applied-ai-018's picture
Add files using upload-large-folder tool
ac141ed verified
raw
history blame
26.8 kB
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import datetime
import decimal
import pytest
import sys
import weakref
import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
from pyarrow.tests import util
@pytest.mark.parametrize(['value', 'ty', 'klass'], [
(False, None, pa.BooleanScalar),
(True, None, pa.BooleanScalar),
(1, None, pa.Int64Scalar),
(-1, None, pa.Int64Scalar),
(1, pa.int8(), pa.Int8Scalar),
(1, pa.uint8(), pa.UInt8Scalar),
(1, pa.int16(), pa.Int16Scalar),
(1, pa.uint16(), pa.UInt16Scalar),
(1, pa.int32(), pa.Int32Scalar),
(1, pa.uint32(), pa.UInt32Scalar),
(1, pa.int64(), pa.Int64Scalar),
(1, pa.uint64(), pa.UInt64Scalar),
(1.0, None, pa.DoubleScalar),
(np.float16(1.0), pa.float16(), pa.HalfFloatScalar),
(1.0, pa.float32(), pa.FloatScalar),
(decimal.Decimal("1.123"), None, pa.Decimal128Scalar),
(decimal.Decimal("1.1234567890123456789012345678901234567890"),
None, pa.Decimal256Scalar),
("string", None, pa.StringScalar),
(b"bytes", None, pa.BinaryScalar),
("largestring", pa.large_string(), pa.LargeStringScalar),
(b"largebytes", pa.large_binary(), pa.LargeBinaryScalar),
("string_view", pa.string_view(), pa.StringViewScalar),
(b"bytes_view", pa.binary_view(), pa.BinaryViewScalar),
(b"abc", pa.binary(3), pa.FixedSizeBinaryScalar),
([1, 2, 3], None, pa.ListScalar),
([1, 2, 3, 4], pa.large_list(pa.int8()), pa.LargeListScalar),
([1, 2, 3, 4, 5], pa.list_(pa.int8(), 5), pa.FixedSizeListScalar),
([1, 2, 3], pa.list_view(pa.int8()), pa.ListViewScalar),
([1, 2, 3, 4], pa.large_list_view(pa.int8()), pa.LargeListViewScalar),
(datetime.date.today(), None, pa.Date32Scalar),
(datetime.date.today(), pa.date64(), pa.Date64Scalar),
(datetime.datetime.now(), None, pa.TimestampScalar),
(datetime.datetime.now().time().replace(microsecond=0), pa.time32('s'),
pa.Time32Scalar),
(datetime.datetime.now().time(), None, pa.Time64Scalar),
(datetime.timedelta(days=1), None, pa.DurationScalar),
(pa.MonthDayNano([1, -1, -10100]), None,
pa.MonthDayNanoIntervalScalar),
({'a': 1, 'b': [1, 2]}, None, pa.StructScalar),
([('a', 1), ('b', 2)], pa.map_(pa.string(), pa.int8()), pa.MapScalar),
])
def test_basics(value, ty, klass, pickle_module):
s = pa.scalar(value, type=ty)
s.validate()
s.validate(full=True)
assert isinstance(s, klass)
assert s.as_py() == value
assert s == pa.scalar(value, type=ty)
assert s != value
assert s != "else"
assert hash(s) == hash(s)
assert s.is_valid is True
assert s != None # noqa: E711
s = pa.scalar(None, type=s.type)
assert s.is_valid is False
assert s.as_py() is None
assert s != pa.scalar(value, type=ty)
# test pickle roundtrip
restored = pickle_module.loads(pickle_module.dumps(s))
assert s.equals(restored)
# test that scalars are weak-referenceable
wr = weakref.ref(s)
assert wr() is not None
del s
assert wr() is None
def test_invalid_scalar():
s = pc.cast(pa.scalar(b"\xff"), pa.string(), safe=False)
s.validate()
with pytest.raises(ValueError,
match="string scalar contains invalid UTF8 data"):
s.validate(full=True)
def test_null_singleton():
with pytest.raises(RuntimeError):
pa.NullScalar()
def test_nulls(pickle_module):
null = pa.scalar(None)
assert null is pa.NA
