peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_scalars.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import datetime | |
import decimal | |
import pytest | |
import sys | |
import weakref | |
import numpy as np | |
import pyarrow as pa | |
import pyarrow.compute as pc | |
from pyarrow.tests import util | |
def test_basics(value, ty, klass, pickle_module): | |
s = pa.scalar(value, type=ty) | |
s.validate() | |
s.validate(full=True) | |
assert isinstance(s, klass) | |
assert s.as_py() == value | |
assert s == pa.scalar(value, type=ty) | |
assert s != value | |
assert s != "else" | |
assert hash(s) == hash(s) | |
assert s.is_valid is True | |
assert s != None # noqa: E711 | |
s = pa.scalar(None, type=s.type) | |
assert s.is_valid is False | |
assert s.as_py() is None | |
assert s != pa.scalar(value, type=ty) | |
# test pickle roundtrip | |
restored = pickle_module.loads(pickle_module.dumps(s)) | |
assert s.equals(restored) | |
# test that scalars are weak-referenceable | |
wr = weakref.ref(s) | |
assert wr() is not None | |
del s | |
assert wr() is None | |
def test_invalid_scalar(): | |
s = pc.cast(pa.scalar(b"\xff"), pa.string(), safe=False) | |
s.validate() | |
with pytest.raises(ValueError, | |
match="string scalar contains invalid UTF8 data"): | |
s.validate(full=True) | |
def test_null_singleton(): | |
with pytest.raises(RuntimeError): | |
pa.NullScalar() | |
def test_nulls(pickle_module): | |
null = pa.scalar(None) | |
assert null is pa.NA | |
assert null.as_py() is None | |
assert null != "something" | |
assert (null == pa.scalar(None)) is True | |
assert (null == 0) is False | |
assert pa.NA == pa.NA | |
assert pa.NA not in [5] | |
arr = pa.array([None, None]) | |
for v in arr: | |
assert v is pa.NA | |
assert v.as_py() is None | |
# test pickle roundtrip | |
restored = pickle_module.loads(pickle_module.dumps(null)) | |
assert restored.equals(null) | |
# test that scalars are weak-referenceable | |
wr = weakref.ref(null) | |
assert wr() is not None | |
del null | |
assert wr() is not None # singleton | |
def test_hashing(): | |
# ARROW-640 | |
values = list(range(500)) | |
arr = pa.array(values + values) | |
set_from_array = set(arr) | |
assert isinstance(set_from_array, set) | |
assert len(set_from_array) == 500 | |
def test_hashing_struct_scalar(): | |
# GH-35360 | |
a = pa.array([[{'a': 5}, {'a': 6}], [{'a': 7}, None]]) | |
b = pa.array([[{'a': 7}, None]]) | |
hash1 = hash(a[1]) | |
hash2 = hash(b[0]) | |
assert hash1 == hash2 | |
def test_timestamp_scalar(): | |
a = repr(pa.scalar("0000-01-01").cast(pa.timestamp("s"))) | |
assert a == "<pyarrow.TimestampScalar: '0000-01-01T00:00:00'>" | |
b = repr(pa.scalar(datetime.datetime(2015, 1, 1), type=pa.timestamp('s', tz='UTC'))) | |
assert b == "<pyarrow.TimestampScalar: '2015-01-01T00:00:00+0000'>" | |
c = repr(pa.scalar(datetime.datetime(2015, 1, 1), type=pa.timestamp('us'))) | |
assert c == "<pyarrow.TimestampScalar: '2015-01-01T00:00:00.000000'>" | |
d = repr(pc.assume_timezone( | |
