype=pd.ArrowDtype(pa.int64()),
).set_index(index)
expected = df.copy()
table = pa.table(df)
result = table.to_pandas(types_mapper=pd.ArrowDtype)
tm.assert_frame_equal(result, expected)
def test_array_to_pandas_types_mapper():
# https://issues.apache.org/jira/browse/ARROW-9664
if Version(pd.__version__) < Version("1.2.0"):
pytest.skip("Float64Dtype extension dtype missing")
data = pa.array([1, 2, 3], pa.int64())
# Test with mapper function
types_mapper = {pa.int64(): pd.Int64Dtype()}.get
result = data.to_pandas(types_mapper=types_mapper)
assert result.dtype == pd.Int64Dtype()
# Test mapper function returning None
types_mapper = {pa.int64(): None}.get
result = data.to_pandas(types_mapper=types_mapper)
assert result.dtype == np.dtype("int64")
# Test mapper function not containing the dtype
types_mapper = {pa.float64(): pd.Float64Dtype()}.get
result = data.to_pandas(types_mapper=types_mapper)
assert result.dtype == np.dtype("int64")
@pytest.mark.pandas
def test_chunked_array_to_pandas_types_mapper():
# https://issues.apache.org/jira/browse/ARROW-9664
if Version(pd.__version__) < Version("1.2.0"):
pytest.skip("Float64Dtype extension dtype missing")
data = pa.chunked_array([pa.array([1, 2, 3], pa.int64())])
assert isinstance(data, pa.ChunkedArray)
# Test with mapper function
types_mapper = {pa.int64(): pd.Int64Dtype()}.get
result = data.to_pandas(types_mapper=types_mapper)
assert result.dtype == pd.Int64Dtype()
# Test mapper function returning None
types_mapper = {pa.int64(): None}.get
result = data.to_pandas(types_mapper=types_mapper)
assert result.dtype == np.dtype("int64")
# Test mapper function not containing the dtype
types_mapper = {pa.float64(): pd.Float64Dtype()}.get
result = data.to_pandas(types_mapper=types_mapper)
assert result.dtype == np.dtype("int64")
# ----------------------------------------------------------------------
# Legacy metadata compatibility tests
def test_metadata_compat_range_index_pre_0_12():
# Forward compatibility for metadata created from pandas.RangeIndex
# prior to pyarrow 0.13.0
a_values = ['foo', 'bar', None, 'baz']
b_values = ['a', 'a', 'b', 'b']
a_arrow = pa.array(a_values, type='utf8')
b_arrow = pa.array(b_values, type='utf8')
rng_index_arrow = pa.array([0, 2, 4, 6], type='int64')
gen_name_0 = '__index_level_0__'
gen_name_1 = '__index_level_1__'
# Case 1: named RangeIndex
e1 = pd.DataFrame({
'a': a_values
}, index=pd.RangeIndex(0, 8, step=2, name='qux'))
t1 = pa.Table.from_arrays([a_arrow, rng_index_arrow],
names=['a', 'qux'])
t1 = t1.replace_schema_metadata({
b'pandas': json.dumps(
{'index_columns': ['qux'],
'column_indexes': [{'name': None,
'field_name': None,
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}],
'columns': [{'name': 'a',
'field_name': 'a',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': None},
{'name': 'qux',
'field_name': 'qux',
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None}],
'pandas_version': '0.23.4'}
)})
r1 = t1.to_pandas()
tm.assert_frame_equal(r1, e1)
# Case 2: named RangeIndex, but conflicts with an actual column
e2 = pd.DataFrame({
'qux': a_values
}, index=pd.RangeIndex(0, 8, step=2, name='qux'))
t2 = pa.Table.from_arrays([a_arrow, rng_index_arrow],
names=['qux', gen_name_0])
t2 = t2.replace_schema_metadata({
b'pandas': json.dumps(
{'index_columns': [gen_name_0],
'column_indexes': [{'name': None,
'field_name': None,
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}],
'columns': [{'name': 'a',
'field_name': 'a',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': None},
{'name': 'qux',
'field_name': gen_name_0,
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None}],
'pandas_version': '0.23.4'}
)})
r2 = t2.to_pandas()
tm.assert_frame_equal(r2, e2)
# Case 3: unnamed RangeIndex
e3 = pd.DataFrame({
'a': a_values
}, index=pd.RangeIndex(0, 8, step=2, name=None))
t3 = pa.Table.from_arrays([a_arrow, rng_index_arrow],
names=['a', gen_name_0])