assert null.as_py() is None
assert null != "something"
assert (null == pa.scalar(None)) is True
assert (null == 0) is False
assert pa.NA == pa.NA
assert pa.NA not in [5]
arr = pa.array([None, None])
for v in arr:
assert v is pa.NA
assert v.as_py() is None
# test pickle roundtrip
restored = pickle_module.loads(pickle_module.dumps(null))
assert restored.equals(null)
# test that scalars are weak-referenceable
wr = weakref.ref(null)
assert wr() is not None
del null
assert wr() is not None # singleton
def test_hashing():
# ARROW-640
values = list(range(500))
arr = pa.array(values + values)
set_from_array = set(arr)
assert isinstance(set_from_array, set)
assert len(set_from_array) == 500
def test_hashing_struct_scalar():
# GH-35360
a = pa.array([[{'a': 5}, {'a': 6}], [{'a': 7}, None]])
b = pa.array([[{'a': 7}, None]])
hash1 = hash(a[1])
hash2 = hash(b[0])
assert hash1 == hash2
@pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(),
reason="Timezone database is not installed on Windows")
def test_timestamp_scalar():
a = repr(pa.scalar("0000-01-01").cast(pa.timestamp("s")))
assert a == "<pyarrow.TimestampScalar: '0000-01-01T00:00:00'>"
b = repr(pa.scalar(datetime.datetime(2015, 1, 1), type=pa.timestamp('s', tz='UTC')))
assert b == "<pyarrow.TimestampScalar: '2015-01-01T00:00:00+0000'>"
c = repr(pa.scalar(datetime.datetime(2015, 1, 1), type=pa.timestamp('us')))
assert c == "<pyarrow.TimestampScalar: '2015-01-01T00:00:00.000000'>"
d = repr(pc.assume_timezone(
pa.scalar("2000-01-01").cast(pa.timestamp("s")), "America/New_York"))
assert d == "<pyarrow.TimestampScalar: '2000-01-01T00:00:00-0500'>"
def test_bool():
false = pa.scalar(False)
true = pa.scalar(True)
assert isinstance(false, pa.BooleanScalar)
assert isinstance(true, pa.BooleanScalar)
assert repr(true) == "<pyarrow.BooleanScalar: True>"
assert str(true) == "True"
assert repr(false) == "<pyarrow.BooleanScalar: False>"
assert str(false) == "False"
assert true.as_py() is True
assert false.as_py() is False
def test_numerics():
# int64
s = pa.scalar(1)
assert isinstance(s, pa.Int64Scalar)
assert repr(s) == "<pyarrow.Int64Scalar: 1>"
assert str(s) == "1"
assert s.as_py() == 1
with pytest.raises(OverflowError):
pa.scalar(-1, type='uint8')
# float64
s = pa.scalar(1.5)
assert isinstance(s, pa.DoubleScalar)
assert repr(s) == "<pyarrow.DoubleScalar: 1.5>"
assert str(s) == "1.5"
assert s.as_py() == 1.5
# float16
s = pa.scalar(np.float16(0.5), type='float16')
assert isinstance(s, pa.HalfFloatScalar)
# on numpy2 repr(np.float16(0.5)) == "np.float16(0.5)"
# on numpy1 repr(np.float16(0.5)) == "0.5"
assert repr(s) == f"<pyarrow.HalfFloatScalar: {np.float16(0.5)!r}>"
assert str(s) == "0.5"
assert s.as_py() == 0.5
def test_decimal128():
v = decimal.Decimal("1.123")
s = pa.scalar(v)
assert isinstance(s, pa.Decimal128Scalar)
assert s.as_py() == v
assert s.type == pa.decimal128(4, 3)
v = decimal.Decimal("1.1234")
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal128(4, scale=3))
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal128(5, scale=3))
s = pa.scalar(v, type=pa.decimal128(5, scale=4))
assert isinstance(s, pa.Decimal128Scalar)
assert s.as_py() == v
def test_decimal256():
v = decimal.Decimal("1234567890123456789012345678901234567890.123")
s = pa.scalar(v)