pa.scalar("2000-01-01").cast(pa.timestamp("s")), "America/New_York")) | |
assert d == "<pyarrow.TimestampScalar: '2000-01-01T00:00:00-0500'>" | |
def test_bool(): | |
false = pa.scalar(False) | |
true = pa.scalar(True) | |
assert isinstance(false, pa.BooleanScalar) | |
assert isinstance(true, pa.BooleanScalar) | |
assert repr(true) == "<pyarrow.BooleanScalar: True>" | |
assert str(true) == "True" | |
assert repr(false) == "<pyarrow.BooleanScalar: False>" | |
assert str(false) == "False" | |
assert true.as_py() is True | |
assert false.as_py() is False | |
def test_numerics(): | |
# int64 | |
s = pa.scalar(1) | |
assert isinstance(s, pa.Int64Scalar) | |
assert repr(s) == "<pyarrow.Int64Scalar: 1>" | |
assert str(s) == "1" | |
assert s.as_py() == 1 | |
with pytest.raises(OverflowError): | |
pa.scalar(-1, type='uint8') | |
# float64 | |
s = pa.scalar(1.5) | |
assert isinstance(s, pa.DoubleScalar) | |
assert repr(s) == "<pyarrow.DoubleScalar: 1.5>" | |
assert str(s) == "1.5" | |
assert s.as_py() == 1.5 | |
# float16 | |
s = pa.scalar(np.float16(0.5), type='float16') | |
assert isinstance(s, pa.HalfFloatScalar) | |
# on numpy2 repr(np.float16(0.5)) == "np.float16(0.5)" | |
# on numpy1 repr(np.float16(0.5)) == "0.5" | |
assert repr(s) == f"<pyarrow.HalfFloatScalar: {np.float16(0.5)!r}>" | |
assert str(s) == "0.5" | |
assert s.as_py() == 0.5 | |
def test_decimal128(): | |
v = decimal.Decimal("1.123") | |
s = pa.scalar(v) | |
assert isinstance(s, pa.Decimal128Scalar) | |
assert s.as_py() == v | |
assert s.type == pa.decimal128(4, 3) | |
v = decimal.Decimal("1.1234") | |
with pytest.raises(pa.ArrowInvalid): | |
pa.scalar(v, type=pa.decimal128(4, scale=3)) | |
with pytest.raises(pa.ArrowInvalid): | |
pa.scalar(v, type=pa.decimal128(5, scale=3)) | |
s = pa.scalar(v, type=pa.decimal128(5, scale=4)) | |
assert isinstance(s, pa.Decimal128Scalar) | |
assert s.as_py() == v | |
def test_decimal256(): | |
v = decimal.Decimal("1234567890123456789012345678901234567890.123") | |
s = pa.scalar(v) | |
assert isinstance(s, pa.Decimal256Scalar) | |
assert s.as_py() == v | |
assert s.type == pa.decimal256(43, 3) | |
v = decimal.Decimal("1.1234") | |
with pytest.raises(pa.ArrowInvalid): | |
pa.scalar(v, type=pa.decimal256(4, scale=3)) | |
with pytest.raises(pa.ArrowInvalid): | |
pa.scalar(v, type=pa.decimal256(5, scale=3)) | |
s = pa.scalar(v, type=pa.decimal256(5, scale=4)) | |
assert isinstance(s, pa.Decimal256Scalar) | |
assert s.as_py() == v | |
def test_date(): | |
# ARROW-5125 | |
d1 = datetime.date(3200, 1, 1) | |
d2 = datetime.date(1960, 1, 1) | |
for ty in [pa.date32(), pa.date64()]: | |
for d in [d1, d2]: | |
s = pa.scalar(d, type=ty) | |
assert s.as_py() == d | |
def test_date_cast(): | |
# ARROW-10472 - casting fo scalars doesn't segfault | |
scalar = pa.scalar(datetime.datetime(2012, 1, 1), type=pa.timestamp("us")) | |
expected = datetime.date(2012, 1, 1) | |
for ty in [pa.date32(), pa.date64()]: | |
result = scalar.cast(ty) | |
assert result.as_py() == expected | |
def test_time_from_datetime_time(): | |