t3 = t3.replace_schema_metadata({
b'pandas': json.dumps(
{'index_columns': [gen_name_0],
'column_indexes': [{'name': None,
'field_name': None,
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}],
'columns': [{'name': 'a',
'field_name': 'a',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': None},
{'name': None,
'field_name': gen_name_0,
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None}],
'pandas_version': '0.23.4'}
)})
r3 = t3.to_pandas()
tm.assert_frame_equal(r3, e3)
# Case 4: MultiIndex with named RangeIndex
e4 = pd.DataFrame({
'a': a_values
}, index=[pd.RangeIndex(0, 8, step=2, name='qux'), b_values])
t4 = pa.Table.from_arrays([a_arrow, rng_index_arrow, b_arrow],
names=['a', 'qux', gen_name_1])
t4 = t4.replace_schema_metadata({
b'pandas': json.dumps(
{'index_columns': ['qux', gen_name_1],
'column_indexes': [{'name': None,
'field_name': None,
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}],
'columns': [{'name': 'a',
'field_name': 'a',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': None},
{'name': 'qux',
'field_name': 'qux',
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None},
{'name': None,
'field_name': gen_name_1,
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': None}],
'pandas_version': '0.23.4'}
)})
r4 = t4.to_pandas()
tm.assert_frame_equal(r4, e4)
# Case 4: MultiIndex with unnamed RangeIndex
e5 = pd.DataFrame({
'a': a_values
}, index=[pd.RangeIndex(0, 8, step=2, name=None), b_values])
t5 = pa.Table.from_arrays([a_arrow, rng_index_arrow, b_arrow],
names=['a', gen_name_0, gen_name_1])
t5 = t5.replace_schema_metadata({
b'pandas': json.dumps(
{'index_columns': [gen_name_0, gen_name_1],
'column_indexes': [{'name': None,
'field_name': None,
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}],
'columns': [{'name': 'a',
'field_name': 'a',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': None},
{'name': None,
'field_name': gen_name_0,
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None},
{'name': None,
'field_name': gen_name_1,
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': None}],
'pandas_version': '0.23.4'}
)})
r5 = t5.to_pandas()
tm.assert_frame_equal(r5, e5)
def test_metadata_compat_missing_field_name():
# Combination of missing field name but with index column as metadata.
# This combo occurs in the latest versions of fastparquet (0.3.2), but not
# in pyarrow itself (since field_name was added in 0.8, index as metadata
# only added later)
a_values = [1, 2, 3, 4]
b_values = ['a', 'b', 'c', 'd']
a_arrow = pa.array(a_values, type='int64')
b_arrow = pa.array(b_values, type='utf8')
expected = pd.DataFrame({
'a': a_values,
'b': b_values,
}, index=pd.RangeIndex(0, 8, step=2, name='qux'))
table = pa.table({'a': a_arrow, 'b': b_arrow})
# metadata generated by fastparquet 0.3.2 with missing field_names
table = table.replace_schema_metadata({
b'pandas': json.dumps({
'column_indexes': [
{'field_name': None,
'metadata': None,
'name': None,
'numpy_type': 'object',
'pandas_type': 'mixed-integer'}
],
'columns': [
{'metadata': None,
'name': 'a',
'numpy_type': 'int64',
'pandas_type': 'int64'},
{'metadata': None,
'name': 'b',
'numpy_type': 'object',
'pandas_type': 'unicode'}
],
'index_columns': [
{'kind': 'range',
'name': 'qux',
'start': 0,
'step': 2,
'stop': 8}
],
'pandas_version': '0.25.0'}
)})
result = table.to_pandas()
tm.assert_frame_equal(result, expected)
def test_metadata_index_name_not_json_serializable():
name = np.int64(6) # not json serializable by default
table = pa.table(pd.DataFrame(index=pd.RangeIndex(0, 4, name=name)))
metadata = table.schema.pandas_metadata
assert metadata['index_columns'][0]['name'] == '6'
def test_metadata_index_name_is_json_serializable():
name = 6 # json serializable by default
table = pa.table(pd.DataFrame(index=pd.RangeIndex(0, 4, name=name)))
metadata = table.schema.pandas_metadata
assert metadata['index_columns'][0]['name'] == 6
def make_df_with_timestamps():