assert isinstance(s, pa.Decimal256Scalar)
assert s.as_py() == v
assert s.type == pa.decimal256(43, 3)
v = decimal.Decimal("1.1234")
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal256(4, scale=3))
with pytest.raises(pa.ArrowInvalid):
pa.scalar(v, type=pa.decimal256(5, scale=3))
s = pa.scalar(v, type=pa.decimal256(5, scale=4))
assert isinstance(s, pa.Decimal256Scalar)
assert s.as_py() == v
def test_date():
# ARROW-5125
d1 = datetime.date(3200, 1, 1)
d2 = datetime.date(1960, 1, 1)
for ty in [pa.date32(), pa.date64()]:
for d in [d1, d2]:
s = pa.scalar(d, type=ty)
assert s.as_py() == d
def test_date_cast():
# ARROW-10472 - casting fo scalars doesn't segfault
scalar = pa.scalar(datetime.datetime(2012, 1, 1), type=pa.timestamp("us"))
expected = datetime.date(2012, 1, 1)
for ty in [pa.date32(), pa.date64()]:
result = scalar.cast(ty)
assert result.as_py() == expected
def test_time_from_datetime_time():
t1 = datetime.time(18, 0)
t2 = datetime.time(21, 0)
types = [pa.time32('s'), pa.time32('ms'), pa.time64('us'), pa.time64('ns')]
for ty in types:
for t in [t1, t2]:
s = pa.scalar(t, type=ty)
assert s.as_py() == t
@pytest.mark.parametrize(['value', 'time_type'], [
(1, pa.time32("s")),
(2**30, pa.time32("s")),
(None, pa.time32("s")),
(1, pa.time32("ms")),
(2**30, pa.time32("ms")),
(None, pa.time32("ms")),
(1, pa.time64("us")),
(2**62, pa.time64("us")),
(None, pa.time64("us")),
(1, pa.time64("ns")),
(2**62, pa.time64("ns")),
(None, pa.time64("ns")),
(1, pa.date32()),
(2**30, pa.date32()),
(None, pa.date32()),
(1, pa.date64()),
(2**62, pa.date64()),
(None, pa.date64()),
(1, pa.timestamp("ns")),
(2**62, pa.timestamp("ns")),
(None, pa.timestamp("ns")),
(1, pa.duration("ns")),
(2**62, pa.duration("ns")),
(None, pa.duration("ns")),
((1, 2, -3), pa.month_day_nano_interval()),
(None, pa.month_day_nano_interval()),
])
def test_temporal_values(value, time_type: pa.DataType):
time_scalar = pa.scalar(value, type=time_type)
time_scalar.validate(full=True)
assert time_scalar.value == value
def test_cast():
val = pa.scalar(5, type='int8')
assert val.cast('int64') == pa.scalar(5, type='int64')
assert val.cast('uint32') == pa.scalar(5, type='uint32')
assert val.cast('string') == pa.scalar('5', type='string')
with pytest.raises(ValueError):
pa.scalar('foo').cast('int32')
@pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(),
reason="Timezone database is not installed on Windows")
def test_cast_timestamp_to_string():
# GH-35370
pytest.importorskip("pytz")
import pytz
dt = datetime.datetime(2000, 1, 1, 0, 0, 0, tzinfo=pytz.utc)
ts = pa.scalar(dt, type=pa.timestamp("ns", tz="UTC"))
assert ts.cast(pa.string()) == pa.scalar('2000-01-01 00:00:00.000000000Z')
def test_cast_float_to_int():
# GH-35040
float_scalar = pa.scalar(1.5, type=pa.float64())
unsafe_cast = float_scalar.cast(pa.int64(), safe=False)
expected_unsafe_cast = pa.scalar(1, type=pa.int64())
assert unsafe_cast == expected_unsafe_cast
with pytest.raises(pa.ArrowInvalid):
float_scalar.cast(pa.int64()) # verify default is safe cast
def test_cast_int_to_float():
# GH-34901
int_scalar = pa.scalar(18014398509481983, type=pa.int64())
unsafe_cast = int_scalar.cast(pa.float64(), safe=False)
expected_unsafe_cast = pa.scalar(18014398509481983.0, type=pa.float64())