t1 = datetime.time(18, 0) | |
t2 = datetime.time(21, 0) | |
types = [pa.time32('s'), pa.time32('ms'), pa.time64('us'), pa.time64('ns')] | |
for ty in types: | |
for t in [t1, t2]: | |
s = pa.scalar(t, type=ty) | |
assert s.as_py() == t | |
def test_temporal_values(value, time_type: pa.DataType): | |
time_scalar = pa.scalar(value, type=time_type) | |
time_scalar.validate(full=True) | |
assert time_scalar.value == value | |
def test_cast(): | |
val = pa.scalar(5, type='int8') | |
assert val.cast('int64') == pa.scalar(5, type='int64') | |
assert val.cast('uint32') == pa.scalar(5, type='uint32') | |
assert val.cast('string') == pa.scalar('5', type='string') | |
with pytest.raises(ValueError): | |
pa.scalar('foo').cast('int32') | |
def test_cast_timestamp_to_string(): | |
# GH-35370 | |
pytest.importorskip("pytz") | |
import pytz | |
dt = datetime.datetime(2000, 1, 1, 0, 0, 0, tzinfo=pytz.utc) | |
ts = pa.scalar(dt, type=pa.timestamp("ns", tz="UTC")) | |
assert ts.cast(pa.string()) == pa.scalar('2000-01-01 00:00:00.000000000Z') | |
def test_cast_float_to_int(): | |
# GH-35040 | |
float_scalar = pa.scalar(1.5, type=pa.float64()) | |
unsafe_cast = float_scalar.cast(pa.int64(), safe=False) | |
expected_unsafe_cast = pa.scalar(1, type=pa.int64()) | |
assert unsafe_cast == expected_unsafe_cast | |
with pytest.raises(pa.ArrowInvalid): | |
float_scalar.cast(pa.int64()) # verify default is safe cast | |
def test_cast_int_to_float(): | |
# GH-34901 | |
int_scalar = pa.scalar(18014398509481983, type=pa.int64()) | |
unsafe_cast = int_scalar.cast(pa.float64(), safe=False) | |
expected_unsafe_cast = pa.scalar(18014398509481983.0, type=pa.float64()) | |
assert unsafe_cast == expected_unsafe_cast | |
with pytest.raises(pa.ArrowInvalid): | |
int_scalar.cast(pa.float64()) # verify default is safe cast | |
def test_cast_string_to_date(typ): | |
scalar = pa.scalar('2021-01-01') | |
result = scalar.cast(typ) | |
assert result == pa.scalar(datetime.date(2021, 1, 1), type=typ) | |
def test_timestamp(): | |
import pandas as pd | |
arr = pd.date_range('2000-01-01 12:34:56', periods=10).values | |
units = ['ns', 'us', 'ms', 's'] | |
for i, unit in enumerate(units): | |
dtype = 'datetime64[{}]'.format(unit) | |
arrow_arr = pa.Array.from_pandas(arr.astype(dtype)) | |
expected = pd.Timestamp('2000-01-01 12:34:56') | |
assert arrow_arr[0].as_py() == expected | |
assert arrow_arr[0].value * 1000**i == expected.value | |
tz = 'America/New_York' | |
arrow_type = pa.timestamp(unit, tz=tz) | |
dtype = 'datetime64[{}]'.format(unit) | |
arrow_arr = pa.Array.from_pandas(arr.astype(dtype), type=arrow_type) | |
expected = (pd.Timestamp('2000-01-01 12:34:56') | |
.tz_localize('utc') | |
.tz_convert(tz)) | |
assert arrow_arr[0].as_py() == expected | |
assert arrow_arr[0].value * 1000**i == expected.value | |
def test_timestamp_nanos_nopandas(): | |
# ARROW-5450 | |
pytest.importorskip("pytz") | |
import pytz | |
tz = 'America/New_York' | |
ty = pa.timestamp('ns', tz=tz) | |