# Some of the milliseconds timestamps deliberately don't fit in the range
# that is possible with nanosecond timestamps.
df = pd.DataFrame({
'dateTimeMs': [
np.datetime64('0001-01-01 00:00', 'ms'),
np.datetime64('2012-05-02 12:35', 'ms'),
np.datetime64('2012-05-03 15:42', 'ms'),
np.datetime64('3000-05-03 15:42', 'ms'),
],
'dateTimeNs': [
np.datetime64('1991-01-01 00:00', 'ns'),
np.datetime64('2012-05-02 12:35', 'ns'),
np.datetime64('2012-05-03 15:42', 'ns'),
np.datetime64('2050-05-03 15:42', 'ns'),
],
})
# Not part of what we're testing, just ensuring that the inputs are what we
# expect.
assert (df.dateTimeMs.dtype, df.dateTimeNs.dtype) == (
# O == object, M8[ns] == timestamp64[ns]
np.dtype("O"), np.dtype("M8[ns]")
)
return df
@pytest.mark.parquet
@pytest.mark.filterwarnings("ignore:Parquet format '2.0':FutureWarning")
def test_timestamp_as_object_parquet(tempdir):
# Timestamps can be stored as Parquet and reloaded into Pandas with no loss
# of information if the timestamp_as_object option is True.
df = make_df_with_timestamps()
table = pa.Table.from_pandas(df)
filename = tempdir / "timestamps_from_pandas.parquet"
pq.write_table(table, filename, version="2.0")
result = pq.read_table(filename)
df2 = result.to_pandas(timestamp_as_object=True)
tm.assert_frame_equal(df, df2)
def test_timestamp_as_object_out_of_range():
# Out of range timestamps can be converted Arrow and reloaded into Pandas
# with no loss of information if the timestamp_as_object option is True.
df = make_df_with_timestamps()
table = pa.Table.from_pandas(df)
df2 = table.to_pandas(timestamp_as_object=True)
tm.assert_frame_equal(df, df2)
@pytest.mark.parametrize("resolution", ["s", "ms", "us"])
@pytest.mark.parametrize("tz", [None, "America/New_York"])
# One datetime outside nanosecond range, one inside nanosecond range:
@pytest.mark.parametrize("dt", [datetime(1553, 1, 1), datetime(2020, 1, 1)])
def test_timestamp_as_object_non_nanosecond(resolution, tz, dt):
