peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/plotting
/_misc.py
from __future__ import annotations | |
from contextlib import contextmanager | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
) | |
from pandas.plotting._core import _get_plot_backend | |
if TYPE_CHECKING: | |
from collections.abc import ( | |
Generator, | |
Mapping, | |
) | |
from matplotlib.axes import Axes | |
from matplotlib.colors import Colormap | |
from matplotlib.figure import Figure | |
from matplotlib.table import Table | |
import numpy as np | |
from pandas import ( | |
DataFrame, | |
Series, | |
) | |
def table(ax: Axes, data: DataFrame | Series, **kwargs) -> Table: | |
""" | |
Helper function to convert DataFrame and Series to matplotlib.table. | |
Parameters | |
---------- | |
ax : Matplotlib axes object | |
data : DataFrame or Series | |
Data for table contents. | |
**kwargs | |
Keyword arguments to be passed to matplotlib.table.table. | |
If `rowLabels` or `colLabels` is not specified, data index or column | |
name will be used. | |
Returns | |
------- | |
matplotlib table object | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
>>> import matplotlib.pyplot as plt | |
>>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) | |
>>> fix, ax = plt.subplots() | |
>>> ax.axis('off') | |
(0.0, 1.0, 0.0, 1.0) | |
>>> table = pd.plotting.table(ax, df, loc='center', | |
... cellLoc='center', colWidths=list([.2, .2])) | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.table( | |
ax=ax, data=data, rowLabels=None, colLabels=None, **kwargs | |
) | |
def register() -> None: | |
""" | |
Register pandas formatters and converters with matplotlib. | |
This function modifies the global ``matplotlib.units.registry`` | |
dictionary. pandas adds custom converters for | |
* pd.Timestamp | |
* pd.Period | |
* np.datetime64 | |
* datetime.datetime | |
* datetime.date | |
* datetime.time | |
See Also | |
-------- | |
deregister_matplotlib_converters : Remove pandas formatters and converters. | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
The following line is done automatically by pandas so | |
the plot can be rendered: | |
>>> pd.plotting.register_matplotlib_converters() | |
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'), | |
... 'y': [1, 2] | |
... }) | |
>>> plot = df.plot.line(x='ts', y='y') | |
Unsetting the register manually an error will be raised: | |
>>> pd.set_option("plotting.matplotlib.register_converters", | |
... False) # doctest: +SKIP | |
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP | |
Traceback (most recent call last): | |
TypeError: float() argument must be a string or a real number, not 'Period' | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
plot_backend.register() | |
def deregister() -> None: | |
""" | |
Remove pandas formatters and converters. | |
Removes the custom converters added by :func:`register`. This | |
attempts to set the state of the registry back to the state before | |
pandas registered its own units. Converters for pandas' own types like | |
Timestamp and Period are removed completely. Converters for types | |
pandas overwrites, like ``datetime.datetime``, are restored to their | |
original value. | |
See Also | |
-------- | |
register_matplotlib_converters : Register pandas formatters and converters | |
with matplotlib. | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
The following line is done automatically by pandas so | |
the plot can be rendered: | |
>>> pd.plotting.register_matplotlib_converters() | |
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'), | |
... 'y': [1, 2] | |
... }) | |
>>> plot = df.plot.line(x='ts', y='y') | |
Unsetting the register manually an error will be raised: | |
>>> pd.set_option("plotting.matplotlib.register_converters", | |