# 2000-01-01 00:00:00 + 1 microsecond | |
s = pa.scalar(946684800000000000 + 1000, type=ty) | |
tzinfo = pytz.timezone(tz) | |
expected = datetime.datetime(2000, 1, 1, microsecond=1, tzinfo=tzinfo) | |
expected = tzinfo.fromutc(expected) | |
result = s.as_py() | |
assert result == expected | |
assert result.year == 1999 | |
assert result.hour == 19 | |
# Non-zero nanos yields ValueError | |
s = pa.scalar(946684800000000001, type=ty) | |
with pytest.raises(ValueError): | |
s.as_py() | |
def test_timestamp_no_overflow(): | |
# ARROW-5450 | |
pytest.importorskip("pytz") | |
import pytz | |
timestamps = [ | |
datetime.datetime(1, 1, 1, 0, 0, 0, tzinfo=pytz.utc), | |
datetime.datetime(9999, 12, 31, 23, 59, 59, 999999, tzinfo=pytz.utc), | |
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=pytz.utc), | |
] | |
for ts in timestamps: | |
s = pa.scalar(ts, type=pa.timestamp("us", tz="UTC")) | |
assert s.as_py() == ts | |
def test_timestamp_fixed_offset_print(): | |
# ARROW-13896 | |
pytest.importorskip("pytz") | |
arr = pa.array([0], pa.timestamp('s', tz='+02:00')) | |
assert str(arr[0]) == "1970-01-01 02:00:00+02:00" | |
def test_duration(): | |
arr = np.array([0, 3600000000000], dtype='timedelta64[ns]') | |
units = ['us', 'ms', 's'] | |
for i, unit in enumerate(units): | |
dtype = 'timedelta64[{}]'.format(unit) | |
arrow_arr = pa.array(arr.astype(dtype)) | |
expected = datetime.timedelta(seconds=60*60) | |
assert isinstance(arrow_arr[1].as_py(), datetime.timedelta) | |
assert arrow_arr[1].as_py() == expected | |
assert (arrow_arr[1].value * 1000**(i+1) == | |
expected.total_seconds() * 1e9) | |
def test_duration_nanos_pandas(): | |
import pandas as pd | |
arr = pa.array([0, 3600000000000], type=pa.duration('ns')) | |
expected = pd.Timedelta('1 hour') | |
assert isinstance(arr[1].as_py(), pd.Timedelta) | |
assert arr[1].as_py() == expected | |
assert arr[1].value == expected.value | |
# Non-zero nanos work fine | |
arr = pa.array([946684800000000001], type=pa.duration('ns')) | |
assert arr[0].as_py() == pd.Timedelta(946684800000000001, unit='ns') | |
def test_duration_nanos_nopandas(): | |
arr = pa.array([0, 3600000000000], pa.duration('ns')) | |
expected = datetime.timedelta(seconds=60*60) | |
assert isinstance(arr[1].as_py(), datetime.timedelta) | |
assert arr[1].as_py() == expected | |
assert arr[1].value == expected.total_seconds() * 1e9 | |
# Non-zero nanos yields ValueError | |
arr = pa.array([946684800000000001], type=pa.duration('ns')) | |
with pytest.raises(ValueError): | |
arr[0].as_py() | |
def test_month_day_nano_interval(): | |
triple = pa.MonthDayNano([-3600, 1800, -50]) | |
arr = pa.array([triple]) | |
assert isinstance(arr[0].as_py(), pa.MonthDayNano) | |
assert arr[0].as_py() == triple | |
assert arr[0].value == triple | |
def test_string(value, ty, scalar_typ): | |
s = pa.scalar(value, type=ty) | |
assert isinstance(s, scalar_typ) | |
assert s.as_py() == value | |
assert s.as_py() != 'something' | |
assert repr(value) in repr(s) | |
assert str(s) == str(value) | |
buf = s.as_buffer() | |