# Timestamps can be converted Arrow and reloaded into Pandas with no loss
# of information if the timestamp_as_object option is True.
arr = pa.array([dt], type=pa.timestamp(resolution, tz=tz))
table = pa.table({'a': arr})
for result in [
arr.to_pandas(timestamp_as_object=True),
table.to_pandas(timestamp_as_object=True)['a']
]:
assert result.dtype == object
assert isinstance(result[0], datetime)
if tz:
assert result[0].tzinfo is not None
expected = result[0].tzinfo.fromutc(dt)
else:
assert result[0].tzinfo is None
expected = dt
assert result[0] == expected
def test_timestamp_as_object_fixed_offset():
# ARROW-16547 to_pandas with timestamp_as_object=True and FixedOffset
pytz = pytest.importorskip("pytz")
import datetime
timezone = pytz.FixedOffset(120)
dt = timezone.localize(datetime.datetime(2022, 5, 12, 16, 57))
table = pa.table({"timestamp_col": pa.array([dt])})
result = table.to_pandas(timestamp_as_object=True)
assert pa.table(result) == table
def test_threaded_pandas_import():
invoke_script("pandas_threaded_import.py")
def test_does_not_mutate_timedelta_dtype():
expected = np.dtype('m8')
assert np.dtype(np.timedelta64) == expected
df = pd.DataFrame({"a": [np.timedelta64()]})
t = pa.Table.from_pandas(df)
t.to_pandas()
assert np.dtype(np.timedelta64) == expected
def test_does_not_mutate_timedelta_nested():
# ARROW-17893: dataframe with timedelta and a list of dictionary
# also with timedelta produces wrong result with to_pandas
from datetime import timedelta
timedelta_1 = [{"timedelta_1": timedelta(seconds=12, microseconds=1)}]
timedelta_2 = [timedelta(hours=3, minutes=40, seconds=23)]
table = pa.table({"timedelta_1": timedelta_1, "timedelta_2": timedelta_2})
df = table.to_pandas()
assert df["timedelta_2"][0].to_pytimedelta() == timedelta_2[0]
def test_roundtrip_nested_map_table_with_pydicts():
schema = pa.schema([
pa.field(
"a",
pa.list_(
pa.map_(pa.int8(), pa.struct([pa.field("b", pa.binary())]))
)
)
])
table = pa.table([[
[[(1, None)]],
None,
[
[(2, {"b": b"abc"})],
[(3, {"b": None}), (4, {"b": b"def"})],
]
]],
schema=schema,
)
expected_default_df = pd.DataFrame(
{"a": [[[(1, None)]], None, [[(2, {"b": b"abc"})],
[(3, {"b": None}), (4, {"b": b"def"})]]]}
)
expected_as_pydicts_df = pd.DataFrame(
{"a": [
[{1: None}],
None,
[{2: {"b": b"abc"}}, {3: {"b": None}, 4: {"b": b"def"}}],
]}
)
default_df = table.to_pandas()
as_pydicts_df = table.to_pandas(maps_as_pydicts="strict")
tm.assert_frame_equal(default_df, expected_default_df)
tm.assert_frame_equal(as_pydicts_df, expected_as_pydicts_df)
table_default_roundtrip = pa.Table.from_pandas(default_df, schema=schema)
assert table.equals(table_default_roundtrip)
table_as_pydicts_roundtrip = pa.Table.from_pandas(as_pydicts_df, schema=schema)
assert table.equals(table_as_pydicts_roundtrip)
def test_roundtrip_nested_map_array_with_pydicts_sliced():
"""
Slightly more robust test with chunking and slicing
"""
keys_1 = pa.array(['foo', 'bar'])
keys_2 = pa.array(['baz', 'qux', 'quux', 'quz'])
keys_3 = pa.array([], pa.string())
items_1 = pa.array(
[['a', 'b'], ['c', 'd']],
pa.list_(pa.string()),
)
items_2 = pa.array(
[[], None, [None, 'e'], ['f', 'g']],
pa.list_(pa.string()),
)
items_3 = pa.array(
[],
pa.list_(pa.string()),
)
map_chunk_1 = pa.MapArray.from_arrays([0, 2], keys_1, items_1)
map_chunk_2 = pa.MapArray.from_arrays([0, 3, 4], keys_2, items_2)
map_chunk_3 = pa.MapArray.from_arrays([0, 0], keys_3, items_3)
