peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/__init__.pyi
import builtins | |
import sys | |
import os | |
import mmap | |
import ctypes as ct | |
import array as _array | |
import datetime as dt | |
import enum | |
from abc import abstractmethod | |
from types import TracebackType, MappingProxyType, GenericAlias | |
from contextlib import ContextDecorator | |
from contextlib import contextmanager | |
from numpy._pytesttester import PytestTester | |
from numpy.core._internal import _ctypes | |
from numpy._typing import ( | |
# Arrays | |
ArrayLike, | |
NDArray, | |
_SupportsArray, | |
_NestedSequence, | |
_FiniteNestedSequence, | |
_SupportsArray, | |
_ArrayLikeBool_co, | |
_ArrayLikeUInt_co, | |
_ArrayLikeInt_co, | |
_ArrayLikeFloat_co, | |
_ArrayLikeComplex_co, | |
_ArrayLikeNumber_co, | |
_ArrayLikeTD64_co, | |
_ArrayLikeDT64_co, | |
_ArrayLikeObject_co, | |
_ArrayLikeStr_co, | |
_ArrayLikeBytes_co, | |
_ArrayLikeUnknown, | |
_UnknownType, | |
# DTypes | |
DTypeLike, | |
_DTypeLike, | |
_DTypeLikeVoid, | |
_SupportsDType, | |
_VoidDTypeLike, | |
# Shapes | |
_Shape, | |
_ShapeLike, | |
# Scalars | |
_CharLike_co, | |
_BoolLike_co, | |
_IntLike_co, | |
_FloatLike_co, | |
_ComplexLike_co, | |
_TD64Like_co, | |
_NumberLike_co, | |
_ScalarLike_co, | |
# `number` precision | |
NBitBase, | |
_256Bit, | |
_128Bit, | |
_96Bit, | |
_80Bit, | |
_64Bit, | |
_32Bit, | |
_16Bit, | |
_8Bit, | |
_NBitByte, | |
_NBitShort, | |
_NBitIntC, | |
_NBitIntP, | |
_NBitInt, | |
_NBitLongLong, | |
_NBitHalf, | |
_NBitSingle, | |
_NBitDouble, | |
_NBitLongDouble, | |
# Character codes | |
_BoolCodes, | |
_UInt8Codes, | |
_UInt16Codes, | |
_UInt32Codes, | |
_UInt64Codes, | |
_Int8Codes, | |
_Int16Codes, | |
_Int32Codes, | |
_Int64Codes, | |
_Float16Codes, | |
_Float32Codes, | |
_Float64Codes, | |
_Complex64Codes, | |
_Complex128Codes, | |
_ByteCodes, | |
_ShortCodes, | |
_IntCCodes, | |
_IntPCodes, | |
_IntCodes, | |
_LongLongCodes, | |
_UByteCodes, | |
_UShortCodes, | |
_UIntCCodes, | |
_UIntPCodes, | |
_UIntCodes, | |
_ULongLongCodes, | |
_HalfCodes, | |
_SingleCodes, | |
_DoubleCodes, | |
_LongDoubleCodes, | |
_CSingleCodes, | |
_CDoubleCodes, | |
_CLongDoubleCodes, | |
_DT64Codes, | |
_TD64Codes, | |
_StrCodes, | |
_BytesCodes, | |
_VoidCodes, | |
_ObjectCodes, | |
# Ufuncs | |
_UFunc_Nin1_Nout1, | |
_UFunc_Nin2_Nout1, | |
_UFunc_Nin1_Nout2, | |
_UFunc_Nin2_Nout2, | |
_GUFunc_Nin2_Nout1, | |
) | |
from numpy._typing._callable import ( | |
_BoolOp, | |
_BoolBitOp, | |
_BoolSub, | |
_BoolTrueDiv, | |
_BoolMod, | |
_BoolDivMod, | |
_TD64Div, | |
_IntTrueDiv, | |
_UnsignedIntOp, | |
_UnsignedIntBitOp, | |
_UnsignedIntMod, | |
_UnsignedIntDivMod, | |
_SignedIntOp, | |
_SignedIntBitOp, | |
_SignedIntMod, | |
_SignedIntDivMod, | |
_FloatOp, | |
_FloatMod, | |
_FloatDivMod, | |
_ComplexOp, | |
_NumberOp, | |
_ComparisonOp, | |
) | |
# NOTE: Numpy's mypy plugin is used for removing the types unavailable | |
# to the specific platform | |
from numpy._typing._extended_precision import ( | |
uint128 as uint128, | |
uint256 as uint256, | |
int128 as int128, | |
int256 as int256, | |
float80 as float80, | |
float96 as float96, | |
float128 as float128, | |
float256 as float256, | |
complex160 as complex160, | |
complex192 as complex192, | |
complex256 as complex256, | |
complex512 as complex512, | |
) | |
from collections.abc import ( | |
Callable, | |
Container, | |
Iterable, | |
Iterator, | |
Mapping, | |
Sequence, | |
Sized, | |
) | |
from typing import ( | |
Literal as L, | |
Any, | |
Generator, | |
Generic, | |
IO, | |
NoReturn, | |
overload, | |
SupportsComplex, | |
SupportsFloat, | |
SupportsInt, | |
TypeVar, | |
Union, | |
Protocol, | |
SupportsIndex, | |
Final, | |
final, | |
ClassVar, | |
) | |
# Ensures that the stubs are picked up | |
from numpy import ( | |
ctypeslib as ctypeslib, | |
exceptions as exceptions, | |
fft as fft, | |
lib as lib, | |
linalg as linalg, | |
ma as ma, | |
polynomial as polynomial, | |
random as random, | |
testing as testing, | |
version as version, | |
exceptions as exceptions, | |
dtypes as dtypes, | |
) | |
from numpy.core import defchararray, records | |
char = defchararray | |
rec = records | |
from numpy.core.function_base import ( | |
linspace as linspace, | |
logspace as logspace, | |
geomspace as geomspace, | |
) | |
from numpy.core.fromnumeric import ( | |
take as take, | |
reshape as reshape, | |
choose as choose, | |
repeat as repeat, | |
put as put, | |
swapaxes as swapaxes, | |
transpose as transpose, | |
partition as partition, | |
argpartition as argpartition, | |
sort as sort, | |
argsort as argsort, | |
argmax as argmax, | |
argmin as argmin, | |
searchsorted as searchsorted, | |
resize as resize, | |
squeeze as squeeze, | |
diagonal as diagonal, | |
trace as trace, | |
ravel as ravel, | |
nonzero as nonzero, | |
shape as shape, | |
compress as compress, | |
clip as clip, | |
sum as sum, | |
all as all, | |
any as any, | |
cumsum as cumsum, | |
ptp as ptp, | |
max as max, | |
min as min, | |
amax as amax, | |
amin as amin, | |
prod as prod, | |
cumprod as cumprod, | |
ndim as ndim, | |
size as size, | |
around as around, | |
round as round, | |
mean as mean, | |
std as std, | |
var as var, | |
) | |
from numpy.core._asarray import ( | |
require as require, | |
) | |
from numpy.core._type_aliases import ( | |
sctypes as sctypes, | |
sctypeDict as sctypeDict, | |
) | |
from numpy.core._ufunc_config import ( | |
seterr as seterr, | |
geterr as geterr, | |
setbufsize as setbufsize, | |
getbufsize as getbufsize, | |
seterrcall as seterrcall, | |
geterrcall as geterrcall, | |
_ErrKind, | |
_ErrFunc, | |
_ErrDictOptional, | |
) | |
from numpy.core.arrayprint import ( | |
set_printoptions as set_printoptions, | |
get_printoptions as get_printoptions, | |
array2string as array2string, | |
format_float_scientific as format_float_scientific, | |
format_float_positional as format_float_positional, | |
array_repr as array_repr, | |
array_str as array_str, | |
set_string_function as set_string_function, | |
printoptions as printoptions, | |
) | |
from numpy.core.einsumfunc import ( | |
einsum as einsum, | |
einsum_path as einsum_path, | |
) | |
from numpy.core.multiarray import ( | |
ALLOW_THREADS as ALLOW_THREADS, | |
BUFSIZE as BUFSIZE, | |
CLIP as CLIP, | |
MAXDIMS as MAXDIMS, | |
MAY_SHARE_BOUNDS as MAY_SHARE_BOUNDS, | |
MAY_SHARE_EXACT as MAY_SHARE_EXACT, | |
RAISE as RAISE, | |
WRAP as WRAP, | |
tracemalloc_domain as tracemalloc_domain, | |
array as array, | |
empty_like as empty_like, | |
empty as empty, | |
zeros as zeros, | |
concatenate as concatenate, | |
inner as inner, | |
where as where, | |
lexsort as lexsort, | |
can_cast as can_cast, | |
min_scalar_type as min_scalar_type, | |
result_type as result_type, | |
dot as dot, | |
vdot as vdot, | |
bincount as bincount, | |
copyto as copyto, | |
putmask as putmask, | |
packbits as packbits, | |
unpackbits as unpackbits, | |
shares_memory as shares_memory, | |
may_share_memory as may_share_memory, | |
asarray as asarray, | |
asanyarray as asanyarray, | |
ascontiguousarray as ascontiguousarray, | |
asfortranarray as asfortranarray, | |
arange as arange, | |
busday_count as busday_count, | |
busday_offset as busday_offset, | |
compare_chararrays as compare_chararrays, | |
datetime_as_string as datetime_as_string, | |
datetime_data as datetime_data, | |
frombuffer as frombuffer, | |
fromfile as fromfile, | |
fromiter as fromiter, | |
is_busday as is_busday, | |
promote_types as promote_types, | |
seterrobj as seterrobj, | |
geterrobj as geterrobj, | |
fromstring as fromstring, | |
frompyfunc as frompyfunc, | |
nested_iters as nested_iters, | |
flagsobj, | |
) | |
from numpy.core.numeric import ( | |
zeros_like as zeros_like, | |
ones as ones, | |
ones_like as ones_like, | |
full as full, | |
full_like as full_like, | |
count_nonzero as count_nonzero, | |
isfortran as isfortran, | |
argwhere as argwhere, | |
flatnonzero as flatnonzero, | |
correlate as correlate, | |
convolve as convolve, | |
outer as outer, | |
tensordot as tensordot, | |
roll as roll, | |
rollaxis as rollaxis, | |
moveaxis as moveaxis, | |
cross as cross, | |
indices as indices, | |
fromfunction as fromfunction, | |
isscalar as isscalar, | |
binary_repr as binary_repr, | |
base_repr as base_repr, | |
identity as identity, | |
allclose as allclose, | |
isclose as isclose, | |
array_equal as array_equal, | |
array_equiv as array_equiv, | |
) | |
from numpy.core.numerictypes import ( | |
maximum_sctype as maximum_sctype, | |
issctype as issctype, | |
obj2sctype as obj2sctype, | |
issubclass_ as issubclass_, | |
issubsctype as issubsctype, | |
issubdtype as issubdtype, | |
sctype2char as sctype2char, | |
nbytes as nbytes, | |
cast as cast, | |
ScalarType as ScalarType, | |
typecodes as typecodes, | |
) | |
from numpy.core.shape_base import ( | |
atleast_1d as atleast_1d, | |
atleast_2d as atleast_2d, | |
atleast_3d as atleast_3d, | |
block as block, | |
hstack as hstack, | |
stack as stack, | |
vstack as vstack, | |
) | |
from numpy.exceptions import ( | |
ComplexWarning as ComplexWarning, | |
ModuleDeprecationWarning as ModuleDeprecationWarning, | |
VisibleDeprecationWarning as VisibleDeprecationWarning, | |
TooHardError as TooHardError, | |
DTypePromotionError as DTypePromotionError, | |
AxisError as AxisError, | |
) | |
from numpy.lib import ( | |
emath as emath, | |
) | |
from numpy.lib.arraypad import ( | |
pad as pad, | |
) | |
from numpy.lib.arraysetops import ( | |
ediff1d as ediff1d, | |
intersect1d as intersect1d, | |
setxor1d as setxor1d, | |
union1d as union1d, | |
setdiff1d as setdiff1d, | |
unique as unique, | |
in1d as in1d, | |
isin as isin, | |
) | |
from numpy.lib.arrayterator import ( | |
Arrayterator as Arrayterator, | |
) | |
from numpy.lib.function_base import ( | |
select as select, | |
piecewise as piecewise, | |
trim_zeros as trim_zeros, | |
copy as copy, | |
iterable as iterable, | |
percentile as percentile, | |
diff as diff, | |
gradient as gradient, | |
angle as angle, | |
unwrap as unwrap, | |
sort_complex as sort_complex, | |
disp as disp, | |
flip as flip, | |
rot90 as rot90, | |
extract as extract, | |
place as place, | |
asarray_chkfinite as asarray_chkfinite, | |
average as average, | |
bincount as bincount, | |
digitize as digitize, | |
cov as cov, | |
corrcoef as corrcoef, | |
median as median, | |
sinc as sinc, | |
hamming as hamming, | |
hanning as hanning, | |
bartlett as bartlett, | |
blackman as blackman, | |
kaiser as kaiser, | |
trapz as trapz, | |
i0 as i0, | |
add_newdoc as add_newdoc, | |
add_docstring as add_docstring, | |
meshgrid as meshgrid, | |
delete as delete, | |
insert as insert, | |
append as append, | |
interp as interp, | |
add_newdoc_ufunc as add_newdoc_ufunc, | |
quantile as quantile, | |
) | |
from numpy.lib.histograms import ( | |
histogram_bin_edges as histogram_bin_edges, | |
histogram as histogram, | |
histogramdd as histogramdd, | |
) | |
from numpy.lib.index_tricks import ( | |
ravel_multi_index as ravel_multi_index, | |
unravel_index as unravel_index, | |
mgrid as mgrid, | |
ogrid as ogrid, | |
r_ as r_, | |
c_ as c_, | |
s_ as s_, | |
index_exp as index_exp, | |
ix_ as ix_, | |
fill_diagonal as fill_diagonal, | |
diag_indices as diag_indices, | |
diag_indices_from as diag_indices_from, | |
) | |
from numpy.lib.nanfunctions import ( | |
nansum as nansum, | |
nanmax as nanmax, | |
nanmin as nanmin, | |
nanargmax as nanargmax, | |
nanargmin as nanargmin, | |
nanmean as nanmean, | |
nanmedian as nanmedian, | |
nanpercentile as nanpercentile, | |
nanvar as nanvar, | |
nanstd as nanstd, | |
nanprod as nanprod, | |
nancumsum as nancumsum, | |
nancumprod as nancumprod, | |
nanquantile as nanquantile, | |
) | |
from numpy.lib.npyio import ( | |
savetxt as savetxt, | |
loadtxt as loadtxt, | |
genfromtxt as genfromtxt, | |
recfromtxt as recfromtxt, | |