assert isinstance(buf, pa.Buffer) | |
assert buf.to_pybytes() == value.encode() | |
def test_binary(value, ty, scalar_typ): | |
s = pa.scalar(value, type=ty) | |
assert isinstance(s, scalar_typ) | |
assert s.as_py() == value | |
assert str(s) == str(value) | |
assert repr(value) in repr(s) | |
assert s.as_py() == value | |
assert s != b'xxxxx' | |
buf = s.as_buffer() | |
assert isinstance(buf, pa.Buffer) | |
assert buf.to_pybytes() == value | |
def test_fixed_size_binary(): | |
s = pa.scalar(b'foof', type=pa.binary(4)) | |
assert isinstance(s, pa.FixedSizeBinaryScalar) | |
assert s.as_py() == b'foof' | |
with pytest.raises(pa.ArrowInvalid): | |
pa.scalar(b'foof5', type=pa.binary(4)) | |
def test_list(ty, klass): | |
v = ['foo', None] | |
s = pa.scalar(v, type=ty) | |
assert s.type == ty | |
assert len(s) == 2 | |
assert isinstance(s.values, pa.Array) | |
assert s.values.to_pylist() == v | |
assert isinstance(s, klass) | |
assert repr(v) in repr(s) | |
assert s.as_py() == v | |
assert s[0].as_py() == 'foo' | |
assert s[1].as_py() is None | |
assert s[-1] == s[1] | |
assert s[-2] == s[0] | |
with pytest.raises(IndexError): | |
s[-3] | |
with pytest.raises(IndexError): | |
s[2] | |
def test_list_from_numpy(ty): | |
s = pa.scalar(np.array([1, 2, 3], dtype=np.int64()), type=ty) | |
if ty is None: | |
ty = pa.list_(pa.int64()) # expected inferred type | |
assert s.type == ty | |
assert s.as_py() == [1, 2, 3] | |
def test_list_from_pandas(factory): | |
import pandas as pd | |
s = pa.scalar(pd.Series([1, 2, 3])) | |
assert s.as_py() == [1, 2, 3] | |
cases = [ | |
(np.nan, 'null'), | |
(['string', np.nan], factory(pa.binary())), | |
(['string', np.nan], factory(pa.utf8())), | |
([b'string', np.nan], factory(pa.binary(6))), | |
([True, np.nan], factory(pa.bool_())), | |
([decimal.Decimal('0'), np.nan], factory(pa.decimal128(12, 2))), | |
] | |
for case, ty in cases: | |
# Both types of exceptions are raised. May want to clean that up | |
with pytest.raises((ValueError, TypeError)): | |
pa.scalar(case, type=ty) | |
# from_pandas option suppresses failure | |
s = pa.scalar(case, type=ty, from_pandas=True) | |
def test_fixed_size_list(): | |
s = pa.scalar([1, None, 3], type=pa.list_(pa.int64(), 3)) | |
assert len(s) == 3 | |
assert isinstance(s, pa.FixedSizeListScalar) | |
assert repr(s) == "<pyarrow.FixedSizeListScalar: [1, None, 3]>" | |
assert s.as_py() == [1, None, 3] | |
assert s[0].as_py() == 1 | |
assert s[1].as_py() is None | |
assert s[-1] == s[2] | |
with pytest.raises(IndexError): | |
s[-4] | |
with pytest.raises(IndexError): | |
s[3] | |
def test_struct(): | |
ty = pa.struct([ | |
pa.field('x', pa.int16()), | |
pa.field('y', pa.float32()) | |
]) | |
v = {'x': 2, 'y': 3.5} | |
s = pa.scalar(v, type=ty) | |
assert list(s) == list(s.keys()) == ['x', 'y'] | |
assert list(s.values()) == [ | |
pa.scalar(2, type=pa.int16()), | |
pa.scalar(3.5, type=pa.float32()) | |
] | |
assert list(s.items()) == [ | |
('x', pa.scalar(2, type=pa.int16())), | |
('y', pa.scalar(3.5, type=pa.float32())) | |
] | |