... False) # doctest: +SKIP | |
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP | |
Traceback (most recent call last): | |
TypeError: float() argument must be a string or a real number, not 'Period' | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
plot_backend.deregister() | |
def scatter_matrix( | |
frame: DataFrame, | |
alpha: float = 0.5, | |
figsize: tuple[float, float] | None = None, | |
ax: Axes | None = None, | |
grid: bool = False, | |
diagonal: str = "hist", | |
marker: str = ".", | |
density_kwds: Mapping[str, Any] | None = None, | |
hist_kwds: Mapping[str, Any] | None = None, | |
range_padding: float = 0.05, | |
**kwargs, | |
) -> np.ndarray: | |
""" | |
Draw a matrix of scatter plots. | |
Parameters | |
---------- | |
frame : DataFrame | |
alpha : float, optional | |
Amount of transparency applied. | |
figsize : (float,float), optional | |
A tuple (width, height) in inches. | |
ax : Matplotlib axis object, optional | |
grid : bool, optional | |
Setting this to True will show the grid. | |
diagonal : {'hist', 'kde'} | |
Pick between 'kde' and 'hist' for either Kernel Density Estimation or | |
Histogram plot in the diagonal. | |
marker : str, optional | |
Matplotlib marker type, default '.'. | |
density_kwds : keywords | |
Keyword arguments to be passed to kernel density estimate plot. | |
hist_kwds : keywords | |
Keyword arguments to be passed to hist function. | |
range_padding : float, default 0.05 | |
Relative extension of axis range in x and y with respect to | |
(x_max - x_min) or (y_max - y_min). | |
**kwargs | |
Keyword arguments to be passed to scatter function. | |
Returns | |
------- | |
numpy.ndarray | |
A matrix of scatter plots. | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D']) | |
>>> pd.plotting.scatter_matrix(df, alpha=0.2) | |
array([[<Axes: xlabel='A', ylabel='A'>, <Axes: xlabel='B', ylabel='A'>, | |
<Axes: xlabel='C', ylabel='A'>, <Axes: xlabel='D', ylabel='A'>], | |
[<Axes: xlabel='A', ylabel='B'>, <Axes: xlabel='B', ylabel='B'>, | |
<Axes: xlabel='C', ylabel='B'>, <Axes: xlabel='D', ylabel='B'>], | |
[<Axes: xlabel='A', ylabel='C'>, <Axes: xlabel='B', ylabel='C'>, | |
<Axes: xlabel='C', ylabel='C'>, <Axes: xlabel='D', ylabel='C'>], | |
[<Axes: xlabel='A', ylabel='D'>, <Axes: xlabel='B', ylabel='D'>, | |
<Axes: xlabel='C', ylabel='D'>, <Axes: xlabel='D', ylabel='D'>]], | |
dtype=object) | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.scatter_matrix( | |
frame=frame, | |
alpha=alpha, | |
figsize=figsize, | |
ax=ax, | |
grid=grid, | |
diagonal=diagonal, | |
marker=marker, | |
density_kwds=density_kwds, | |
hist_kwds=hist_kwds, | |
range_padding=range_padding, | |
**kwargs, | |
) | |
def radviz( | |
frame: DataFrame, | |
class_column: str, | |
ax: Axes | None = None, | |
color: list[str] | tuple[str, ...] | None = None, | |
colormap: Colormap | str | None = None, | |
**kwds, | |
) -> Axes: | |
""" | |
Plot a multidimensional dataset in 2D. | |
Each Series in the DataFrame is represented as a evenly distributed | |
slice on a circle. Each data point is rendered in the circle according to | |
the value on each Series. Highly correlated `Series` in the `DataFrame` | |
are placed closer on the unit circle. | |
RadViz allow to project a N-dimensional data set into a 2D space where the | |
influence of each dimension can be interpreted as a balance between the | |
influence of all dimensions. | |
More info available at the `original article | |
<https://doi.org/10.1145/331770.331775>`_ | |
describing RadViz. | |
Parameters | |
---------- | |
frame : `DataFrame` | |
Object holding the data. | |
class_column : str | |
Column name containing the name of the data point category. | |
ax : :class:`matplotlib.axes.Axes`, optional | |
A plot instance to which to add the information. | |