assert unsafe_cast == expected_unsafe_cast
with pytest.raises(pa.ArrowInvalid):
int_scalar.cast(pa.float64()) # verify default is safe cast
@pytest.mark.parametrize("typ", [pa.date32(), pa.date64()])
def test_cast_string_to_date(typ):
scalar = pa.scalar('2021-01-01')
result = scalar.cast(typ)
assert result == pa.scalar(datetime.date(2021, 1, 1), type=typ)
@pytest.mark.pandas
def test_timestamp():
import pandas as pd
arr = pd.date_range('2000-01-01 12:34:56', periods=10).values
units = ['ns', 'us', 'ms', 's']
for i, unit in enumerate(units):
dtype = 'datetime64[{}]'.format(unit)
arrow_arr = pa.Array.from_pandas(arr.astype(dtype))
expected = pd.Timestamp('2000-01-01 12:34:56')
assert arrow_arr[0].as_py() == expected
assert arrow_arr[0].value * 1000**i == expected.value
tz = 'America/New_York'
arrow_type = pa.timestamp(unit, tz=tz)
dtype = 'datetime64[{}]'.format(unit)
arrow_arr = pa.Array.from_pandas(arr.astype(dtype), type=arrow_type)
expected = (pd.Timestamp('2000-01-01 12:34:56')
.tz_localize('utc')
.tz_convert(tz))
assert arrow_arr[0].as_py() == expected
assert arrow_arr[0].value * 1000**i == expected.value
@pytest.mark.nopandas
def test_timestamp_nanos_nopandas():
# ARROW-5450
pytest.importorskip("pytz")
import pytz
tz = 'America/New_York'
ty = pa.timestamp('ns', tz=tz)
# 2000-01-01 00:00:00 + 1 microsecond
s = pa.scalar(946684800000000000 + 1000, type=ty)
tzinfo = pytz.timezone(tz)
expected = datetime.datetime(2000, 1, 1, microsecond=1, tzinfo=tzinfo)
expected = tzinfo.fromutc(expected)
result = s.as_py()
assert result == expected
assert result.year == 1999
assert result.hour == 19
# Non-zero nanos yields ValueError
s = pa.scalar(946684800000000001, type=ty)
with pytest.raises(ValueError):
s.as_py()
def test_timestamp_no_overflow():
# ARROW-5450
pytest.importorskip("pytz")
import pytz
timestamps = [
datetime.datetime(1, 1, 1, 0, 0, 0, tzinfo=pytz.utc),
datetime.datetime(9999, 12, 31, 23, 59, 59, 999999, tzinfo=pytz.utc),
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=pytz.utc),
]
for ts in timestamps:
s = pa.scalar(ts, type=pa.timestamp("us", tz="UTC"))
assert s.as_py() == ts
def test_timestamp_fixed_offset_print():
# ARROW-13896
pytest.importorskip("pytz")
arr = pa.array([0], pa.timestamp('s', tz='+02:00'))
assert str(arr[0]) == "1970-01-01 02:00:00+02:00"
def test_duration():
arr = np.array([0, 3600000000000], dtype='timedelta64[ns]')
units = ['us', 'ms', 's']
for i, unit in enumerate(units):
dtype = 'timedelta64[{}]'.format(unit)
arrow_arr = pa.array(arr.astype(dtype))
expected = datetime.timedelta(seconds=60*60)
assert isinstance(arrow_arr[1].as_py(), datetime.timedelta)
assert arrow_arr[1].as_py() == expected
assert (arrow_arr[1].value * 1000**(i+1) ==
expected.total_seconds() * 1e9)
@pytest.mark.pandas
def test_duration_nanos_pandas():
import pandas as pd
arr = pa.array([0, 3600000000000], type=pa.duration('ns'))
expected = pd.Timedelta('1 hour')
assert isinstance(arr[1].as_py(), pd.Timedelta)
assert arr[1].as_py() == expected
assert arr[1].value == expected.value
# Non-zero nanos work fine
arr = pa.array([946684800000000001], type=pa.duration('ns'))
assert arr[0].as_py() == pd.Timedelta(946684800000000001, unit='ns')
@pytest.mark.nopandas
def test_duration_nanos_nopandas():
arr = pa.array([0, 3600000000000], pa.duration('ns'))
