peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/joblib
/_dask.py
from __future__ import print_function, division, absolute_import | |
import asyncio | |
import concurrent.futures | |
import contextlib | |
import time | |
from uuid import uuid4 | |
import weakref | |
from .parallel import parallel_config | |
from .parallel import AutoBatchingMixin, ParallelBackendBase | |
from ._utils import ( | |
_TracebackCapturingWrapper, | |
_retrieve_traceback_capturing_wrapped_call | |
) | |
try: | |
import dask | |
import distributed | |
except ImportError: | |
dask = None | |
distributed = None | |
if dask is not None and distributed is not None: | |
from dask.utils import funcname | |
from dask.sizeof import sizeof | |
from dask.distributed import ( | |
Client, | |
as_completed, | |
get_client, | |
secede, | |
rejoin, | |
) | |
from distributed.utils import thread_state | |
try: | |
# asyncio.TimeoutError, Python3-only error thrown by recent versions of | |
# distributed | |
from distributed.utils import TimeoutError as _TimeoutError | |
except ImportError: | |
from tornado.gen import TimeoutError as _TimeoutError | |
def is_weakrefable(obj): | |
try: | |
weakref.ref(obj) | |
return True | |
except TypeError: | |
return False | |
class _WeakKeyDictionary: | |
"""A variant of weakref.WeakKeyDictionary for unhashable objects. | |
This datastructure is used to store futures for broadcasted data objects | |
such as large numpy arrays or pandas dataframes that are not hashable and | |
therefore cannot be used as keys of traditional python dicts. | |
Furthermore using a dict with id(array) as key is not safe because the | |
Python is likely to reuse id of recently collected arrays. | |
""" | |
def __init__(self): | |
self._data = {} | |
def __getitem__(self, obj): | |
ref, val = self._data[id(obj)] | |
if ref() is not obj: | |
# In case of a race condition with on_destroy. | |
raise KeyError(obj) | |
return val | |
def __setitem__(self, obj, value): | |
key = id(obj) | |
try: | |
ref, _ = self._data[key] | |
if ref() is not obj: | |
# In case of race condition with on_destroy. | |
raise KeyError(obj) | |
except KeyError: | |
# Insert the new entry in the mapping along with a weakref | |
# callback to automatically delete the entry from the mapping | |
# as soon as the object used as key is garbage collected. | |
def on_destroy(_): | |
del self._data[key] | |
ref = weakref.ref(obj, on_destroy) | |
self._data[key] = ref, value | |
def __len__(self): | |
return len(self._data) | |
def clear(self): | |
self._data.clear() | |
def _funcname(x): | |
try: | |
if isinstance(x, list): | |
x = x[0][0] | |
except Exception: | |
pass | |
return funcname(x) | |
def _make_tasks_summary(tasks): | |
"""Summarize of list of (func, args, kwargs) function calls""" | |
unique_funcs = {func for func, args, kwargs in tasks} | |
if len(unique_funcs) == 1: | |
mixed = False | |
else: | |
mixed = True | |
return len(tasks), mixed, _funcname(tasks) | |
class Batch: | |
"""dask-compatible wrapper that executes a batch of tasks""" | |
def __init__(self, tasks): | |
# collect some metadata from the tasks to ease Batch calls | |
# introspection when debugging | |
self._num_tasks, self._mixed, self._funcname = _make_tasks_summary( | |
tasks | |
) | |
def __call__(self, tasks=None): | |
results = [] | |
with parallel_config(backend='dask'): | |
for func, args, kwargs in tasks: | |
results.append(func(*args, **kwargs)) | |
return results | |
def __repr__(self): | |
descr = f"batch_of_{self._funcname}_{self._num_tasks}_calls" | |
if self._mixed: | |
descr = "mixed_" + descr | |
return descr | |
def _joblib_probe_task(): | |
# Noop used by the joblib connector to probe when workers are ready. | |
pass | |