recfromcsv as recfromcsv, | |
load as load, | |
save as save, | |
savez as savez, | |
savez_compressed as savez_compressed, | |
packbits as packbits, | |
unpackbits as unpackbits, | |
fromregex as fromregex, | |
) | |
from numpy.lib.polynomial import ( | |
poly as poly, | |
roots as roots, | |
polyint as polyint, | |
polyder as polyder, | |
polyadd as polyadd, | |
polysub as polysub, | |
polymul as polymul, | |
polydiv as polydiv, | |
polyval as polyval, | |
polyfit as polyfit, | |
) | |
from numpy.lib.shape_base import ( | |
column_stack as column_stack, | |
row_stack as row_stack, | |
dstack as dstack, | |
array_split as array_split, | |
split as split, | |
hsplit as hsplit, | |
vsplit as vsplit, | |
dsplit as dsplit, | |
apply_over_axes as apply_over_axes, | |
expand_dims as expand_dims, | |
apply_along_axis as apply_along_axis, | |
kron as kron, | |
tile as tile, | |
get_array_wrap as get_array_wrap, | |
take_along_axis as take_along_axis, | |
put_along_axis as put_along_axis, | |
) | |
from numpy.lib.stride_tricks import ( | |
broadcast_to as broadcast_to, | |
broadcast_arrays as broadcast_arrays, | |
broadcast_shapes as broadcast_shapes, | |
) | |
from numpy.lib.twodim_base import ( | |
diag as diag, | |
diagflat as diagflat, | |
eye as eye, | |
fliplr as fliplr, | |
flipud as flipud, | |
tri as tri, | |
triu as triu, | |
tril as tril, | |
vander as vander, | |
histogram2d as histogram2d, | |
mask_indices as mask_indices, | |
tril_indices as tril_indices, | |
tril_indices_from as tril_indices_from, | |
triu_indices as triu_indices, | |
triu_indices_from as triu_indices_from, | |
) | |
from numpy.lib.type_check import ( | |
mintypecode as mintypecode, | |
asfarray as asfarray, | |
real as real, | |
imag as imag, | |
iscomplex as iscomplex, | |
isreal as isreal, | |
iscomplexobj as iscomplexobj, | |
isrealobj as isrealobj, | |
nan_to_num as nan_to_num, | |
real_if_close as real_if_close, | |
typename as typename, | |
common_type as common_type, | |
) | |
from numpy.lib.ufunclike import ( | |
fix as fix, | |
isposinf as isposinf, | |
isneginf as isneginf, | |
) | |
from numpy.lib.utils import ( | |
issubclass_ as issubclass_, | |
issubsctype as issubsctype, | |
issubdtype as issubdtype, | |
deprecate as deprecate, | |
deprecate_with_doc as deprecate_with_doc, | |
get_include as get_include, | |
info as info, | |
source as source, | |
who as who, | |
lookfor as lookfor, | |
byte_bounds as byte_bounds, | |
safe_eval as safe_eval, | |
show_runtime as show_runtime, | |
) | |
from numpy.matrixlib import ( | |
asmatrix as asmatrix, | |
mat as mat, | |
bmat as bmat, | |
) | |
_AnyStr_contra = TypeVar("_AnyStr_contra", str, bytes, contravariant=True) | |
# Protocol for representing file-like-objects accepted | |
# by `ndarray.tofile` and `fromfile` | |
class _IOProtocol(Protocol): | |
def flush(self) -> object: ... | |
def fileno(self) -> int: ... | |
def tell(self) -> SupportsIndex: ... | |
def seek(self, offset: int, whence: int, /) -> object: ... | |
# NOTE: `seek`, `write` and `flush` are technically only required | |
# for `readwrite`/`write` modes | |
class _MemMapIOProtocol(Protocol): | |
def flush(self) -> object: ... | |
def fileno(self) -> SupportsIndex: ... | |
def tell(self) -> int: ... | |
def seek(self, offset: int, whence: int, /) -> object: ... | |
def write(self, s: bytes, /) -> object: ... | |
@property | |
def read(self) -> object: ... | |
class _SupportsWrite(Protocol[_AnyStr_contra]): | |
def write(self, s: _AnyStr_contra, /) -> object: ... | |
__all__: list[str] | |
__path__: list[str] | |
__version__: str | |
test: PytestTester | |
# TODO: Move placeholders to their respective module once | |
# their annotations are properly implemented | |
# | |
# Placeholders for classes | |
def show_config() -> None: ... | |
_NdArraySubClass = TypeVar("_NdArraySubClass", bound=ndarray[Any, Any]) | |
_DTypeScalar_co = TypeVar("_DTypeScalar_co", covariant=True, bound=generic) | |
_ByteOrder = L["S", "<", ">", "=", "|", "L", "B", "N", "I"] | |
@final | |
class dtype(Generic[_DTypeScalar_co]): | |
names: None | tuple[builtins.str, ...] | |
def __hash__(self) -> int: ... | |
# Overload for subclass of generic | |
@overload | |
def __new__( | |
cls, | |
dtype: type[_DTypeScalar_co], | |
align: bool = ..., | |
copy: bool = ..., | |
metadata: dict[builtins.str, Any] = ..., | |
) -> dtype[_DTypeScalar_co]: ... | |
# Overloads for string aliases, Python types, and some assorted | |
# other special cases. Order is sometimes important because of the | |
# subtype relationships | |
# | |
# bool < int < float < complex < object | |
# | |
# so we have to make sure the overloads for the narrowest type is | |
# first. | |
# Builtin types | |
@overload | |
def __new__(cls, dtype: type[bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ... | |
@overload | |
def __new__(cls, dtype: type[int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ... | |
@overload | |
def __new__(cls, dtype: None | type[float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float_]: ... | |
@overload | |
def __new__(cls, dtype: type[complex], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex_]: ... | |
@overload | |
def __new__(cls, dtype: type[builtins.str], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ... | |
@overload | |
def __new__(cls, dtype: type[bytes], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ... | |
# `unsignedinteger` string-based representations and ctypes | |
@overload | |
def __new__(cls, dtype: _UInt8Codes | type[ct.c_uint8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint8]: ... | |
@overload | |
def __new__(cls, dtype: _UInt16Codes | type[ct.c_uint16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint16]: ... | |
@overload | |
def __new__(cls, dtype: _UInt32Codes | type[ct.c_uint32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint32]: ... | |
@overload | |
def __new__(cls, dtype: _UInt64Codes | type[ct.c_uint64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint64]: ... | |
@overload | |
def __new__(cls, dtype: _UByteCodes | type[ct.c_ubyte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ubyte]: ... | |
@overload | |
def __new__(cls, dtype: _UShortCodes | type[ct.c_ushort], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ushort]: ... | |
@overload | |
def __new__(cls, dtype: _UIntCCodes | type[ct.c_uint], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintc]: ... | |
# NOTE: We're assuming here that `uint_ptr_t == size_t`, | |
# an assumption that does not hold in rare cases (same for `ssize_t`) | |
@overload | |
def __new__(cls, dtype: _UIntPCodes | type[ct.c_void_p] | type[ct.c_size_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintp]: ... | |
@overload | |
def __new__(cls, dtype: _UIntCodes | type[ct.c_ulong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint]: ... | |
@overload | |
def __new__(cls, dtype: _ULongLongCodes | type[ct.c_ulonglong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulonglong]: ... | |
# `signedinteger` string-based representations and ctypes | |
@overload | |
def __new__(cls, dtype: _Int8Codes | type[ct.c_int8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int8]: ... | |
@overload | |
def __new__(cls, dtype: _Int16Codes | type[ct.c_int16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int16]: ... | |
@overload | |
def __new__(cls, dtype: _Int32Codes | type[ct.c_int32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int32]: ... | |
@overload | |
def __new__(cls, dtype: _Int64Codes | type[ct.c_int64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int64]: ... | |
@overload | |
def __new__(cls, dtype: _ByteCodes | type[ct.c_byte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[byte]: ... | |
@overload | |
def __new__(cls, dtype: _ShortCodes | type[ct.c_short], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[short]: ... | |
@overload | |
def __new__(cls, dtype: _IntCCodes | type[ct.c_int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intc]: ... | |
@overload | |
def __new__(cls, dtype: _IntPCodes | type[ct.c_ssize_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intp]: ... | |
@overload | |
def __new__(cls, dtype: _IntCodes | type[ct.c_long], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ... | |
@overload | |
def __new__(cls, dtype: _LongLongCodes | type[ct.c_longlong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longlong]: ... | |
# `floating` string-based representations and ctypes | |
@overload | |
def __new__(cls, dtype: _Float16Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float16]: ... | |
@overload | |
def __new__(cls, dtype: _Float32Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float32]: ... | |
@overload | |
def __new__(cls, dtype: _Float64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float64]: ... | |
@overload | |
def __new__(cls, dtype: _HalfCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[half]: ... | |
@overload | |
def __new__(cls, dtype: _SingleCodes | type[ct.c_float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[single]: ... | |
@overload | |
def __new__(cls, dtype: _DoubleCodes | type[ct.c_double], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[double]: ... | |
@overload | |
def __new__(cls, dtype: _LongDoubleCodes | type[ct.c_longdouble], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longdouble]: ... | |
# `complexfloating` string-based representations | |
@overload | |
def __new__(cls, dtype: _Complex64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex64]: ... | |
@overload | |
def __new__(cls, dtype: _Complex128Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex128]: ... | |
@overload | |
def __new__(cls, dtype: _CSingleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[csingle]: ... | |
@overload | |
def __new__(cls, dtype: _CDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[cdouble]: ... | |
@overload | |
def __new__(cls, dtype: _CLongDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[clongdouble]: ... | |
# Miscellaneous string-based representations and ctypes | |
@overload | |
def __new__(cls, dtype: _BoolCodes | type[ct.c_bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ... | |
@overload | |
def __new__(cls, dtype: _TD64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[timedelta64]: ... | |
@overload | |
def __new__(cls, dtype: _DT64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[datetime64]: ... | |
@overload | |
def __new__(cls, dtype: _StrCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ... | |
@overload | |
def __new__(cls, dtype: _BytesCodes | type[ct.c_char], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ... | |
@overload | |
def __new__(cls, dtype: _VoidCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[void]: ... | |
@overload | |
def __new__(cls, dtype: _ObjectCodes | type[ct.py_object[Any]], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[object_]: ... | |
# dtype of a dtype is the same dtype | |
@overload | |
def __new__( | |
cls, | |
dtype: dtype[_DTypeScalar_co], | |
align: bool = ..., | |
copy: bool = ..., | |
metadata: dict[builtins.str, Any] = ..., | |
) -> dtype[_DTypeScalar_co]: ... | |
@overload | |
def __new__( | |
cls, | |
dtype: _SupportsDType[dtype[_DTypeScalar_co]], | |
align: bool = ..., | |
copy: bool = ..., | |
metadata: dict[builtins.str, Any] = ..., | |
) -> dtype[_DTypeScalar_co]: ... | |
# Handle strings that can't be expressed as literals; i.e. s1, s2, ... | |
@overload | |
def __new__( | |
cls, | |
dtype: builtins.str, | |
align: bool = ..., | |
copy: bool = ..., | |
metadata: dict[builtins.str, Any] = ..., | |
) -> dtype[Any]: ... | |
# Catchall overload for void-likes | |
@overload | |
def __new__( | |
cls, | |
dtype: _VoidDTypeLike, | |
align: bool = ..., | |
copy: bool = ..., | |
metadata: dict[builtins.str, Any] = ..., | |
) -> dtype[void]: ... | |