expected = datetime.timedelta(seconds=60*60)
assert isinstance(arr[1].as_py(), datetime.timedelta)
assert arr[1].as_py() == expected
assert arr[1].value == expected.total_seconds() * 1e9
# Non-zero nanos yields ValueError
arr = pa.array([946684800000000001], type=pa.duration('ns'))
with pytest.raises(ValueError):
arr[0].as_py()
def test_month_day_nano_interval():
triple = pa.MonthDayNano([-3600, 1800, -50])
arr = pa.array([triple])
assert isinstance(arr[0].as_py(), pa.MonthDayNano)
assert arr[0].as_py() == triple
assert arr[0].value == triple
@pytest.mark.parametrize('value', ['foo', 'mañana'])
@pytest.mark.parametrize(('ty', 'scalar_typ'), [
(pa.string(), pa.StringScalar),
(pa.large_string(), pa.LargeStringScalar),
(pa.string_view(), pa.StringViewScalar),
])
def test_string(value, ty, scalar_typ):
s = pa.scalar(value, type=ty)
assert isinstance(s, scalar_typ)
assert s.as_py() == value
assert s.as_py() != 'something'
assert repr(value) in repr(s)
assert str(s) == str(value)
buf = s.as_buffer()
assert isinstance(buf, pa.Buffer)
assert buf.to_pybytes() == value.encode()
@pytest.mark.parametrize('value', [b'foo', b'bar'])
@pytest.mark.parametrize(('ty', 'scalar_typ'), [
(pa.binary(), pa.BinaryScalar),
(pa.large_binary(), pa.LargeBinaryScalar),
(pa.binary_view(), pa.BinaryViewScalar),
])
def test_binary(value, ty, scalar_typ):
s = pa.scalar(value, type=ty)
assert isinstance(s, scalar_typ)
assert s.as_py() == value
assert str(s) == str(value)
assert repr(value) in repr(s)
assert s.as_py() == value
assert s != b'xxxxx'
buf = s.as_buffer()
assert isinstance(buf, pa.Buffer)
assert buf.to_pybytes() == value
def test_fixed_size_binary():
s = pa.scalar(b'foof', type=pa.binary(4))
assert isinstance(s, pa.FixedSizeBinaryScalar)
assert s.as_py() == b'foof'
with pytest.raises(pa.ArrowInvalid):
pa.scalar(b'foof5', type=pa.binary(4))
@pytest.mark.parametrize(('ty', 'klass'), [
(pa.list_(pa.string()), pa.ListScalar),
(pa.large_list(pa.string()), pa.LargeListScalar),
(pa.list_view(pa.string()), pa.ListViewScalar),
(pa.large_list_view(pa.string()), pa.LargeListViewScalar)
])
def test_list(ty, klass):
v = ['foo', None]
s = pa.scalar(v, type=ty)
assert s.type == ty
assert len(s) == 2
assert isinstance(s.values, pa.Array)
assert s.values.to_pylist() == v
assert isinstance(s, klass)
assert repr(v) in repr(s)
assert s.as_py() == v
assert s[0].as_py() == 'foo'
assert s[1].as_py() is None
assert s[-1] == s[1]
assert s[-2] == s[0]
with pytest.raises(IndexError):
s[-3]
with pytest.raises(IndexError):
s[2]
@pytest.mark.parametrize('ty', [
pa.list_(pa.int64()),
pa.large_list(pa.int64()),
pa.list_view(pa.int64()),
pa.large_list_view(pa.int64()),
None
])
def test_list_from_numpy(ty):
s = pa.scalar(np.array([1, 2, 3], dtype=np.int64()), type=ty)
if ty is None:
ty = pa.list_(pa.int64()) # expected inferred type
assert s.type == ty
assert s.as_py() == [1, 2, 3]
@pytest.mark.pandas
@pytest.mark.parametrize('factory', [
pa.list_,
pa.large_list,
pa.list_view,
pa.large_list_view
])
def test_list_from_pandas(factory):
import pandas as pd
s = pa.scalar(pd.Series([1, 2, 3]))
assert s.as_py() == [1, 2, 3]
cases = [
(np.nan, 'null'),
(['string', np.nan], factory(pa.binary())),
(['string', np.nan], factory(pa.utf8())),