color : list[str] or tuple[str], optional | |
Assign a color to each category. Example: ['blue', 'green']. | |
colormap : str or :class:`matplotlib.colors.Colormap`, default None | |
Colormap to select colors from. If string, load colormap with that | |
name from matplotlib. | |
**kwds | |
Options to pass to matplotlib scatter plotting method. | |
Returns | |
------- | |
:class:`matplotlib.axes.Axes` | |
See Also | |
-------- | |
pandas.plotting.andrews_curves : Plot clustering visualization. | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
>>> df = pd.DataFrame( | |
... { | |
... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6, 6.7, 4.6], | |
... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2, 3.3, 3.6], | |
... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4, 5.7, 1.0], | |
... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2, 2.1, 0.2], | |
... 'Category': [ | |
... 'virginica', | |
... 'virginica', | |
... 'setosa', | |
... 'virginica', | |
... 'virginica', | |
... 'versicolor', | |
... 'versicolor', | |
... 'setosa', | |
... 'virginica', | |
... 'setosa' | |
... ] | |
... } | |
... ) | |
>>> pd.plotting.radviz(df, 'Category') # doctest: +SKIP | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.radviz( | |
frame=frame, | |
class_column=class_column, | |
ax=ax, | |
color=color, | |
colormap=colormap, | |
**kwds, | |
) | |
def andrews_curves( | |
frame: DataFrame, | |
class_column: str, | |
ax: Axes | None = None, | |
samples: int = 200, | |
color: list[str] | tuple[str, ...] | None = None, | |
colormap: Colormap | str | None = None, | |
**kwargs, | |
) -> Axes: | |
""" | |
Generate a matplotlib plot for visualizing clusters of multivariate data. | |
Andrews curves have the functional form: | |
.. math:: | |
f(t) = \\frac{x_1}{\\sqrt{2}} + x_2 \\sin(t) + x_3 \\cos(t) + | |
x_4 \\sin(2t) + x_5 \\cos(2t) + \\cdots | |
Where :math:`x` coefficients correspond to the values of each dimension | |
and :math:`t` is linearly spaced between :math:`-\\pi` and :math:`+\\pi`. | |
Each row of frame then corresponds to a single curve. | |
Parameters | |
---------- | |
frame : DataFrame | |
Data to be plotted, preferably normalized to (0.0, 1.0). | |
class_column : label | |
Name of the column containing class names. | |
ax : axes object, default None | |
Axes to use. | |
samples : int | |
Number of points to plot in each curve. | |
color : str, list[str] or tuple[str], optional | |
Colors to use for the different classes. Colors can be strings | |
or 3-element floating point RGB values. | |
colormap : str or matplotlib colormap object, default None | |
Colormap to select colors from. If a string, load colormap with that | |
name from matplotlib. | |
**kwargs | |
Options to pass to matplotlib plotting method. | |
Returns | |
------- | |
:class:`matplotlib.axes.Axes` | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
>>> df = pd.read_csv( | |
... 'https://raw.githubusercontent.com/pandas-dev/' | |
... 'pandas/main/pandas/tests/io/data/csv/iris.csv' | |
... ) | |
>>> pd.plotting.andrews_curves(df, 'Name') # doctest: +SKIP | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.andrews_curves( | |
frame=frame, | |
class_column=class_column, | |
ax=ax, | |
samples=samples, | |
color=color, | |
colormap=colormap, | |
**kwargs, | |
) | |
def bootstrap_plot( | |
series: Series, | |
fig: Figure | None = None, | |
size: int = 50, | |
samples: int = 500, | |
**kwds, | |
) -> Figure: | |
""" | |
Bootstrap plot on mean, median and mid-range statistics. | |
The bootstrap plot is used to estimate the uncertainty of a statistic | |
by relying on random sampling with replacement [1]_. This function will | |
generate bootstrapping plots for mean, median and mid-range statistics | |
for the given number of samples of the given size. | |