# Catchall overload for object-likes | |
@overload | |
def __new__( | |
cls, | |
dtype: type[object], | |
align: bool = ..., | |
copy: bool = ..., | |
metadata: dict[builtins.str, Any] = ..., | |
) -> dtype[object_]: ... | |
def __class_getitem__(self, item: Any) -> GenericAlias: ... | |
@overload | |
def __getitem__(self: dtype[void], key: list[builtins.str]) -> dtype[void]: ... | |
@overload | |
def __getitem__(self: dtype[void], key: builtins.str | SupportsIndex) -> dtype[Any]: ... | |
# NOTE: In the future 1-based multiplications will also yield `flexible` dtypes | |
@overload | |
def __mul__(self: _DType, value: L[1]) -> _DType: ... | |
@overload | |
def __mul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ... | |
@overload | |
def __mul__(self, value: SupportsIndex) -> dtype[void]: ... | |
# NOTE: `__rmul__` seems to be broken when used in combination with | |
# literals as of mypy 0.902. Set the return-type to `dtype[Any]` for | |
# now for non-flexible dtypes. | |
@overload | |
def __rmul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ... | |
@overload | |
def __rmul__(self, value: SupportsIndex) -> dtype[Any]: ... | |
def __gt__(self, other: DTypeLike) -> bool: ... | |
def __ge__(self, other: DTypeLike) -> bool: ... | |
def __lt__(self, other: DTypeLike) -> bool: ... | |
def __le__(self, other: DTypeLike) -> bool: ... | |
# Explicitly defined `__eq__` and `__ne__` to get around mypy's | |
# `strict_equality` option; even though their signatures are | |
# identical to their `object`-based counterpart | |
def __eq__(self, other: Any) -> bool: ... | |
def __ne__(self, other: Any) -> bool: ... | |
@property | |
def alignment(self) -> int: ... | |
@property | |
def base(self) -> dtype[Any]: ... | |
@property | |
def byteorder(self) -> builtins.str: ... | |
@property | |
def char(self) -> builtins.str: ... | |
@property | |
def descr(self) -> list[tuple[builtins.str, builtins.str] | tuple[builtins.str, builtins.str, _Shape]]: ... | |
@property | |
def fields( | |
self, | |
) -> None | MappingProxyType[builtins.str, tuple[dtype[Any], int] | tuple[dtype[Any], int, Any]]: ... | |
@property | |
def flags(self) -> int: ... | |
@property | |
def hasobject(self) -> bool: ... | |
@property | |
def isbuiltin(self) -> int: ... | |
@property | |
def isnative(self) -> bool: ... | |
@property | |
def isalignedstruct(self) -> bool: ... | |
@property | |
def itemsize(self) -> int: ... | |
@property | |
def kind(self) -> builtins.str: ... | |
@property | |
def metadata(self) -> None | MappingProxyType[builtins.str, Any]: ... | |
@property | |
def name(self) -> builtins.str: ... | |
@property | |
def num(self) -> int: ... | |
@property | |
def shape(self) -> _Shape: ... | |
@property | |
def ndim(self) -> int: ... | |
@property | |
def subdtype(self) -> None | tuple[dtype[Any], _Shape]: ... | |
def newbyteorder(self: _DType, __new_order: _ByteOrder = ...) -> _DType: ... | |
@property | |
def str(self) -> builtins.str: ... | |
@property | |
def type(self) -> type[_DTypeScalar_co]: ... | |
_ArrayLikeInt = Union[ | |
int, | |
integer[Any], | |
Sequence[Union[int, integer[Any]]], | |
Sequence[Sequence[Any]], # TODO: wait for support for recursive types | |
ndarray[Any, Any] | |
] | |
_FlatIterSelf = TypeVar("_FlatIterSelf", bound=flatiter[Any]) | |
@final | |
class flatiter(Generic[_NdArraySubClass]): | |
__hash__: ClassVar[None] | |
@property | |
def base(self) -> _NdArraySubClass: ... | |
@property | |
def coords(self) -> _Shape: ... | |
@property | |
def index(self) -> int: ... | |
def copy(self) -> _NdArraySubClass: ... | |
def __iter__(self: _FlatIterSelf) -> _FlatIterSelf: ... | |
def __next__(self: flatiter[ndarray[Any, dtype[_ScalarType]]]) -> _ScalarType: ... | |
def __len__(self) -> int: ... | |
@overload | |
def __getitem__( | |
self: flatiter[ndarray[Any, dtype[_ScalarType]]], | |
key: int | integer[Any] | tuple[int | integer[Any]], | |
) -> _ScalarType: ... | |
@overload | |
def __getitem__( | |
self, | |
key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis], | |
) -> _NdArraySubClass: ... | |
# TODO: `__setitem__` operates via `unsafe` casting rules, and can | |
# thus accept any type accepted by the relevant underlying `np.generic` | |
# constructor. | |
# This means that `value` must in reality be a supertype of `npt.ArrayLike`. | |
def __setitem__( | |
self, | |
key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis], | |
value: Any, | |
) -> None: ... | |
@overload | |
def __array__(self: flatiter[ndarray[Any, _DType]], dtype: None = ..., /) -> ndarray[Any, _DType]: ... | |
@overload | |
def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ... | |
_OrderKACF = L[None, "K", "A", "C", "F"] | |
_OrderACF = L[None, "A", "C", "F"] | |
_OrderCF = L[None, "C", "F"] | |
_ModeKind = L["raise", "wrap", "clip"] | |
_PartitionKind = L["introselect"] | |
_SortKind = L["quicksort", "mergesort", "heapsort", "stable"] | |
_SortSide = L["left", "right"] | |
_ArraySelf = TypeVar("_ArraySelf", bound=_ArrayOrScalarCommon) | |
class _ArrayOrScalarCommon: | |
@property | |
def T(self: _ArraySelf) -> _ArraySelf: ... | |
@property | |
def data(self) -> memoryview: ... | |
@property | |
def flags(self) -> flagsobj: ... | |
@property | |
def itemsize(self) -> int: ... | |
@property | |
def nbytes(self) -> int: ... | |
def __bool__(self) -> bool: ... | |
def __bytes__(self) -> bytes: ... | |
def __str__(self) -> str: ... | |
def __repr__(self) -> str: ... | |
def __copy__(self: _ArraySelf) -> _ArraySelf: ... | |
def __deepcopy__(self: _ArraySelf, memo: None | dict[int, Any], /) -> _ArraySelf: ... | |
# TODO: How to deal with the non-commutative nature of `==` and `!=`? | |
# xref numpy/numpy#17368 | |
def __eq__(self, other: Any) -> Any: ... | |
def __ne__(self, other: Any) -> Any: ... | |
def copy(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ... | |
def dump(self, file: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _SupportsWrite[bytes]) -> None: ... | |
def dumps(self) -> bytes: ... | |
def tobytes(self, order: _OrderKACF = ...) -> bytes: ... | |
# NOTE: `tostring()` is deprecated and therefore excluded | |
# def tostring(self, order=...): ... | |
def tofile( | |
self, | |
fid: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _IOProtocol, | |
sep: str = ..., | |
format: str = ..., | |
) -> None: ... | |
# generics and 0d arrays return builtin scalars | |
def tolist(self) -> Any: ... | |
@property | |
def __array_interface__(self) -> dict[str, Any]: ... | |
@property | |
def __array_priority__(self) -> float: ... | |
@property | |
def __array_struct__(self) -> Any: ... # builtins.PyCapsule | |
def __setstate__(self, state: tuple[ | |
SupportsIndex, # version | |
_ShapeLike, # Shape | |
_DType_co, # DType | |
bool, # F-continuous | |
bytes | list[Any], # Data | |
], /) -> None: ... | |
# a `bool_` is returned when `keepdims=True` and `self` is a 0d array | |
@overload | |
def all( | |
self, | |
axis: None = ..., | |
out: None = ..., | |
keepdims: L[False] = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> bool_: ... | |
@overload | |
def all( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def all( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def any( | |
self, | |
axis: None = ..., | |
out: None = ..., | |
keepdims: L[False] = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> bool_: ... | |
@overload | |
def any( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def any( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def argmax( | |
self, | |
axis: None = ..., | |
out: None = ..., | |
*, | |
keepdims: L[False] = ..., | |
) -> intp: ... | |
@overload | |
def argmax( | |
self, | |
axis: SupportsIndex = ..., | |
out: None = ..., | |
*, | |
keepdims: bool = ..., | |
) -> Any: ... | |
@overload | |
def argmax( | |
self, | |
axis: None | SupportsIndex = ..., | |
out: _NdArraySubClass = ..., | |
*, | |
keepdims: bool = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def argmin( | |
self, | |
axis: None = ..., | |
out: None = ..., | |
*, | |
keepdims: L[False] = ..., | |
) -> intp: ... | |
@overload | |
def argmin( | |
self, | |
axis: SupportsIndex = ..., | |
out: None = ..., | |
*, | |
keepdims: bool = ..., | |
) -> Any: ... | |
@overload | |
def argmin( | |
self, | |
axis: None | SupportsIndex = ..., | |
out: _NdArraySubClass = ..., | |
*, | |
keepdims: bool = ..., | |
) -> _NdArraySubClass: ... | |
def argsort( | |
self, | |
axis: None | SupportsIndex = ..., | |
kind: None | _SortKind = ..., | |
order: None | str | Sequence[str] = ..., | |
) -> ndarray[Any, Any]: ... | |
@overload | |
def choose( | |
self, | |
choices: ArrayLike, | |
out: None = ..., | |
mode: _ModeKind = ..., | |
) -> ndarray[Any, Any]: ... | |
@overload | |
def choose( | |
self, | |
choices: ArrayLike, | |
out: _NdArraySubClass = ..., | |
mode: _ModeKind = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def clip( | |
self, | |
min: ArrayLike = ..., | |
max: None | ArrayLike = ..., | |
out: None = ..., | |
**kwargs: Any, | |
) -> ndarray[Any, Any]: ... | |
@overload | |
def clip( | |
self, | |
min: None = ..., | |
max: ArrayLike = ..., | |
out: None = ..., | |
**kwargs: Any, | |
) -> ndarray[Any, Any]: ... | |
@overload | |
def clip( | |
self, | |
min: ArrayLike = ..., | |
max: None | ArrayLike = ..., | |
out: _NdArraySubClass = ..., | |
**kwargs: Any, | |
) -> _NdArraySubClass: ... | |
@overload | |
def clip( | |
self, | |
min: None = ..., | |
max: ArrayLike = ..., | |
out: _NdArraySubClass = ..., | |
**kwargs: Any, | |
) -> _NdArraySubClass: ... | |
@overload | |
def compress( | |
self, | |
a: ArrayLike, | |
axis: None | SupportsIndex = ..., | |
out: None = ..., | |
) -> ndarray[Any, Any]: ... | |
@overload | |
def compress( | |
self, | |
a: ArrayLike, | |
axis: None | SupportsIndex = ..., | |
out: _NdArraySubClass = ..., | |
) -> _NdArraySubClass: ... | |
def conj(self: _ArraySelf) -> _ArraySelf: ... | |
def conjugate(self: _ArraySelf) -> _ArraySelf: ... | |
@overload | |
def cumprod( | |
self, | |
axis: None | SupportsIndex = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
) -> ndarray[Any, Any]: ... | |
@overload | |
def cumprod( | |
self, | |
axis: None | SupportsIndex = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def cumsum( | |
self, | |
axis: None | SupportsIndex = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
) -> ndarray[Any, Any]: ... | |
@overload | |
def cumsum( | |
self, | |
axis: None | SupportsIndex = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def max( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def max( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def mean( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def mean( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def min( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def min( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
def newbyteorder( | |
self: _ArraySelf, | |
__new_order: _ByteOrder = ..., | |
) -> _ArraySelf: ... | |
@overload | |
def prod( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def prod( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def ptp( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
) -> Any: ... | |
@overload | |
def ptp( | |
self, | |
axis: None | _ShapeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def round( | |
self: _ArraySelf, | |
decimals: SupportsIndex = ..., | |
out: None = ..., | |
) -> _ArraySelf: ... | |
@overload | |
def round( | |
self, | |
decimals: SupportsIndex = ..., | |
out: _NdArraySubClass = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def std( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
ddof: float = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def std( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
ddof: float = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def sum( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def sum( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