class DaskDistributedBackend(AutoBatchingMixin, ParallelBackendBase): | |
MIN_IDEAL_BATCH_DURATION = 0.2 | |
MAX_IDEAL_BATCH_DURATION = 1.0 | |
supports_retrieve_callback = True | |
default_n_jobs = -1 | |
def __init__(self, scheduler_host=None, scatter=None, | |
client=None, loop=None, wait_for_workers_timeout=10, | |
**submit_kwargs): | |
super().__init__() | |
if distributed is None: | |
msg = ("You are trying to use 'dask' as a joblib parallel backend " | |
"but dask is not installed. Please install dask " | |
"to fix this error.") | |
raise ValueError(msg) | |
if client is None: | |
if scheduler_host: | |
client = Client(scheduler_host, loop=loop, | |
set_as_default=False) | |
else: | |
try: | |
client = get_client() | |
except ValueError as e: | |
msg = ("To use Joblib with Dask first create a Dask Client" | |
"\n\n" | |
" from dask.distributed import Client\n" | |
" client = Client()\n" | |
"or\n" | |
" client = Client('scheduler-address:8786')") | |
raise ValueError(msg) from e | |
self.client = client | |
if scatter is not None and not isinstance(scatter, (list, tuple)): | |
raise TypeError("scatter must be a list/tuple, got " | |
"`%s`" % type(scatter).__name__) | |
if scatter is not None and len(scatter) > 0: | |
# Keep a reference to the scattered data to keep the ids the same | |
self._scatter = list(scatter) | |
scattered = self.client.scatter(scatter, broadcast=True) | |
self.data_futures = {id(x): f for x, f in zip(scatter, scattered)} | |
else: | |
self._scatter = [] | |
self.data_futures = {} | |
self.wait_for_workers_timeout = wait_for_workers_timeout | |
self.submit_kwargs = submit_kwargs | |
self.waiting_futures = as_completed( | |
[], | |
loop=client.loop, | |
with_results=True, | |
raise_errors=False | |
) | |
self._results = {} | |
self._callbacks = {} | |
async def _collect(self): | |
while self._continue: | |
async for future, result in self.waiting_futures: | |
cf_future = self._results.pop(future) | |
callback = self._callbacks.pop(future) | |
if future.status == "error": | |
typ, exc, tb = result | |
cf_future.set_exception(exc) | |
else: | |
cf_future.set_result(result) | |
callback(result) | |
await asyncio.sleep(0.01) | |
def __reduce__(self): | |
return (DaskDistributedBackend, ()) | |
def get_nested_backend(self): | |
return DaskDistributedBackend(client=self.client), -1 | |
def configure(self, n_jobs=1, parallel=None, **backend_args): | |
self.parallel = parallel | |
return self.effective_n_jobs(n_jobs) | |
def start_call(self): | |
self._continue = True | |
self.client.loop.add_callback(self._collect) | |
self.call_data_futures = _WeakKeyDictionary() | |
def stop_call(self): | |
# The explicit call to clear is required to break a cycling reference | |
# to the futures. | |
self._continue = False | |
# wait for the future collection routine (self._backend._collect) to | |
# finish in order to limit asyncio warnings due to aborting _collect | |
# during a following backend termination call | |
time.sleep(0.01) | |
self.call_data_futures.clear() | |
def effective_n_jobs(self, n_jobs): | |
effective_n_jobs = sum(self.client.ncores().values()) | |
if effective_n_jobs != 0 or not self.wait_for_workers_timeout: | |
return effective_n_jobs | |
# If there is no worker, schedule a probe task to wait for the workers | |
# to come up and be available. If the dask cluster is in adaptive mode | |
# task might cause the cluster to provision some workers. | |
try: | |
self.client.submit(_joblib_probe_task).result( | |
timeout=self.wait_for_workers_timeout | |
) | |
except _TimeoutError as e: | |
error_msg = ( | |
"DaskDistributedBackend has no worker after {} seconds. " | |