([b'string', np.nan], factory(pa.binary(6))),
([True, np.nan], factory(pa.bool_())),
([decimal.Decimal('0'), np.nan], factory(pa.decimal128(12, 2))),
]
for case, ty in cases:
# Both types of exceptions are raised. May want to clean that up
with pytest.raises((ValueError, TypeError)):
pa.scalar(case, type=ty)
# from_pandas option suppresses failure
s = pa.scalar(case, type=ty, from_pandas=True)
def test_fixed_size_list():
s = pa.scalar([1, None, 3], type=pa.list_(pa.int64(), 3))
assert len(s) == 3
assert isinstance(s, pa.FixedSizeListScalar)
assert repr(s) == "<pyarrow.FixedSizeListScalar: [1, None, 3]>"
assert s.as_py() == [1, None, 3]
assert s[0].as_py() == 1
assert s[1].as_py() is None
assert s[-1] == s[2]
with pytest.raises(IndexError):
s[-4]
with pytest.raises(IndexError):
s[3]
def test_struct():
ty = pa.struct([
pa.field('x', pa.int16()),
pa.field('y', pa.float32())
])
v = {'x': 2, 'y': 3.5}
s = pa.scalar(v, type=ty)
assert list(s) == list(s.keys()) == ['x', 'y']
assert list(s.values()) == [
pa.scalar(2, type=pa.int16()),
pa.scalar(3.5, type=pa.float32())
]
assert list(s.items()) == [
('x', pa.scalar(2, type=pa.int16())),
('y', pa.scalar(3.5, type=pa.float32()))
]
assert 'x' in s
assert 'y' in s
assert 'z' not in s
assert 0 not in s
assert s.as_py() == v
assert repr(s) != repr(v)
assert repr(s.as_py()) == repr(v)
assert len(s) == 2
assert isinstance(s['x'], pa.Int16Scalar)
assert isinstance(s['y'], pa.FloatScalar)
assert s['x'].as_py() == 2
assert s['y'].as_py() == 3.5
with pytest.raises(KeyError):
s['nonexistent']
s = pa.scalar(None, type=ty)
assert list(s) == list(s.keys()) == ['x', 'y']
assert s.as_py() is None
assert 'x' in s
assert 'y' in s
assert isinstance(s['x'], pa.Int16Scalar)
assert isinstance(s['y'], pa.FloatScalar)
assert s['x'].is_valid is False
assert s['y'].is_valid is False
assert s['x'].as_py() is None
assert s['y'].as_py() is None
def test_struct_duplicate_fields():
ty = pa.struct([
pa.field('x', pa.int16()),
pa.field('y', pa.float32()),
pa.field('x', pa.int64()),
])
s = pa.scalar([('x', 1), ('y', 2.0), ('x', 3)], type=ty)
assert list(s) == list(s.keys()) == ['x', 'y', 'x']
assert len(s) == 3
assert s == s
assert list(s.items()) == [
('x', pa.scalar(1, pa.int16())),
('y', pa.scalar(2.0, pa.float32())),
('x', pa.scalar(3, pa.int64()))
]
assert 'x' in s
assert 'y' in s
assert 'z' not in s
assert 0 not in s
# getitem with field names fails for duplicate fields, works for others
with pytest.raises(KeyError):
s['x']
assert isinstance(s['y'], pa.FloatScalar)
assert s['y'].as_py() == 2.0
# getitem with integer index works for all fields
assert isinstance(s[0], pa.Int16Scalar)
assert s[0].as_py() == 1
assert isinstance(s[1], pa.FloatScalar)
assert s[1].as_py() == 2.0
assert isinstance(s[2], pa.Int64Scalar)
assert s[2].as_py() == 3
assert "pyarrow.StructScalar" in repr(s)
with pytest.raises(ValueError, match="duplicate field names"):
s.as_py()
def test_map(pickle_module):
ty = pa.map_(pa.string(), pa.int8())
v = [('a', 1), ('b', 2)]
s = pa.scalar(v, type=ty)
assert len(s) == 2
assert isinstance(s, pa.MapScalar)
assert isinstance(s.values, pa.Array)
assert repr(s) == "<pyarrow.MapScalar: [('a', 1), ('b', 2)]>"
assert s.values.to_pylist() == [
{'key': 'a', 'value': 1},
{'key': 'b', 'value': 2}