keepdims: bool = ..., | |
initial: _NumberLike_co = ..., | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def var( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
ddof: float = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> Any: ... | |
@overload | |
def var( | |
self, | |
axis: None | _ShapeLike = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
ddof: float = ..., | |
keepdims: bool = ..., | |
*, | |
where: _ArrayLikeBool_co = ..., | |
) -> _NdArraySubClass: ... | |
_DType = TypeVar("_DType", bound=dtype[Any]) | |
_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any]) | |
_FlexDType = TypeVar("_FlexDType", bound=dtype[flexible]) | |
# TODO: Set the `bound` to something more suitable once we | |
# have proper shape support | |
_ShapeType = TypeVar("_ShapeType", bound=Any) | |
_ShapeType2 = TypeVar("_ShapeType2", bound=Any) | |
_NumberType = TypeVar("_NumberType", bound=number[Any]) | |
if sys.version_info >= (3, 12): | |
from collections.abc import Buffer as _SupportsBuffer | |
else: | |
_SupportsBuffer = ( | |
bytes | |
| bytearray | |
| memoryview | |
| _array.array[Any] | |
| mmap.mmap | |
| NDArray[Any] | |
| generic | |
) | |
_T = TypeVar("_T") | |
_T_co = TypeVar("_T_co", covariant=True) | |
_T_contra = TypeVar("_T_contra", contravariant=True) | |
_2Tuple = tuple[_T, _T] | |
_CastingKind = L["no", "equiv", "safe", "same_kind", "unsafe"] | |
_ArrayUInt_co = NDArray[Union[bool_, unsignedinteger[Any]]] | |
_ArrayInt_co = NDArray[Union[bool_, integer[Any]]] | |
_ArrayFloat_co = NDArray[Union[bool_, integer[Any], floating[Any]]] | |
_ArrayComplex_co = NDArray[Union[bool_, integer[Any], floating[Any], complexfloating[Any, Any]]] | |
_ArrayNumber_co = NDArray[Union[bool_, number[Any]]] | |
_ArrayTD64_co = NDArray[Union[bool_, integer[Any], timedelta64]] | |
# Introduce an alias for `dtype` to avoid naming conflicts. | |
_dtype = dtype | |
# `builtins.PyCapsule` unfortunately lacks annotations as of the moment; | |
# use `Any` as a stopgap measure | |
_PyCapsule = Any | |
class _SupportsItem(Protocol[_T_co]): | |
def item(self, args: Any, /) -> _T_co: ... | |
class _SupportsReal(Protocol[_T_co]): | |
@property | |
def real(self) -> _T_co: ... | |
class _SupportsImag(Protocol[_T_co]): | |
@property | |
def imag(self) -> _T_co: ... | |
class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): | |
__hash__: ClassVar[None] | |
@property | |
def base(self) -> None | ndarray[Any, Any]: ... | |
@property | |
def ndim(self) -> int: ... | |
@property | |
def size(self) -> int: ... | |
@property | |
def real( | |
self: ndarray[_ShapeType, dtype[_SupportsReal[_ScalarType]]], # type: ignore[type-var] | |
) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ... | |
@real.setter | |
def real(self, value: ArrayLike) -> None: ... | |
@property | |
def imag( | |
self: ndarray[_ShapeType, dtype[_SupportsImag[_ScalarType]]], # type: ignore[type-var] | |
) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ... | |
@imag.setter | |
def imag(self, value: ArrayLike) -> None: ... | |
def __new__( | |
cls: type[_ArraySelf], | |
shape: _ShapeLike, | |
dtype: DTypeLike = ..., | |
buffer: None | _SupportsBuffer = ..., | |
offset: SupportsIndex = ..., | |
strides: None | _ShapeLike = ..., | |
order: _OrderKACF = ..., | |
) -> _ArraySelf: ... | |
if sys.version_info >= (3, 12): | |
def __buffer__(self, flags: int, /) -> memoryview: ... | |
def __class_getitem__(self, item: Any) -> GenericAlias: ... | |
@overload | |
def __array__(self, dtype: None = ..., /) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ... | |
def __array_ufunc__( | |
self, | |
ufunc: ufunc, | |
method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"], | |
*inputs: Any, | |
**kwargs: Any, | |
) -> Any: ... | |
def __array_function__( | |
self, | |
func: Callable[..., Any], | |
types: Iterable[type], | |
args: Iterable[Any], | |
kwargs: Mapping[str, Any], | |
) -> Any: ... | |
# NOTE: In practice any object is accepted by `obj`, but as `__array_finalize__` | |
# is a pseudo-abstract method the type has been narrowed down in order to | |
# grant subclasses a bit more flexibility | |
def __array_finalize__(self, obj: None | NDArray[Any], /) -> None: ... | |
def __array_wrap__( | |
self, | |
array: ndarray[_ShapeType2, _DType], | |
context: None | tuple[ufunc, tuple[Any, ...], int] = ..., | |
/, | |
) -> ndarray[_ShapeType2, _DType]: ... | |
def __array_prepare__( | |
self, | |
array: ndarray[_ShapeType2, _DType], | |
context: None | tuple[ufunc, tuple[Any, ...], int] = ..., | |
/, | |
) -> ndarray[_ShapeType2, _DType]: ... | |
@overload | |
def __getitem__(self, key: ( | |
NDArray[integer[Any]] | |
| NDArray[bool_] | |
| tuple[NDArray[integer[Any]] | NDArray[bool_], ...] | |
)) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def __getitem__(self, key: SupportsIndex | tuple[SupportsIndex, ...]) -> Any: ... | |
@overload | |
def __getitem__(self, key: ( | |
None | |
| slice | |
| ellipsis | |
| SupportsIndex | |
| _ArrayLikeInt_co | |
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] | |
)) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def __getitem__(self: NDArray[void], key: str) -> NDArray[Any]: ... | |
@overload | |
def __getitem__(self: NDArray[void], key: list[str]) -> ndarray[_ShapeType, _dtype[void]]: ... | |
@property | |
def ctypes(self) -> _ctypes[int]: ... | |
@property | |
def shape(self) -> _Shape: ... | |
@shape.setter | |
def shape(self, value: _ShapeLike) -> None: ... | |
@property | |
def strides(self) -> _Shape: ... | |
@strides.setter | |
def strides(self, value: _ShapeLike) -> None: ... | |
def byteswap(self: _ArraySelf, inplace: bool = ...) -> _ArraySelf: ... | |
def fill(self, value: Any) -> None: ... | |
@property | |
def flat(self: _NdArraySubClass) -> flatiter[_NdArraySubClass]: ... | |
# Use the same output type as that of the underlying `generic` | |
@overload | |
def item( | |
self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var] | |
*args: SupportsIndex, | |
) -> _T: ... | |
@overload | |
def item( | |
self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var] | |
args: tuple[SupportsIndex, ...], | |
/, | |
) -> _T: ... | |
@overload | |
def itemset(self, value: Any, /) -> None: ... | |
@overload | |
def itemset(self, item: _ShapeLike, value: Any, /) -> None: ... | |
@overload | |
def resize(self, new_shape: _ShapeLike, /, *, refcheck: bool = ...) -> None: ... | |
@overload | |
def resize(self, *new_shape: SupportsIndex, refcheck: bool = ...) -> None: ... | |
def setflags( | |
self, write: bool = ..., align: bool = ..., uic: bool = ... | |
) -> None: ... | |
def squeeze( | |
self, | |
axis: None | SupportsIndex | tuple[SupportsIndex, ...] = ..., | |
) -> ndarray[Any, _DType_co]: ... | |
def swapaxes( | |
self, | |
axis1: SupportsIndex, | |
axis2: SupportsIndex, | |
) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def transpose(self: _ArraySelf, axes: None | _ShapeLike, /) -> _ArraySelf: ... | |
@overload | |
def transpose(self: _ArraySelf, *axes: SupportsIndex) -> _ArraySelf: ... | |
def argpartition( | |
self, | |
kth: _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
kind: _PartitionKind = ..., | |
order: None | str | Sequence[str] = ..., | |
) -> ndarray[Any, _dtype[intp]]: ... | |
def diagonal( | |
self, | |
offset: SupportsIndex = ..., | |
axis1: SupportsIndex = ..., | |
axis2: SupportsIndex = ..., | |
) -> ndarray[Any, _DType_co]: ... | |
# 1D + 1D returns a scalar; | |
# all other with at least 1 non-0D array return an ndarray. | |
@overload | |
def dot(self, b: _ScalarLike_co, out: None = ...) -> ndarray[Any, Any]: ... | |
@overload | |
def dot(self, b: ArrayLike, out: None = ...) -> Any: ... # type: ignore[misc] | |
@overload | |
def dot(self, b: ArrayLike, out: _NdArraySubClass) -> _NdArraySubClass: ... | |
# `nonzero()` is deprecated for 0d arrays/generics | |
def nonzero(self) -> tuple[ndarray[Any, _dtype[intp]], ...]: ... | |
def partition( | |
self, | |
kth: _ArrayLikeInt_co, | |
axis: SupportsIndex = ..., | |
kind: _PartitionKind = ..., | |
order: None | str | Sequence[str] = ..., | |
) -> None: ... | |
# `put` is technically available to `generic`, | |
# but is pointless as `generic`s are immutable | |
def put( | |
self, | |
ind: _ArrayLikeInt_co, | |
v: ArrayLike, | |
mode: _ModeKind = ..., | |
) -> None: ... | |
@overload | |
def searchsorted( # type: ignore[misc] | |
self, # >= 1D array | |
v: _ScalarLike_co, # 0D array-like | |
side: _SortSide = ..., | |
sorter: None | _ArrayLikeInt_co = ..., | |
) -> intp: ... | |
@overload | |
def searchsorted( | |
self, # >= 1D array | |
v: ArrayLike, | |
side: _SortSide = ..., | |
sorter: None | _ArrayLikeInt_co = ..., | |
) -> ndarray[Any, _dtype[intp]]: ... | |
def setfield( | |
self, | |
val: ArrayLike, | |
dtype: DTypeLike, | |
offset: SupportsIndex = ..., | |
) -> None: ... | |
def sort( | |
self, | |
axis: SupportsIndex = ..., | |
kind: None | _SortKind = ..., | |
order: None | str | Sequence[str] = ..., | |
) -> None: ... | |
@overload | |
def trace( | |
self, # >= 2D array | |
offset: SupportsIndex = ..., | |
axis1: SupportsIndex = ..., | |
axis2: SupportsIndex = ..., | |
dtype: DTypeLike = ..., | |
out: None = ..., | |
) -> Any: ... | |
@overload | |
def trace( | |
self, # >= 2D array | |
offset: SupportsIndex = ..., | |
axis1: SupportsIndex = ..., | |
axis2: SupportsIndex = ..., | |
dtype: DTypeLike = ..., | |
out: _NdArraySubClass = ..., | |
) -> _NdArraySubClass: ... | |
@overload | |
def take( # type: ignore[misc] | |
self: ndarray[Any, _dtype[_ScalarType]], | |
indices: _IntLike_co, | |
axis: None | SupportsIndex = ..., | |
out: None = ..., | |
mode: _ModeKind = ..., | |
) -> _ScalarType: ... | |
@overload | |
def take( # type: ignore[misc] | |
self, | |
indices: _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
out: None = ..., | |
mode: _ModeKind = ..., | |
) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def take( | |
self, | |
indices: _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
out: _NdArraySubClass = ..., | |
mode: _ModeKind = ..., | |
) -> _NdArraySubClass: ... | |
def repeat( | |
self, | |
repeats: _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
) -> ndarray[Any, _DType_co]: ... | |
def flatten( | |
self, | |
order: _OrderKACF = ..., | |
) -> ndarray[Any, _DType_co]: ... | |
def ravel( | |
self, | |
order: _OrderKACF = ..., | |
) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def reshape( | |
self, shape: _ShapeLike, /, *, order: _OrderACF = ... | |
) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def reshape( | |
self, *shape: SupportsIndex, order: _OrderACF = ... | |
) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def astype( | |
self, | |
dtype: _DTypeLike[_ScalarType], | |
order: _OrderKACF = ..., | |
casting: _CastingKind = ..., | |
subok: bool = ..., | |
copy: bool | _CopyMode = ..., | |
) -> NDArray[_ScalarType]: ... | |
@overload | |
def astype( | |
self, | |
dtype: DTypeLike, | |
order: _OrderKACF = ..., | |
casting: _CastingKind = ..., | |
subok: bool = ..., | |
copy: bool | _CopyMode = ..., | |
) -> NDArray[Any]: ... | |
@overload | |
def view(self: _ArraySelf) -> _ArraySelf: ... | |
@overload | |
def view(self, type: type[_NdArraySubClass]) -> _NdArraySubClass: ... | |
@overload | |
def view(self, dtype: _DTypeLike[_ScalarType]) -> NDArray[_ScalarType]: ... | |
@overload | |
def view(self, dtype: DTypeLike) -> NDArray[Any]: ... | |
@overload | |
def view( | |
self, | |
dtype: DTypeLike, | |
type: type[_NdArraySubClass], | |
) -> _NdArraySubClass: ... | |
@overload | |
def getfield( | |
self, | |
dtype: _DTypeLike[_ScalarType], | |
offset: SupportsIndex = ... | |
) -> NDArray[_ScalarType]: ... | |
@overload | |
def getfield( | |
self, | |
dtype: DTypeLike, | |
offset: SupportsIndex = ... | |
) -> NDArray[Any]: ... | |