assert 'x' in s | |
assert 'y' in s | |
assert 'z' not in s | |
assert 0 not in s | |
assert s.as_py() == v | |
assert repr(s) != repr(v) | |
assert repr(s.as_py()) == repr(v) | |
assert len(s) == 2 | |
assert isinstance(s['x'], pa.Int16Scalar) | |
assert isinstance(s['y'], pa.FloatScalar) | |
assert s['x'].as_py() == 2 | |
assert s['y'].as_py() == 3.5 | |
with pytest.raises(KeyError): | |
s['nonexistent'] | |
s = pa.scalar(None, type=ty) | |
assert list(s) == list(s.keys()) == ['x', 'y'] | |
assert s.as_py() is None | |
assert 'x' in s | |
assert 'y' in s | |
assert isinstance(s['x'], pa.Int16Scalar) | |
assert isinstance(s['y'], pa.FloatScalar) | |
assert s['x'].is_valid is False | |
assert s['y'].is_valid is False | |
assert s['x'].as_py() is None | |
assert s['y'].as_py() is None | |
def test_struct_duplicate_fields(): | |
ty = pa.struct([ | |
pa.field('x', pa.int16()), | |
pa.field('y', pa.float32()), | |
pa.field('x', pa.int64()), | |
]) | |
s = pa.scalar([('x', 1), ('y', 2.0), ('x', 3)], type=ty) | |
assert list(s) == list(s.keys()) == ['x', 'y', 'x'] | |
assert len(s) == 3 | |
assert s == s | |
assert list(s.items()) == [ | |
('x', pa.scalar(1, pa.int16())), | |
('y', pa.scalar(2.0, pa.float32())), | |
('x', pa.scalar(3, pa.int64())) | |
] | |
assert 'x' in s | |
assert 'y' in s | |
assert 'z' not in s | |
assert 0 not in s | |
# getitem with field names fails for duplicate fields, works for others | |
with pytest.raises(KeyError): | |
s['x'] | |
assert isinstance(s['y'], pa.FloatScalar) | |
assert s['y'].as_py() == 2.0 | |
# getitem with integer index works for all fields | |
assert isinstance(s[0], pa.Int16Scalar) | |
assert s[0].as_py() == 1 | |
assert isinstance(s[1], pa.FloatScalar) | |
assert s[1].as_py() == 2.0 | |
assert isinstance(s[2], pa.Int64Scalar) | |
assert s[2].as_py() == 3 | |
assert "pyarrow.StructScalar" in repr(s) | |
with pytest.raises(ValueError, match="duplicate field names"): | |
s.as_py() | |
def test_map(pickle_module): | |
ty = pa.map_(pa.string(), pa.int8()) | |
v = [('a', 1), ('b', 2)] | |
s = pa.scalar(v, type=ty) | |
assert len(s) == 2 | |
assert isinstance(s, pa.MapScalar) | |
assert isinstance(s.values, pa.Array) | |
assert repr(s) == "<pyarrow.MapScalar: [('a', 1), ('b', 2)]>" | |
assert s.values.to_pylist() == [ | |
{'key': 'a', 'value': 1}, | |
{'key': 'b', 'value': 2} | |
] | |
# test iteration | |
for i, j in zip(s, v): | |
assert i == j | |
# test iteration with missing values | |
for _ in pa.scalar(None, type=ty): | |
pass | |
assert s.as_py() == v | |
assert s[1] == ( | |
pa.scalar('b', type=pa.string()), | |
pa.scalar(2, type=pa.int8()) | |
) | |
assert s[-1] == s[1] | |
assert s[-2] == s[0] | |
with pytest.raises(IndexError): | |
s[-3] | |
with pytest.raises(IndexError): | |
s[2] | |
restored = pickle_module.loads(pickle_module.dumps(s)) | |
assert restored.equals(s) | |
def test_dictionary(pickle_module): | |
indices = pa.array([2, None, 1, 2, 0, None]) | |
dictionary = pa.array(['foo', 'bar', 'baz']) | |