chunked_array = pa.chunked_array([
pa.ListArray.from_arrays([0, 1], map_chunk_1).slice(0),
pa.ListArray.from_arrays([0, 1], map_chunk_2.slice(1)).slice(0),
pa.ListArray.from_arrays([0, 0], map_chunk_3).slice(0),
])
series_default = chunked_array.to_pandas()
expected_series_default = pd.Series([
[[('foo', ['a', 'b']), ('bar', ['c', 'd'])]],
[[('quz', ['f', 'g'])]],
[],
])
series_pydicts = chunked_array.to_pandas(maps_as_pydicts="strict")
expected_series_pydicts = pd.Series([
[{'foo': ['a', 'b'], 'bar': ['c', 'd']}],
[{'quz': ['f', 'g']}],
[],
])
sliced = chunked_array.slice(1, 3)
series_default_sliced = sliced.to_pandas()
expected_series_default_sliced = pd.Series([
[[('quz', ['f', 'g'])]],
[],
])
series_pydicts_sliced = sliced.to_pandas(maps_as_pydicts="strict")
expected_series_pydicts_sliced = pd.Series([
[{'quz': ['f', 'g']}],
[],
])
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "elementwise comparison failed",
DeprecationWarning)
tm.assert_series_equal(series_default, expected_series_default)
tm.assert_series_equal(series_pydicts, expected_series_pydicts)
tm.assert_series_equal(series_default_sliced, expected_series_default_sliced)
tm.assert_series_equal(series_pydicts_sliced, expected_series_pydicts_sliced)
ty = pa.list_(pa.map_(pa.string(), pa.list_(pa.string())))
def assert_roundtrip(series: pd.Series, data) -> None:
array_roundtrip = pa.chunked_array(pa.Array.from_pandas(series, type=ty))
array_roundtrip.validate(full=True)
assert data.equals(array_roundtrip)
assert_roundtrip(series_default, chunked_array)
assert_roundtrip(series_pydicts, chunked_array)
assert_roundtrip(series_default_sliced, sliced)
assert_roundtrip(series_pydicts_sliced, sliced)
def test_roundtrip_map_array_with_pydicts_duplicate_keys():
keys = pa.array(['foo', 'bar', 'foo'])
items = pa.array(
[['a', 'b'], ['c', 'd'], ['1', '2']],
pa.list_(pa.string()),
)
offsets = [0, 3]
maps = pa.MapArray.from_arrays(offsets, keys, items)
ty = pa.map_(pa.string(), pa.list_(pa.string()))
# ------------------------
# With maps as pydicts
with pytest.raises(pa.lib.ArrowException):
# raises because of duplicate keys
maps.to_pandas(maps_as_pydicts="strict")
series_pydicts = maps.to_pandas(maps_as_pydicts="lossy")
# some data loss occurs for duplicate keys
expected_series_pydicts = pd.Series([
{'foo': ['1', '2'], 'bar': ['c', 'd']},
])
# roundtrip is not possible because of data loss
assert not maps.equals(pa.Array.from_pandas(series_pydicts, type=ty))
# ------------------------
# With default assoc list of tuples
series_default = maps.to_pandas()
expected_series_default = pd.Series([
[('foo', ['a', 'b']), ('bar', ['c', 'd']), ('foo', ['1', '2'])],
])
assert maps.equals(pa.Array.from_pandas(series_default, type=ty))
# custom comparison for compatibility w/ Pandas 1.0.0
# would otherwise run:
# tm.assert_series_equal(series_pydicts, expected_series_pydicts)
assert len(series_pydicts) == len(expected_series_pydicts)
for row1, row2 in zip(series_pydicts, expected_series_pydicts):
assert len(row1) == len(row2)
for tup1, tup2 in zip(row1.items(), row2.items()):
assert tup1[0] == tup2[0]
assert np.array_equal(tup1[1], tup2[1])
# custom comparison for compatibility w/ Pandas 1.0.0
# would otherwise run:
# tm.assert_series_equal(series_default, expected_series_default)
assert len(series_default) == len(expected_series_default)
for row1, row2 in zip(series_default, expected_series_default):