# Dispatch to the underlying `generic` via protocols | |
def __int__( | |
self: ndarray[Any, _dtype[SupportsInt]], # type: ignore[type-var] | |
) -> int: ... | |
def __float__( | |
self: ndarray[Any, _dtype[SupportsFloat]], # type: ignore[type-var] | |
) -> float: ... | |
def __complex__( | |
self: ndarray[Any, _dtype[SupportsComplex]], # type: ignore[type-var] | |
) -> complex: ... | |
def __index__( | |
self: ndarray[Any, _dtype[SupportsIndex]], # type: ignore[type-var] | |
) -> int: ... | |
def __len__(self) -> int: ... | |
def __setitem__(self, key, value): ... | |
def __iter__(self) -> Any: ... | |
def __contains__(self, key) -> bool: ... | |
# The last overload is for catching recursive objects whose | |
# nesting is too deep. | |
# The first overload is for catching `bytes` (as they are a subtype of | |
# `Sequence[int]`) and `str`. As `str` is a recursive sequence of | |
# strings, it will pass through the final overload otherwise | |
@overload | |
def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... | |
@overload | |
def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... | |
@overload | |
def __lt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... | |
@overload | |
def __lt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... | |
@overload | |
def __lt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... | |
@overload | |
def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... | |
@overload | |
def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... | |
@overload | |
def __le__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... | |
@overload | |
def __le__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... | |
@overload | |
def __le__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... | |
@overload | |
def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... | |
@overload | |
def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... | |
@overload | |
def __gt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... | |
@overload | |
def __gt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... | |
@overload | |
def __gt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... | |
@overload | |
def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... | |
@overload | |
def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... | |
@overload | |
def __ge__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... | |
@overload | |
def __ge__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... | |
@overload | |
def __ge__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... | |
# Unary ops | |
@overload | |
def __abs__(self: NDArray[bool_]) -> NDArray[bool_]: ... | |
@overload | |
def __abs__(self: NDArray[complexfloating[_NBit1, _NBit1]]) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __abs__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ... | |
@overload | |
def __abs__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ... | |
@overload | |
def __abs__(self: NDArray[object_]) -> Any: ... | |
@overload | |
def __invert__(self: NDArray[bool_]) -> NDArray[bool_]: ... | |
@overload | |
def __invert__(self: NDArray[_IntType]) -> NDArray[_IntType]: ... | |
@overload | |
def __invert__(self: NDArray[object_]) -> Any: ... | |
@overload | |
def __pos__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ... | |
@overload | |
def __pos__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ... | |
@overload | |
def __pos__(self: NDArray[object_]) -> Any: ... | |
@overload | |
def __neg__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ... | |
@overload | |
def __neg__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ... | |
@overload | |
def __neg__(self: NDArray[object_]) -> Any: ... | |
# Binary ops | |
@overload | |
def __matmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
@overload | |
def __matmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __matmul__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __matmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rmatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
@overload | |
def __rmatmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __rmatmul__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rmatmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __mod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __mod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... | |
@overload | |
def __mod__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __mod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... | |
@overload | |
def __rmod__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rmod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __divmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc] | |
@overload | |
def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc] | |
@overload | |
def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc] | |
@overload | |
def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc] | |
@overload | |
def __divmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ... | |
@overload | |
def __rdivmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc] | |
@overload | |
def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc] | |
@overload | |
def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc] | |
@overload | |
def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc] | |
@overload | |
def __rdivmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ... | |
@overload | |
def __add__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __add__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] | |
@overload | |
def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... | |
@overload | |
def __add__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... | |
@overload | |
def __add__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __add__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __radd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __radd__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] | |
@overload | |
def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... | |
@overload | |
def __radd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... | |
@overload | |
def __radd__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __radd__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __sub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ... | |
@overload | |
def __sub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ... | |
@overload | |
def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __sub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] | |
@overload | |
def __sub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... | |
@overload | |
def __sub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __sub__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __sub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rsub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ... | |
@overload | |
def __rsub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ... | |
@overload | |
def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __rsub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] | |
@overload | |
def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... # type: ignore[misc] | |
@overload | |
def __rsub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __rsub__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rsub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __mul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __mul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __mul__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __mul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __rmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __rmul__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __floordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __floordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ... | |
@overload | |
def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... | |
@overload | |
def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __floordiv__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __floordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rfloordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ... | |
@overload | |
def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ... | |
@overload | |
def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __rfloordiv__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rfloordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __pow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
@overload | |
def __pow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __pow__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __pow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rpow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
@overload | |
def __rpow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __rpow__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rpow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc] | |
@overload | |
def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __truediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __truediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ... | |
@overload | |
def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... | |
@overload | |
def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __truediv__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __truediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc] | |
@overload | |
def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] | |
@overload | |
def __rtruediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... | |
@overload | |
def __rtruediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ... | |
@overload | |
def __rtruediv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ... | |
@overload | |
def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __rtruediv__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rtruediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __lshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __lshift__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __lshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rlshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __rlshift__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rlshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __rshift__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rrshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] | |
@overload | |
def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __rrshift__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rrshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __and__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __and__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __and__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __rand__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rand__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __xor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __xor__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __xor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __rxor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __rxor__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __rxor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __or__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __or__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __or__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
@overload | |
def __ror__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] | |
@overload | |
def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] | |
@overload | |
def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... | |
@overload | |