"Make sure that workers are started and can properly connect " | |
"to the scheduler and increase the joblib/dask connection " | |
"timeout with:\n\n" | |
"parallel_config(backend='dask', wait_for_workers_timeout={})" | |
).format(self.wait_for_workers_timeout, | |
max(10, 2 * self.wait_for_workers_timeout)) | |
raise TimeoutError(error_msg) from e | |
return sum(self.client.ncores().values()) | |
async def _to_func_args(self, func): | |
itemgetters = dict() | |
# Futures that are dynamically generated during a single call to | |
# Parallel.__call__. | |
call_data_futures = getattr(self, 'call_data_futures', None) | |
async def maybe_to_futures(args): | |
out = [] | |
for arg in args: | |
arg_id = id(arg) | |
if arg_id in itemgetters: | |
out.append(itemgetters[arg_id]) | |
continue | |
f = self.data_futures.get(arg_id, None) | |
if f is None and call_data_futures is not None: | |
try: | |
f = await call_data_futures[arg] | |
except KeyError: | |
pass | |
if f is None: | |
if is_weakrefable(arg) and sizeof(arg) > 1e3: | |
# Automatically scatter large objects to some of | |
# the workers to avoid duplicated data transfers. | |
# Rely on automated inter-worker data stealing if | |
# more workers need to reuse this data | |
# concurrently. | |
# set hash=False - nested scatter calls (i.e | |
# calling client.scatter inside a dask worker) | |
# using hash=True often raise CancelledError, | |
# see dask/distributed#3703 | |
_coro = self.client.scatter( | |
arg, | |
asynchronous=True, | |
hash=False | |
) | |
# Centralize the scattering of identical arguments | |
# between concurrent apply_async callbacks by | |
# exposing the running coroutine in | |
# call_data_futures before it completes. | |
t = asyncio.Task(_coro) | |
call_data_futures[arg] = t | |
f = await t | |
if f is not None: | |
out.append(f) | |
else: | |
out.append(arg) | |
return out | |
tasks = [] | |
for f, args, kwargs in func.items: | |
args = list(await maybe_to_futures(args)) | |
kwargs = dict(zip(kwargs.keys(), | |
await maybe_to_futures(kwargs.values()))) | |
tasks.append((f, args, kwargs)) | |
return (Batch(tasks), tasks) | |
def apply_async(self, func, callback=None): | |
cf_future = concurrent.futures.Future() | |
cf_future.get = cf_future.result # achieve AsyncResult API | |
async def f(func, callback): | |
batch, tasks = await self._to_func_args(func) | |
key = f'{repr(batch)}-{uuid4().hex}' | |
dask_future = self.client.submit( | |
_TracebackCapturingWrapper(batch), | |
tasks=tasks, | |
key=key, | |
**self.submit_kwargs | |
) | |
self.waiting_futures.add(dask_future) | |
self._callbacks[dask_future] = callback | |
self._results[dask_future] = cf_future | |
self.client.loop.add_callback(f, func, callback) | |
return cf_future | |
def retrieve_result_callback(self, out): | |
return _retrieve_traceback_capturing_wrapped_call(out) | |
def abort_everything(self, ensure_ready=True): | |
""" Tell the client to cancel any task submitted via this instance | |
joblib.Parallel will never access those results | |
""" | |
with self.waiting_futures.lock: | |
self.waiting_futures.futures.clear() | |
while not self.waiting_futures.queue.empty(): | |
self.waiting_futures.queue.get() | |
def retrieval_context(self): | |
"""Override ParallelBackendBase.retrieval_context to avoid deadlocks. | |
This removes thread from the worker's thread pool (using 'secede'). | |
Seceding avoids deadlock in nested parallelism settings. | |
""" | |
# See 'joblib.Parallel.__call__' and 'joblib.Parallel.retrieve' for how | |
# this is used. | |
if hasattr(thread_state, 'execution_state'): | |
# we are in a worker. Secede to avoid deadlock. | |
secede() | |
yield | |
if hasattr(thread_state, 'execution_state'): | |
rejoin() | |