arr = pa.DictionaryArray.from_arrays(indices, dictionary) | |
expected = ['baz', None, 'bar', 'baz', 'foo', None] | |
assert arr.to_pylist() == expected | |
for j, (i, v) in enumerate(zip(indices, expected)): | |
s = arr[j] | |
assert s.as_py() == v | |
assert s.value.as_py() == v | |
assert s.index.equals(i) | |
assert s.dictionary.equals(dictionary) | |
restored = pickle_module.loads(pickle_module.dumps(s)) | |
assert restored.equals(s) | |
def test_run_end_encoded(): | |
run_ends = [3, 5, 10, 12, 19] | |
values = [1, 2, 1, None, 3] | |
arr = pa.RunEndEncodedArray.from_arrays(run_ends, values) | |
scalar = arr[0] | |
assert isinstance(scalar, pa.RunEndEncodedScalar) | |
assert isinstance(scalar.value, pa.Int64Scalar) | |
assert scalar.value == pa.array(values)[0] | |
assert scalar.as_py() == 1 | |
# null -> .value is still a scalar, as_py returns None | |
scalar = arr[10] | |
assert isinstance(scalar.value, pa.Int64Scalar) | |
assert scalar.as_py() is None | |
# constructing a scalar directly doesn't work yet | |
with pytest.raises(NotImplementedError): | |
pa.scalar(1, pa.run_end_encoded(pa.int64(), pa.int64())) | |
def test_union(pickle_module): | |
# sparse | |
arr = pa.UnionArray.from_sparse( | |
pa.array([0, 0, 1, 1], type=pa.int8()), | |
[ | |
pa.array(["a", "b", "c", "d"]), | |
pa.array([1, 2, 3, 4]) | |
] | |
) | |
for s in arr: | |
s.validate(full=True) | |
assert isinstance(s, pa.UnionScalar) | |
assert s.type.equals(arr.type) | |
assert s.is_valid is True | |
with pytest.raises(pa.ArrowNotImplementedError): | |
pickle_module.loads(pickle_module.dumps(s)) | |
assert arr[0].type_code == 0 | |
assert arr[0].as_py() == "a" | |
assert arr[1].type_code == 0 | |
assert arr[1].as_py() == "b" | |
assert arr[2].type_code == 1 | |
assert arr[2].as_py() == 3 | |
assert arr[3].type_code == 1 | |
assert arr[3].as_py() == 4 | |
# dense | |
arr = pa.UnionArray.from_dense( | |
types=pa.array([0, 1, 0, 0, 1, 1, 0], type='int8'), | |
value_offsets=pa.array([0, 0, 2, 1, 1, 2, 3], type='int32'), | |
children=[ | |
pa.array([b'a', b'b', b'c', b'd'], type='binary'), | |
pa.array([1, 2, 3], type='int64') | |
] | |
) | |
for s in arr: | |
s.validate(full=True) | |
assert isinstance(s, pa.UnionScalar) | |
assert s.type.equals(arr.type) | |
assert s.is_valid is True | |
with pytest.raises(pa.ArrowNotImplementedError): | |
pickle_module.loads(pickle_module.dumps(s)) | |
assert arr[0].type_code == 0 | |
assert arr[0].as_py() == b'a' | |
assert arr[5].type_code == 1 | |
assert arr[5].as_py() == 3 | |
def test_map_scalar_as_py_with_custom_field_name(): | |
""" | |
Check we can call `MapScalar.as_py` with custom field names | |
See https://github.com/apache/arrow/issues/36809 | |
""" | |
assert pa.scalar( | |
[("foo", "bar")], | |
pa.map_( | |
pa.string(), | |
pa.string() | |
), | |
).as_py() == [("foo", "bar")] | |
assert pa.scalar( | |
[("foo", "bar")], | |
pa.map_( | |
pa.field("custom_key", pa.string(), nullable=False), | |
pa.field("custom_value", pa.string()), | |
), | |
).as_py() == [("foo", "bar")] | |