def __ror__(self: NDArray[object_], other: Any) -> Any: ... | |
@overload | |
def __ror__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... | |
# `np.generic` does not support inplace operations | |
# NOTE: Inplace ops generally use "same_kind" casting w.r.t. to the left | |
# operand. An exception to this rule are unsigned integers though, which | |
# also accepts a signed integer for the right operand as long it is a 0D | |
# object and its value is >= 0 | |
@overload | |
def __iadd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... | |
@overload | |
def __iadd__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __iadd__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __iadd__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __iadd__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... | |
@overload | |
def __iadd__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __iadd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... | |
@overload | |
def __iadd__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __isub__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __isub__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __isub__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __isub__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... | |
@overload | |
def __isub__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __isub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... | |
@overload | |
def __isub__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __imul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... | |
@overload | |
def __imul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __imul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __imul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __imul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... | |
@overload | |
def __imul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __imul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __itruediv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __itruediv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... | |
@overload | |
def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... | |
@overload | |
def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __itruediv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __ifloordiv__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __ifloordiv__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __ifloordiv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __ifloordiv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... | |
@overload | |
def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... | |
@overload | |
def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ... | |
@overload | |
def __ifloordiv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __ipow__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __ipow__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __ipow__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __ipow__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... | |
@overload | |
def __ipow__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __imod__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __imod__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __imod__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __imod__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... | |
@overload | |
def __imod__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __ilshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __ilshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __ilshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __irshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __irshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __irshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __iand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... | |
@overload | |
def __iand__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __iand__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __iand__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __ixor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... | |
@overload | |
def __ixor__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __ixor__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __ixor__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __ior__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... | |
@overload | |
def __ior__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __ior__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __ior__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
@overload | |
def __imatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... | |
@overload | |
def __imatmul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ... | |
@overload | |
def __imatmul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... | |
@overload | |
def __imatmul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... | |
@overload | |
def __imatmul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... | |
@overload | |
def __imatmul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... | |
def __dlpack__(self: NDArray[number[Any]], *, stream: None = ...) -> _PyCapsule: ... | |
def __dlpack_device__(self) -> tuple[int, L[0]]: ... | |
# Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` | |
@property | |
def dtype(self) -> _DType_co: ... | |
# NOTE: while `np.generic` is not technically an instance of `ABCMeta`, | |
# the `@abstractmethod` decorator is herein used to (forcefully) deny | |
# the creation of `np.generic` instances. | |
# The `# type: ignore` comments are necessary to silence mypy errors regarding | |
# the missing `ABCMeta` metaclass. | |
# See https://github.com/numpy/numpy-stubs/pull/80 for more details. | |
_ScalarType = TypeVar("_ScalarType", bound=generic) | |
_NBit1 = TypeVar("_NBit1", bound=NBitBase) | |
_NBit2 = TypeVar("_NBit2", bound=NBitBase) | |
class generic(_ArrayOrScalarCommon): | |
@abstractmethod | |
def __init__(self, *args: Any, **kwargs: Any) -> None: ... | |
@overload | |
def __array__(self: _ScalarType, dtype: None = ..., /) -> ndarray[Any, _dtype[_ScalarType]]: ... | |
@overload | |
def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ... | |
def __hash__(self) -> int: ... | |
@property | |
def base(self) -> None: ... | |
@property | |
def ndim(self) -> L[0]: ... | |
@property | |
def size(self) -> L[1]: ... | |
@property | |
def shape(self) -> tuple[()]: ... | |
@property | |
def strides(self) -> tuple[()]: ... | |
def byteswap(self: _ScalarType, inplace: L[False] = ...) -> _ScalarType: ... | |
@property | |
def flat(self: _ScalarType) -> flatiter[ndarray[Any, _dtype[_ScalarType]]]: ... | |
if sys.version_info >= (3, 12): | |
def __buffer__(self, flags: int, /) -> memoryview: ... | |
@overload | |
def astype( | |
self, | |
dtype: _DTypeLike[_ScalarType], | |
order: _OrderKACF = ..., | |
casting: _CastingKind = ..., | |
subok: bool = ..., | |
copy: bool | _CopyMode = ..., | |
) -> _ScalarType: ... | |
@overload | |
def astype( | |
self, | |
dtype: DTypeLike, | |
order: _OrderKACF = ..., | |
casting: _CastingKind = ..., | |
subok: bool = ..., | |
copy: bool | _CopyMode = ..., | |
) -> Any: ... | |
# NOTE: `view` will perform a 0D->scalar cast, | |
# thus the array `type` is irrelevant to the output type | |
@overload | |
def view( | |
self: _ScalarType, | |
type: type[ndarray[Any, Any]] = ..., | |
) -> _ScalarType: ... | |
@overload | |
def view( | |
self, | |
dtype: _DTypeLike[_ScalarType], | |
type: type[ndarray[Any, Any]] = ..., | |
) -> _ScalarType: ... | |
@overload | |
def view( | |
self, | |
dtype: DTypeLike, | |
type: type[ndarray[Any, Any]] = ..., | |
) -> Any: ... | |
@overload | |
def getfield( | |
self, | |
dtype: _DTypeLike[_ScalarType], | |
offset: SupportsIndex = ... | |
) -> _ScalarType: ... | |
@overload | |
def getfield( | |
self, | |
dtype: DTypeLike, | |
offset: SupportsIndex = ... | |
) -> Any: ... | |
def item( | |
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, | |
) -> Any: ... | |
@overload | |
def take( # type: ignore[misc] | |
self: _ScalarType, | |
indices: _IntLike_co, | |
axis: None | SupportsIndex = ..., | |
out: None = ..., | |
mode: _ModeKind = ..., | |
) -> _ScalarType: ... | |
@overload | |
def take( # type: ignore[misc] | |
self: _ScalarType, | |
indices: _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
out: None = ..., | |
mode: _ModeKind = ..., | |
) -> ndarray[Any, _dtype[_ScalarType]]: ... | |
@overload | |
def take( | |
self, | |
indices: _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
out: _NdArraySubClass = ..., | |
mode: _ModeKind = ..., | |
) -> _NdArraySubClass: ... | |
def repeat( | |
self: _ScalarType, | |
repeats: _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
) -> ndarray[Any, _dtype[_ScalarType]]: ... | |
def flatten( | |
self: _ScalarType, | |
order: _OrderKACF = ..., | |
) -> ndarray[Any, _dtype[_ScalarType]]: ... | |
def ravel( | |
self: _ScalarType, | |
order: _OrderKACF = ..., | |
) -> ndarray[Any, _dtype[_ScalarType]]: ... | |
@overload | |
def reshape( | |
self: _ScalarType, shape: _ShapeLike, /, *, order: _OrderACF = ... | |
) -> ndarray[Any, _dtype[_ScalarType]]: ... | |
@overload | |
def reshape( | |
self: _ScalarType, *shape: SupportsIndex, order: _OrderACF = ... | |
) -> ndarray[Any, _dtype[_ScalarType]]: ... | |
def squeeze( | |
self: _ScalarType, axis: None | L[0] | tuple[()] = ... | |
) -> _ScalarType: ... | |
def transpose(self: _ScalarType, axes: None | tuple[()] = ..., /) -> _ScalarType: ... | |
# Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` | |
@property | |
def dtype(self: _ScalarType) -> _dtype[_ScalarType]: ... | |
class number(generic, Generic[_NBit1]): # type: ignore | |
@property | |
def real(self: _ArraySelf) -> _ArraySelf: ... | |
@property | |
def imag(self: _ArraySelf) -> _ArraySelf: ... | |
def __class_getitem__(self, item: Any) -> GenericAlias: ... | |
def __int__(self) -> int: ... | |
def __float__(self) -> float: ... | |
def __complex__(self) -> complex: ... | |
def __neg__(self: _ArraySelf) -> _ArraySelf: ... | |
def __pos__(self: _ArraySelf) -> _ArraySelf: ... | |
def __abs__(self: _ArraySelf) -> _ArraySelf: ... | |
# Ensure that objects annotated as `number` support arithmetic operations | |
__add__: _NumberOp | |
__radd__: _NumberOp | |
__sub__: _NumberOp | |
__rsub__: _NumberOp | |
__mul__: _NumberOp | |
__rmul__: _NumberOp | |
__floordiv__: _NumberOp | |
__rfloordiv__: _NumberOp | |
__pow__: _NumberOp | |
__rpow__: _NumberOp | |
__truediv__: _NumberOp | |
__rtruediv__: _NumberOp | |
__lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
__le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
__gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
__ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
class bool_(generic): | |
def __init__(self, value: object = ..., /) -> None: ... | |
def item( | |
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, | |
) -> bool: ... | |
def tolist(self) -> bool: ... | |
@property | |
def real(self: _ArraySelf) -> _ArraySelf: ... | |
@property | |
def imag(self: _ArraySelf) -> _ArraySelf: ... | |
def __int__(self) -> int: ... | |
def __float__(self) -> float: ... | |
def __complex__(self) -> complex: ... | |
def __abs__(self: _ArraySelf) -> _ArraySelf: ... | |
__add__: _BoolOp[bool_] | |
__radd__: _BoolOp[bool_] | |
__sub__: _BoolSub | |
__rsub__: _BoolSub | |
__mul__: _BoolOp[bool_] | |
__rmul__: _BoolOp[bool_] | |
__floordiv__: _BoolOp[int8] | |
__rfloordiv__: _BoolOp[int8] | |
__pow__: _BoolOp[int8] | |
__rpow__: _BoolOp[int8] | |
__truediv__: _BoolTrueDiv | |
__rtruediv__: _BoolTrueDiv | |
def __invert__(self) -> bool_: ... | |