.. [1] "Bootstrapping (statistics)" in \ | |
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29 | |
Parameters | |
---------- | |
series : pandas.Series | |
Series from where to get the samplings for the bootstrapping. | |
fig : matplotlib.figure.Figure, default None | |
If given, it will use the `fig` reference for plotting instead of | |
creating a new one with default parameters. | |
size : int, default 50 | |
Number of data points to consider during each sampling. It must be | |
less than or equal to the length of the `series`. | |
samples : int, default 500 | |
Number of times the bootstrap procedure is performed. | |
**kwds | |
Options to pass to matplotlib plotting method. | |
Returns | |
------- | |
matplotlib.figure.Figure | |
Matplotlib figure. | |
See Also | |
-------- | |
pandas.DataFrame.plot : Basic plotting for DataFrame objects. | |
pandas.Series.plot : Basic plotting for Series objects. | |
Examples | |
-------- | |
This example draws a basic bootstrap plot for a Series. | |
.. plot:: | |
:context: close-figs | |
>>> s = pd.Series(np.random.uniform(size=100)) | |
>>> pd.plotting.bootstrap_plot(s) # doctest: +SKIP | |
<Figure size 640x480 with 6 Axes> | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.bootstrap_plot( | |
series=series, fig=fig, size=size, samples=samples, **kwds | |
) | |
def parallel_coordinates( | |
frame: DataFrame, | |
class_column: str, | |
cols: list[str] | None = None, | |
ax: Axes | None = None, | |
color: list[str] | tuple[str, ...] | None = None, | |
use_columns: bool = False, | |
xticks: list | tuple | None = None, | |
colormap: Colormap | str | None = None, | |
axvlines: bool = True, | |
axvlines_kwds: Mapping[str, Any] | None = None, | |
sort_labels: bool = False, | |
**kwargs, | |
) -> Axes: | |
""" | |
Parallel coordinates plotting. | |
Parameters | |
---------- | |
frame : DataFrame | |
class_column : str | |
Column name containing class names. | |
cols : list, optional | |
A list of column names to use. | |
ax : matplotlib.axis, optional | |
Matplotlib axis object. | |
color : list or tuple, optional | |
Colors to use for the different classes. | |
use_columns : bool, optional | |
If true, columns will be used as xticks. | |
xticks : list or tuple, optional | |
A list of values to use for xticks. | |
colormap : str or matplotlib colormap, default None | |
Colormap to use for line colors. | |
axvlines : bool, optional | |
If true, vertical lines will be added at each xtick. | |
axvlines_kwds : keywords, optional | |
Options to be passed to axvline method for vertical lines. | |
sort_labels : bool, default False | |
Sort class_column labels, useful when assigning colors. | |
**kwargs | |
Options to pass to matplotlib plotting method. | |
Returns | |
------- | |
matplotlib.axes.Axes | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
>>> df = pd.read_csv( | |
... 'https://raw.githubusercontent.com/pandas-dev/' | |
... 'pandas/main/pandas/tests/io/data/csv/iris.csv' | |
... ) | |
>>> pd.plotting.parallel_coordinates( | |
... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464') | |
... ) # doctest: +SKIP | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.parallel_coordinates( | |
frame=frame, | |
class_column=class_column, | |
cols=cols, | |
ax=ax, | |
color=color, | |
use_columns=use_columns, | |
xticks=xticks, | |
colormap=colormap, | |
axvlines=axvlines, | |
axvlines_kwds=axvlines_kwds, | |
sort_labels=sort_labels, | |
**kwargs, | |
) | |
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes: | |
""" | |
Lag plot for time series. | |
Parameters | |
---------- | |
series : Series | |
The time series to visualize. | |
lag : int, default 1 | |
Lag length of the scatter plot. | |
ax : Matplotlib axis object, optional | |
The matplotlib axis object to use. | |