assert len(row1) == len(row2)
for tup1, tup2 in zip(row1, row2):
assert tup1[0] == tup2[0]
assert np.array_equal(tup1[1], tup2[1])
def test_unhashable_map_keys_with_pydicts():
keys = pa.array(
[['a', 'b'], ['c', 'd'], [], ['e'], [None, 'f'], ['g', 'h']],
pa.list_(pa.string()),
)
items = pa.array(['foo', 'bar', 'baz', 'qux', 'quux', 'quz'])
offsets = [0, 2, 6]
maps = pa.MapArray.from_arrays(offsets, keys, items)
# ------------------------
# With maps as pydicts
with pytest.raises(TypeError):
maps.to_pandas(maps_as_pydicts="lossy")
# ------------------------
# With default assoc list of tuples
series = maps.to_pandas()
expected_series_default = pd.Series([
[(['a', 'b'], 'foo'), (['c', 'd'], 'bar')],
[([], 'baz'), (['e'], 'qux'), ([None, 'f'], 'quux'), (['g', 'h'], 'quz')],
])
# custom comparison for compatibility w/ Pandas 1.0.0
# would otherwise run:
# tm.assert_series_equal(series, expected_series_default)
assert len(series) == len(expected_series_default)
for row1, row2 in zip(series, expected_series_default):
assert len(row1) == len(row2)
for tup1, tup2 in zip(row1, row2):
assert np.array_equal(tup1[0], tup2[0])
assert tup1[1] == tup2[1]
def test_table_column_conversion_for_datetime():
# GH-35235
# pandas implemented __from_arrow__ for DatetimeTZDtype,
# but we choose to do the conversion in Arrow instead.
# https://github.com/pandas-dev/pandas/pull/52201
series = pd.Series(pd.date_range("2012", periods=2, tz="Europe/Brussels"),
name="datetime_column")
table = pa.table({"datetime_column": pa.array(series)})
table_col = table.column("datetime_column")
result = table_col.to_pandas()
assert result.name == "datetime_column"
tm.assert_series_equal(result, series)
def test_array_conversion_for_datetime():
# GH-35235
# pandas implemented __from_arrow__ for DatetimeTZDtype,
# but we choose to do the conversion in Arrow instead.
# https://github.com/pandas-dev/pandas/pull/52201
series = pd.Series(pd.date_range("2012", periods=2, tz="Europe/Brussels"))
arr = pa.array(series)
result = arr.to_pandas()
tm.assert_series_equal(result, series)
@pytest.mark.large_memory
def test_nested_chunking_valid():
# GH-32439: Chunking can cause arrays to be in invalid state
# when nested types are involved.
# Here we simply ensure we validate correctly.
def roundtrip(df, schema=None):
tab = pa.Table.from_pandas(df, schema=schema)
tab.validate(full=True)
# we expect to trigger chunking internally
# an assertion failure here may just mean this threshold has changed
num_chunks = tab.column(0).num_chunks
assert num_chunks > 1
tm.assert_frame_equal(tab.to_pandas(self_destruct=True,
maps_as_pydicts="strict"), df)
x = b"0" * 720000000
roundtrip(pd.DataFrame({"strings": [x, x, x]}))
struct = {"struct_field": x}
roundtrip(pd.DataFrame({"structs": [struct, struct, struct]}))
lists = [x]
roundtrip(pd.DataFrame({"lists": [lists, lists, lists]}))
los = [struct]
roundtrip(pd.DataFrame({"los": [los, los, los]}))
sol = {"struct_field": lists}
roundtrip(pd.DataFrame({"sol": [sol, sol, sol]}))
map_of_los = {"a": los}
map_type = pa.map_(pa.string(),
pa.list_(pa.struct([("struct_field", pa.binary())])))
schema = pa.schema([("maps", map_type)])
roundtrip(pd.DataFrame({"maps": [map_of_los, map_of_los, map_of_los]}),
schema=schema)
def test_is_data_frame_race_condition():
# See https://github.com/apache/arrow/issues/39313
test_util.invoke_script('arrow_39313.py')