__lshift__: _BoolBitOp[int8] | |
__rlshift__: _BoolBitOp[int8] | |
__rshift__: _BoolBitOp[int8] | |
__rrshift__: _BoolBitOp[int8] | |
__and__: _BoolBitOp[bool_] | |
__rand__: _BoolBitOp[bool_] | |
__xor__: _BoolBitOp[bool_] | |
__rxor__: _BoolBitOp[bool_] | |
__or__: _BoolBitOp[bool_] | |
__ror__: _BoolBitOp[bool_] | |
__mod__: _BoolMod | |
__rmod__: _BoolMod | |
__divmod__: _BoolDivMod | |
__rdivmod__: _BoolDivMod | |
__lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
__le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
__gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
__ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] | |
class object_(generic): | |
def __init__(self, value: object = ..., /) -> None: ... | |
@property | |
def real(self: _ArraySelf) -> _ArraySelf: ... | |
@property | |
def imag(self: _ArraySelf) -> _ArraySelf: ... | |
# The 3 protocols below may or may not raise, | |
# depending on the underlying object | |
def __int__(self) -> int: ... | |
def __float__(self) -> float: ... | |
def __complex__(self) -> complex: ... | |
if sys.version_info >= (3, 12): | |
def __release_buffer__(self, buffer: memoryview, /) -> None: ... | |
# The `datetime64` constructors requires an object with the three attributes below, | |
# and thus supports datetime duck typing | |
class _DatetimeScalar(Protocol): | |
@property | |
def day(self) -> int: ... | |
@property | |
def month(self) -> int: ... | |
@property | |
def year(self) -> int: ... | |
# TODO: `item`/`tolist` returns either `dt.date`, `dt.datetime` or `int` | |
# depending on the unit | |
class datetime64(generic): | |
@overload | |
def __init__( | |
self, | |
value: None | datetime64 | _CharLike_co | _DatetimeScalar = ..., | |
format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ..., | |
/, | |
) -> None: ... | |
@overload | |
def __init__( | |
self, | |
value: int, | |
format: _CharLike_co | tuple[_CharLike_co, _IntLike_co], | |
/, | |
) -> None: ... | |
def __add__(self, other: _TD64Like_co) -> datetime64: ... | |
def __radd__(self, other: _TD64Like_co) -> datetime64: ... | |
@overload | |
def __sub__(self, other: datetime64) -> timedelta64: ... | |
@overload | |
def __sub__(self, other: _TD64Like_co) -> datetime64: ... | |
def __rsub__(self, other: datetime64) -> timedelta64: ... | |
__lt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] | |
__le__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] | |
__gt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] | |
__ge__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] | |
_IntValue = Union[SupportsInt, _CharLike_co, SupportsIndex] | |
_FloatValue = Union[None, _CharLike_co, SupportsFloat, SupportsIndex] | |
_ComplexValue = Union[ | |
None, | |
_CharLike_co, | |
SupportsFloat, | |
SupportsComplex, | |
SupportsIndex, | |
complex, # `complex` is not a subtype of `SupportsComplex` | |
] | |
class integer(number[_NBit1]): # type: ignore | |
@property | |
def numerator(self: _ScalarType) -> _ScalarType: ... | |
@property | |
def denominator(self) -> L[1]: ... | |
@overload | |
def __round__(self, ndigits: None = ...) -> int: ... | |
@overload | |
def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ... | |
# NOTE: `__index__` is technically defined in the bottom-most | |
# sub-classes (`int64`, `uint32`, etc) | |
def item( | |
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, | |
) -> int: ... | |
def tolist(self) -> int: ... | |
def is_integer(self) -> L[True]: ... | |
def bit_count(self: _ScalarType) -> int: ... | |
def __index__(self) -> int: ... | |
__truediv__: _IntTrueDiv[_NBit1] | |
__rtruediv__: _IntTrueDiv[_NBit1] | |
def __mod__(self, value: _IntLike_co) -> integer[Any]: ... | |
def __rmod__(self, value: _IntLike_co) -> integer[Any]: ... | |
def __invert__(self: _IntType) -> _IntType: ... | |
# Ensure that objects annotated as `integer` support bit-wise operations | |
def __lshift__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __rlshift__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __rshift__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __rrshift__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __and__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __rand__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __or__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __ror__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __xor__(self, other: _IntLike_co) -> integer[Any]: ... | |
def __rxor__(self, other: _IntLike_co) -> integer[Any]: ... | |
class signedinteger(integer[_NBit1]): | |
def __init__(self, value: _IntValue = ..., /) -> None: ... | |
__add__: _SignedIntOp[_NBit1] | |
__radd__: _SignedIntOp[_NBit1] | |
__sub__: _SignedIntOp[_NBit1] | |
__rsub__: _SignedIntOp[_NBit1] | |
__mul__: _SignedIntOp[_NBit1] | |
__rmul__: _SignedIntOp[_NBit1] | |
__floordiv__: _SignedIntOp[_NBit1] | |
__rfloordiv__: _SignedIntOp[_NBit1] | |
__pow__: _SignedIntOp[_NBit1] | |
__rpow__: _SignedIntOp[_NBit1] | |
__lshift__: _SignedIntBitOp[_NBit1] | |
__rlshift__: _SignedIntBitOp[_NBit1] | |
__rshift__: _SignedIntBitOp[_NBit1] | |
__rrshift__: _SignedIntBitOp[_NBit1] | |
__and__: _SignedIntBitOp[_NBit1] | |
__rand__: _SignedIntBitOp[_NBit1] | |
__xor__: _SignedIntBitOp[_NBit1] | |
__rxor__: _SignedIntBitOp[_NBit1] | |
__or__: _SignedIntBitOp[_NBit1] | |
__ror__: _SignedIntBitOp[_NBit1] | |
__mod__: _SignedIntMod[_NBit1] | |
__rmod__: _SignedIntMod[_NBit1] | |
__divmod__: _SignedIntDivMod[_NBit1] | |
__rdivmod__: _SignedIntDivMod[_NBit1] | |
int8 = signedinteger[_8Bit] | |
int16 = signedinteger[_16Bit] | |
int32 = signedinteger[_32Bit] | |
int64 = signedinteger[_64Bit] | |
byte = signedinteger[_NBitByte] | |
short = signedinteger[_NBitShort] | |
intc = signedinteger[_NBitIntC] | |
intp = signedinteger[_NBitIntP] | |
int_ = signedinteger[_NBitInt] | |
longlong = signedinteger[_NBitLongLong] | |
# TODO: `item`/`tolist` returns either `dt.timedelta` or `int` | |
# depending on the unit | |
class timedelta64(generic): | |
def __init__( | |
self, | |
value: None | int | _CharLike_co | dt.timedelta | timedelta64 = ..., | |
format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ..., | |
/, | |
) -> None: ... | |
@property | |
def numerator(self: _ScalarType) -> _ScalarType: ... | |
@property | |
def denominator(self) -> L[1]: ... | |
# NOTE: Only a limited number of units support conversion | |
# to builtin scalar types: `Y`, `M`, `ns`, `ps`, `fs`, `as` | |
def __int__(self) -> int: ... | |
def __float__(self) -> float: ... | |
def __complex__(self) -> complex: ... | |
def __neg__(self: _ArraySelf) -> _ArraySelf: ... | |
def __pos__(self: _ArraySelf) -> _ArraySelf: ... | |
def __abs__(self: _ArraySelf) -> _ArraySelf: ... | |
def __add__(self, other: _TD64Like_co) -> timedelta64: ... | |
def __radd__(self, other: _TD64Like_co) -> timedelta64: ... | |
def __sub__(self, other: _TD64Like_co) -> timedelta64: ... | |
def __rsub__(self, other: _TD64Like_co) -> timedelta64: ... | |
def __mul__(self, other: _FloatLike_co) -> timedelta64: ... | |
def __rmul__(self, other: _FloatLike_co) -> timedelta64: ... | |
__truediv__: _TD64Div[float64] | |
__floordiv__: _TD64Div[int64] | |
def __rtruediv__(self, other: timedelta64) -> float64: ... | |
def __rfloordiv__(self, other: timedelta64) -> int64: ... | |
def __mod__(self, other: timedelta64) -> timedelta64: ... | |
def __rmod__(self, other: timedelta64) -> timedelta64: ... | |
def __divmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ... | |
def __rdivmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ... | |
__lt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] | |
__le__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] | |
__gt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] | |
__ge__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] | |
class unsignedinteger(integer[_NBit1]): | |
# NOTE: `uint64 + signedinteger -> float64` | |
def __init__(self, value: _IntValue = ..., /) -> None: ... | |
__add__: _UnsignedIntOp[_NBit1] | |
__radd__: _UnsignedIntOp[_NBit1] | |
__sub__: _UnsignedIntOp[_NBit1] | |
__rsub__: _UnsignedIntOp[_NBit1] | |
__mul__: _UnsignedIntOp[_NBit1] | |
__rmul__: _UnsignedIntOp[_NBit1] | |
__floordiv__: _UnsignedIntOp[_NBit1] | |
__rfloordiv__: _UnsignedIntOp[_NBit1] | |
__pow__: _UnsignedIntOp[_NBit1] | |
__rpow__: _UnsignedIntOp[_NBit1] | |
__lshift__: _UnsignedIntBitOp[_NBit1] | |
__rlshift__: _UnsignedIntBitOp[_NBit1] | |
__rshift__: _UnsignedIntBitOp[_NBit1] | |
__rrshift__: _UnsignedIntBitOp[_NBit1] | |
__and__: _UnsignedIntBitOp[_NBit1] | |
__rand__: _UnsignedIntBitOp[_NBit1] | |
__xor__: _UnsignedIntBitOp[_NBit1] | |
__rxor__: _UnsignedIntBitOp[_NBit1] | |
__or__: _UnsignedIntBitOp[_NBit1] | |
__ror__: _UnsignedIntBitOp[_NBit1] | |
__mod__: _UnsignedIntMod[_NBit1] | |
__rmod__: _UnsignedIntMod[_NBit1] | |
__divmod__: _UnsignedIntDivMod[_NBit1] | |
__rdivmod__: _UnsignedIntDivMod[_NBit1] | |
uint8 = unsignedinteger[_8Bit] | |
uint16 = unsignedinteger[_16Bit] | |
uint32 = unsignedinteger[_32Bit] | |
uint64 = unsignedinteger[_64Bit] | |
ubyte = unsignedinteger[_NBitByte] | |
ushort = unsignedinteger[_NBitShort] | |
uintc = unsignedinteger[_NBitIntC] | |
uintp = unsignedinteger[_NBitIntP] | |
uint = unsignedinteger[_NBitInt] | |
ulonglong = unsignedinteger[_NBitLongLong] | |
class inexact(number[_NBit1]): # type: ignore | |
def __getnewargs__(self: inexact[_64Bit]) -> tuple[float, ...]: ... | |
_IntType = TypeVar("_IntType", bound=integer[Any]) | |
_FloatType = TypeVar('_FloatType', bound=floating[Any]) | |
class floating(inexact[_NBit1]): | |
def __init__(self, value: _FloatValue = ..., /) -> None: ... | |
def item( | |
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., | |
/, | |
) -> float: ... | |
def tolist(self) -> float: ... | |
def is_integer(self) -> bool: ... | |
def hex(self: float64) -> str: ... | |
@classmethod | |
def fromhex(cls: type[float64], string: str, /) -> float64: ... | |
def as_integer_ratio(self) -> tuple[int, int]: ... | |
def __ceil__(self: float64) -> int: ... | |
def __floor__(self: float64) -> int: ... | |
def __trunc__(self: float64) -> int: ... | |
def __getnewargs__(self: float64) -> tuple[float]: ... | |
def __getformat__(self: float64, typestr: L["double", "float"], /) -> str: ... | |
@overload | |
def __round__(self, ndigits: None = ...) -> int: ... | |
@overload | |
def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ... | |
__add__: _FloatOp[_NBit1] | |
__radd__: _FloatOp[_NBit1] | |
__sub__: _FloatOp[_NBit1] | |
__rsub__: _FloatOp[_NBit1] | |
__mul__: _FloatOp[_NBit1] | |
__rmul__: _FloatOp[_NBit1] | |
__truediv__: _FloatOp[_NBit1] | |
__rtruediv__: _FloatOp[_NBit1] | |
__floordiv__: _FloatOp[_NBit1] | |
__rfloordiv__: _FloatOp[_NBit1] | |
__pow__: _FloatOp[_NBit1] | |
__rpow__: _FloatOp[_NBit1] | |
__mod__: _FloatMod[_NBit1] | |
__rmod__: _FloatMod[_NBit1] | |
__divmod__: _FloatDivMod[_NBit1] | |
__rdivmod__: _FloatDivMod[_NBit1] | |
float16 = floating[_16Bit] | |
float32 = floating[_32Bit] | |
float64 = floating[_64Bit] | |
half = floating[_NBitHalf] | |
single = floating[_NBitSingle] | |
double = floating[_NBitDouble] | |
float_ = floating[_NBitDouble] | |
longdouble = floating[_NBitLongDouble] | |
longfloat = floating[_NBitLongDouble] | |
# The main reason for `complexfloating` having two typevars is cosmetic. | |
# It is used to clarify why `complex128`s precision is `_64Bit`, the latter | |
# describing the two 64 bit floats representing its real and imaginary component | |
class complexfloating(inexact[_NBit1], Generic[_NBit1, _NBit2]): | |
def __init__(self, value: _ComplexValue = ..., /) -> None: ... | |
def item( | |
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, | |
) -> complex: ... | |
def tolist(self) -> complex: ... | |
@property | |
def real(self) -> floating[_NBit1]: ... # type: ignore[override] | |
@property | |
def imag(self) -> floating[_NBit2]: ... # type: ignore[override] | |
def __abs__(self) -> floating[_NBit1]: ... # type: ignore[override] | |