**kwds | |
Matplotlib scatter method keyword arguments. | |
Returns | |
------- | |
matplotlib.axes.Axes | |
Examples | |
-------- | |
Lag plots are most commonly used to look for patterns in time series data. | |
Given the following time series | |
.. plot:: | |
:context: close-figs | |
>>> np.random.seed(5) | |
>>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50)) | |
>>> s = pd.Series(x) | |
>>> s.plot() # doctest: +SKIP | |
A lag plot with ``lag=1`` returns | |
.. plot:: | |
:context: close-figs | |
>>> pd.plotting.lag_plot(s, lag=1) | |
<Axes: xlabel='y(t)', ylabel='y(t + 1)'> | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.lag_plot(series=series, lag=lag, ax=ax, **kwds) | |
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Axes: | |
""" | |
Autocorrelation plot for time series. | |
Parameters | |
---------- | |
series : Series | |
The time series to visualize. | |
ax : Matplotlib axis object, optional | |
The matplotlib axis object to use. | |
**kwargs | |
Options to pass to matplotlib plotting method. | |
Returns | |
------- | |
matplotlib.axes.Axes | |
Examples | |
-------- | |
The horizontal lines in the plot correspond to 95% and 99% confidence bands. | |
The dashed line is 99% confidence band. | |
.. plot:: | |
:context: close-figs | |
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000) | |
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing)) | |
>>> pd.plotting.autocorrelation_plot(s) # doctest: +SKIP | |
""" | |
plot_backend = _get_plot_backend("matplotlib") | |
return plot_backend.autocorrelation_plot(series=series, ax=ax, **kwargs) | |
class _Options(dict): | |
""" | |
Stores pandas plotting options. | |
Allows for parameter aliasing so you can just use parameter names that are | |
the same as the plot function parameters, but is stored in a canonical | |
format that makes it easy to breakdown into groups later. | |
Examples | |
-------- | |
.. plot:: | |
:context: close-figs | |
>>> np.random.seed(42) | |
>>> df = pd.DataFrame({'A': np.random.randn(10), | |
... 'B': np.random.randn(10)}, | |
... index=pd.date_range("1/1/2000", | |
... freq='4MS', periods=10)) | |
>>> with pd.plotting.plot_params.use("x_compat", True): | |
... _ = df["A"].plot(color="r") | |
... _ = df["B"].plot(color="g") | |
""" | |
# alias so the names are same as plotting method parameter names | |
_ALIASES = {"x_compat": "xaxis.compat"} | |
_DEFAULT_KEYS = ["xaxis.compat"] | |
def __init__(self, deprecated: bool = False) -> None: | |
self._deprecated = deprecated | |
super().__setitem__("xaxis.compat", False) | |
def __getitem__(self, key): | |
key = self._get_canonical_key(key) | |
if key not in self: | |
raise ValueError(f"{key} is not a valid pandas plotting option") | |
return super().__getitem__(key) | |
def __setitem__(self, key, value) -> None: | |
key = self._get_canonical_key(key) | |
super().__setitem__(key, value) | |
def __delitem__(self, key) -> None: | |
key = self._get_canonical_key(key) | |
if key in self._DEFAULT_KEYS: | |
raise ValueError(f"Cannot remove default parameter {key}") | |
super().__delitem__(key) | |
def __contains__(self, key) -> bool: | |
key = self._get_canonical_key(key) | |
return super().__contains__(key) | |
def reset(self) -> None: | |
""" | |
Reset the option store to its initial state | |
Returns | |
------- | |
None | |
""" | |
# error: Cannot access "__init__" directly | |
self.__init__() # type: ignore[misc] | |
def _get_canonical_key(self, key): | |
return self._ALIASES.get(key, key) | |
def use(self, key, value) -> Generator[_Options, None, None]: | |
""" | |
Temporarily set a parameter value using the with statement. | |
Aliasing allowed. | |
""" | |
old_value = self[key] | |
try: | |
self[key] = value | |
yield self | |
finally: | |
self[key] = old_value | |
plot_params = _Options() | |