]
# test iteration
for i, j in zip(s, v):
assert i == j
# test iteration with missing values
for _ in pa.scalar(None, type=ty):
pass
assert s.as_py() == v
assert s[1] == (
pa.scalar('b', type=pa.string()),
pa.scalar(2, type=pa.int8())
)
assert s[-1] == s[1]
assert s[-2] == s[0]
with pytest.raises(IndexError):
s[-3]
with pytest.raises(IndexError):
s[2]
restored = pickle_module.loads(pickle_module.dumps(s))
assert restored.equals(s)
def test_dictionary(pickle_module):
indices = pa.array([2, None, 1, 2, 0, None])
dictionary = pa.array(['foo', 'bar', 'baz'])
arr = pa.DictionaryArray.from_arrays(indices, dictionary)
expected = ['baz', None, 'bar', 'baz', 'foo', None]
assert arr.to_pylist() == expected
for j, (i, v) in enumerate(zip(indices, expected)):
s = arr[j]
assert s.as_py() == v
assert s.value.as_py() == v
assert s.index.equals(i)
assert s.dictionary.equals(dictionary)
restored = pickle_module.loads(pickle_module.dumps(s))
assert restored.equals(s)
def test_run_end_encoded():
run_ends = [3, 5, 10, 12, 19]
values = [1, 2, 1, None, 3]
arr = pa.RunEndEncodedArray.from_arrays(run_ends, values)
scalar = arr[0]
assert isinstance(scalar, pa.RunEndEncodedScalar)
assert isinstance(scalar.value, pa.Int64Scalar)
assert scalar.value == pa.array(values)[0]
assert scalar.as_py() == 1
# null -> .value is still a scalar, as_py returns None
scalar = arr[10]
assert isinstance(scalar.value, pa.Int64Scalar)
assert scalar.as_py() is None
# constructing a scalar directly doesn't work yet
with pytest.raises(NotImplementedError):
pa.scalar(1, pa.run_end_encoded(pa.int64(), pa.int64()))
def test_union(pickle_module):
# sparse
arr = pa.UnionArray.from_sparse(
pa.array([0, 0, 1, 1], type=pa.int8()),
[
pa.array(["a", "b", "c", "d"]),
pa.array([1, 2, 3, 4])
]
)
for s in arr:
s.validate(full=True)
assert isinstance(s, pa.UnionScalar)
assert s.type.equals(arr.type)
assert s.is_valid is True
with pytest.raises(pa.ArrowNotImplementedError):
pickle_module.loads(pickle_module.dumps(s))
assert arr[0].type_code == 0
assert arr[0].as_py() == "a"
assert arr[1].type_code == 0
assert arr[1].as_py() == "b"
assert arr[2].type_code == 1
assert arr[2].as_py() == 3
assert arr[3].type_code == 1
assert arr[3].as_py() == 4
# dense
arr = pa.UnionArray.from_dense(
types=pa.array([0, 1, 0, 0, 1, 1, 0], type='int8'),
value_offsets=pa.array([0, 0, 2, 1, 1, 2, 3], type='int32'),
children=[
pa.array([b'a', b'b', b'c', b'd'], type='binary'),
pa.array([1, 2, 3], type='int64')
]
)
for s in arr:
s.validate(full=True)
assert isinstance(s, pa.UnionScalar)
assert s.type.equals(arr.type)
assert s.is_valid is True
with pytest.raises(pa.ArrowNotImplementedError):
pickle_module.loads(pickle_module.dumps(s))
assert arr[0].type_code == 0
assert arr[0].as_py() == b'a'
assert arr[5].type_code == 1
assert arr[5].as_py() == 3
def test_map_scalar_as_py_with_custom_field_name():
"""
Check we can call `MapScalar.as_py` with custom field names
See https://github.com/apache/arrow/issues/36809
"""
assert pa.scalar(
[("foo", "bar")],
pa.map_(
pa.string(),
pa.string()
),
).as_py() == [("foo", "bar")]
assert pa.scalar(
[("foo", "bar")],
pa.map_(
pa.field("custom_key", pa.string(), nullable=False),
pa.field("custom_value", pa.string()),
),
).as_py() == [("foo", "bar")]