def __getnewargs__(self: complex128) -> tuple[float, float]: ... | |
# NOTE: Deprecated | |
# def __round__(self, ndigits=...): ... | |
__add__: _ComplexOp[_NBit1] | |
__radd__: _ComplexOp[_NBit1] | |
__sub__: _ComplexOp[_NBit1] | |
__rsub__: _ComplexOp[_NBit1] | |
__mul__: _ComplexOp[_NBit1] | |
__rmul__: _ComplexOp[_NBit1] | |
__truediv__: _ComplexOp[_NBit1] | |
__rtruediv__: _ComplexOp[_NBit1] | |
__pow__: _ComplexOp[_NBit1] | |
__rpow__: _ComplexOp[_NBit1] | |
complex64 = complexfloating[_32Bit, _32Bit] | |
complex128 = complexfloating[_64Bit, _64Bit] | |
csingle = complexfloating[_NBitSingle, _NBitSingle] | |
singlecomplex = complexfloating[_NBitSingle, _NBitSingle] | |
cdouble = complexfloating[_NBitDouble, _NBitDouble] | |
complex_ = complexfloating[_NBitDouble, _NBitDouble] | |
cfloat = complexfloating[_NBitDouble, _NBitDouble] | |
clongdouble = complexfloating[_NBitLongDouble, _NBitLongDouble] | |
clongfloat = complexfloating[_NBitLongDouble, _NBitLongDouble] | |
longcomplex = complexfloating[_NBitLongDouble, _NBitLongDouble] | |
class flexible(generic): ... # type: ignore | |
# TODO: `item`/`tolist` returns either `bytes` or `tuple` | |
# depending on whether or not it's used as an opaque bytes sequence | |
# or a structure | |
class void(flexible): | |
@overload | |
def __init__(self, value: _IntLike_co | bytes, /, dtype : None = ...) -> None: ... | |
@overload | |
def __init__(self, value: Any, /, dtype: _DTypeLikeVoid) -> None: ... | |
@property | |
def real(self: _ArraySelf) -> _ArraySelf: ... | |
@property | |
def imag(self: _ArraySelf) -> _ArraySelf: ... | |
def setfield( | |
self, val: ArrayLike, dtype: DTypeLike, offset: int = ... | |
) -> None: ... | |
@overload | |
def __getitem__(self, key: str | SupportsIndex) -> Any: ... | |
@overload | |
def __getitem__(self, key: list[str]) -> void: ... | |
def __setitem__( | |
self, | |
key: str | list[str] | SupportsIndex, | |
value: ArrayLike, | |
) -> None: ... | |
class character(flexible): # type: ignore | |
def __int__(self) -> int: ... | |
def __float__(self) -> float: ... | |
# NOTE: Most `np.bytes_` / `np.str_` methods return their | |
# builtin `bytes` / `str` counterpart | |
class bytes_(character, bytes): | |
@overload | |
def __init__(self, value: object = ..., /) -> None: ... | |
@overload | |
def __init__( | |
self, value: str, /, encoding: str = ..., errors: str = ... | |
) -> None: ... | |
def item( | |
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, | |
) -> bytes: ... | |
def tolist(self) -> bytes: ... | |
string_ = bytes_ | |
class str_(character, str): | |
@overload | |
def __init__(self, value: object = ..., /) -> None: ... | |
@overload | |
def __init__( | |
self, value: bytes, /, encoding: str = ..., errors: str = ... | |
) -> None: ... | |
def item( | |
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, | |
) -> str: ... | |
def tolist(self) -> str: ... | |
unicode_ = str_ | |
# | |
# Constants | |
# | |
Inf: Final[float] | |
Infinity: Final[float] | |
NAN: Final[float] | |
NINF: Final[float] | |
NZERO: Final[float] | |
NaN: Final[float] | |
PINF: Final[float] | |
PZERO: Final[float] | |
e: Final[float] | |
euler_gamma: Final[float] | |
inf: Final[float] | |
infty: Final[float] | |
nan: Final[float] | |
pi: Final[float] | |
ERR_IGNORE: L[0] | |
ERR_WARN: L[1] | |
ERR_RAISE: L[2] | |
ERR_CALL: L[3] | |
ERR_PRINT: L[4] | |
ERR_LOG: L[5] | |
ERR_DEFAULT: L[521] | |
SHIFT_DIVIDEBYZERO: L[0] | |
SHIFT_OVERFLOW: L[3] | |
SHIFT_UNDERFLOW: L[6] | |
SHIFT_INVALID: L[9] | |
FPE_DIVIDEBYZERO: L[1] | |
FPE_OVERFLOW: L[2] | |
FPE_UNDERFLOW: L[4] | |
FPE_INVALID: L[8] | |
FLOATING_POINT_SUPPORT: L[1] | |
UFUNC_BUFSIZE_DEFAULT = BUFSIZE | |
little_endian: Final[bool] | |
True_: Final[bool_] | |
False_: Final[bool_] | |
UFUNC_PYVALS_NAME: L["UFUNC_PYVALS"] | |
newaxis: None | |
# See `numpy._typing._ufunc` for more concrete nin-/nout-specific stubs | |
@final | |
class ufunc: | |
@property | |
def __name__(self) -> str: ... | |
@property | |
def __doc__(self) -> str: ... | |
__call__: Callable[..., Any] | |
@property | |
def nin(self) -> int: ... | |
@property | |
def nout(self) -> int: ... | |
@property | |
def nargs(self) -> int: ... | |
@property | |
def ntypes(self) -> int: ... | |
@property | |
def types(self) -> list[str]: ... | |
# Broad return type because it has to encompass things like | |
# | |
# >>> np.logical_and.identity is True | |
# True | |
# >>> np.add.identity is 0 | |
# True | |
# >>> np.sin.identity is None | |
# True | |
# | |
# and any user-defined ufuncs. | |
@property | |
def identity(self) -> Any: ... | |
# This is None for ufuncs and a string for gufuncs. | |
@property | |
def signature(self) -> None | str: ... | |
# The next four methods will always exist, but they will just | |
# raise a ValueError ufuncs with that don't accept two input | |
# arguments and return one output argument. Because of that we | |
# can't type them very precisely. | |
reduce: Any | |
accumulate: Any | |
reduceat: Any | |
outer: Any | |
# Similarly at won't be defined for ufuncs that return multiple | |
# outputs, so we can't type it very precisely. | |
at: Any | |
# Parameters: `__name__`, `ntypes` and `identity` | |
absolute: _UFunc_Nin1_Nout1[L['absolute'], L[20], None] | |
add: _UFunc_Nin2_Nout1[L['add'], L[22], L[0]] | |
arccos: _UFunc_Nin1_Nout1[L['arccos'], L[8], None] | |
arccosh: _UFunc_Nin1_Nout1[L['arccosh'], L[8], None] | |
arcsin: _UFunc_Nin1_Nout1[L['arcsin'], L[8], None] | |
arcsinh: _UFunc_Nin1_Nout1[L['arcsinh'], L[8], None] | |
arctan2: _UFunc_Nin2_Nout1[L['arctan2'], L[5], None] | |
arctan: _UFunc_Nin1_Nout1[L['arctan'], L[8], None] | |
arctanh: _UFunc_Nin1_Nout1[L['arctanh'], L[8], None] | |
bitwise_and: _UFunc_Nin2_Nout1[L['bitwise_and'], L[12], L[-1]] | |
bitwise_not: _UFunc_Nin1_Nout1[L['invert'], L[12], None] | |
bitwise_or: _UFunc_Nin2_Nout1[L['bitwise_or'], L[12], L[0]] | |
bitwise_xor: _UFunc_Nin2_Nout1[L['bitwise_xor'], L[12], L[0]] | |
cbrt: _UFunc_Nin1_Nout1[L['cbrt'], L[5], None] | |
ceil: _UFunc_Nin1_Nout1[L['ceil'], L[7], None] | |
conj: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None] | |
conjugate: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None] | |
copysign: _UFunc_Nin2_Nout1[L['copysign'], L[4], None] | |
cos: _UFunc_Nin1_Nout1[L['cos'], L[9], None] | |
cosh: _UFunc_Nin1_Nout1[L['cosh'], L[8], None] | |
deg2rad: _UFunc_Nin1_Nout1[L['deg2rad'], L[5], None] | |
degrees: _UFunc_Nin1_Nout1[L['degrees'], L[5], None] | |
divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None] | |
divmod: _UFunc_Nin2_Nout2[L['divmod'], L[15], None] | |
equal: _UFunc_Nin2_Nout1[L['equal'], L[23], None] | |
exp2: _UFunc_Nin1_Nout1[L['exp2'], L[8], None] | |
exp: _UFunc_Nin1_Nout1[L['exp'], L[10], None] | |
expm1: _UFunc_Nin1_Nout1[L['expm1'], L[8], None] | |
fabs: _UFunc_Nin1_Nout1[L['fabs'], L[5], None] | |
float_power: _UFunc_Nin2_Nout1[L['float_power'], L[4], None] | |
floor: _UFunc_Nin1_Nout1[L['floor'], L[7], None] | |
floor_divide: _UFunc_Nin2_Nout1[L['floor_divide'], L[21], None] | |
fmax: _UFunc_Nin2_Nout1[L['fmax'], L[21], None] | |
fmin: _UFunc_Nin2_Nout1[L['fmin'], L[21], None] | |
fmod: _UFunc_Nin2_Nout1[L['fmod'], L[15], None] | |
frexp: _UFunc_Nin1_Nout2[L['frexp'], L[4], None] | |
gcd: _UFunc_Nin2_Nout1[L['gcd'], L[11], L[0]] | |
greater: _UFunc_Nin2_Nout1[L['greater'], L[23], None] | |
greater_equal: _UFunc_Nin2_Nout1[L['greater_equal'], L[23], None] | |
heaviside: _UFunc_Nin2_Nout1[L['heaviside'], L[4], None] | |
hypot: _UFunc_Nin2_Nout1[L['hypot'], L[5], L[0]] | |
invert: _UFunc_Nin1_Nout1[L['invert'], L[12], None] | |
isfinite: _UFunc_Nin1_Nout1[L['isfinite'], L[20], None] | |
isinf: _UFunc_Nin1_Nout1[L['isinf'], L[20], None] | |
isnan: _UFunc_Nin1_Nout1[L['isnan'], L[20], None] | |
isnat: _UFunc_Nin1_Nout1[L['isnat'], L[2], None] | |
lcm: _UFunc_Nin2_Nout1[L['lcm'], L[11], None] | |
ldexp: _UFunc_Nin2_Nout1[L['ldexp'], L[8], None] | |
left_shift: _UFunc_Nin2_Nout1[L['left_shift'], L[11], None] | |
less: _UFunc_Nin2_Nout1[L['less'], L[23], None] | |
less_equal: _UFunc_Nin2_Nout1[L['less_equal'], L[23], None] | |
log10: _UFunc_Nin1_Nout1[L['log10'], L[8], None] | |
log1p: _UFunc_Nin1_Nout1[L['log1p'], L[8], None] | |
log2: _UFunc_Nin1_Nout1[L['log2'], L[8], None] | |
log: _UFunc_Nin1_Nout1[L['log'], L[10], None] | |
logaddexp2: _UFunc_Nin2_Nout1[L['logaddexp2'], L[4], float] | |
logaddexp: _UFunc_Nin2_Nout1[L['logaddexp'], L[4], float] | |
logical_and: _UFunc_Nin2_Nout1[L['logical_and'], L[20], L[True]] | |
logical_not: _UFunc_Nin1_Nout1[L['logical_not'], L[20], None] | |
logical_or: _UFunc_Nin2_Nout1[L['logical_or'], L[20], L[False]] | |
logical_xor: _UFunc_Nin2_Nout1[L['logical_xor'], L[19], L[False]] | |
matmul: _GUFunc_Nin2_Nout1[L['matmul'], L[19], None] | |
maximum: _UFunc_Nin2_Nout1[L['maximum'], L[21], None] | |
minimum: _UFunc_Nin2_Nout1[L['minimum'], L[21], None] | |
mod: _UFunc_Nin2_Nout1[L['remainder'], L[16], None] | |
modf: _UFunc_Nin1_Nout2[L['modf'], L[4], None] | |
multiply: _UFunc_Nin2_Nout1[L['multiply'], L[23], L[1]] | |
negative: _UFunc_Nin1_Nout1[L['negative'], L[19], None] | |
nextafter: _UFunc_Nin2_Nout1[L['nextafter'], L[4], None] | |
not_equal: _UFunc_Nin2_Nout1[L['not_equal'], L[23], None] | |
positive: _UFunc_Nin1_Nout1[L['positive'], L[19], None] | |
power: _UFunc_Nin2_Nout1[L['power'], L[18], None] | |
rad2deg: _UFunc_Nin1_Nout1[L['rad2deg'], L[5], None] | |
radians: _UFunc_Nin1_Nout1[L['radians'], L[5], None] | |
reciprocal: _UFunc_Nin1_Nout1[L['reciprocal'], L[18], None] | |
remainder: _UFunc_Nin2_Nout1[L['remainder'], L[16], None] | |
right_shift: _UFunc_Nin2_Nout1[L['right_shift'], L[11], None] | |
rint: _UFunc_Nin1_Nout1[L['rint'], L[10], None] | |
sign: _UFunc_Nin1_Nout1[L['sign'], L[19], None] | |
signbit: _UFunc_Nin1_Nout1[L['signbit'], L[4], None] | |
sin: _UFunc_Nin1_Nout1[L['sin'], L[9], None] | |
sinh: _UFunc_Nin1_Nout1[L['sinh'], L[8], None] | |
spacing: _UFunc_Nin1_Nout1[L['spacing'], L[4], None] | |
sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None] | |
square: _UFunc_Nin1_Nout1[L['square'], L[18], None] | |
subtract: _UFunc_Nin2_Nout1[L['subtract'], L[21], None] | |
tan: _UFunc_Nin1_Nout1[L['tan'], L[8], None] | |
tanh: _UFunc_Nin1_Nout1[L['tanh'], L[8], None] | |
true_divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None] | |
trunc: _UFunc_Nin1_Nout1[L['trunc'], L[7], None] | |
abs = absolute | |
class _CopyMode(enum.Enum): | |
ALWAYS: L[True] | |
IF_NEEDED: L[False] | |
NEVER: L[2] | |
# Warnings | |
class RankWarning(UserWarning): ... | |
_CallType = TypeVar("_CallType", bound=_ErrFunc | _SupportsWrite[str]) | |
class errstate(Generic[_CallType], ContextDecorator): | |
call: _CallType | |
kwargs: _ErrDictOptional | |
# Expand `**kwargs` into explicit keyword-only arguments | |
def __init__( | |
self, | |
*, | |
call: _CallType = ..., | |
all: None | _ErrKind = ..., | |
divide: None | _ErrKind = ..., | |
over: None | _ErrKind = ..., | |
under: None | _ErrKind = ..., | |
invalid: None | _ErrKind = ..., | |
) -> None: ... | |
def __enter__(self) -> None: ... | |
def __exit__( | |
self, | |
exc_type: None | type[BaseException], | |
exc_value: None | BaseException, | |
traceback: None | TracebackType, | |
/, | |
) -> None: ... | |
@contextmanager | |
def _no_nep50_warning() -> Generator[None, None, None]: ... | |
def _get_promotion_state() -> str: ... | |
def _set_promotion_state(state: str, /) -> None: ... | |
class ndenumerate(Generic[_ScalarType]): | |
iter: flatiter[NDArray[_ScalarType]] | |
@overload | |
def __new__( | |
cls, arr: _FiniteNestedSequence[_SupportsArray[dtype[_ScalarType]]], | |
) -> ndenumerate[_ScalarType]: ... | |
@overload | |
def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[str_]: ... | |
@overload | |
def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[bytes_]: ... | |
@overload | |
def __new__(cls, arr: bool | _NestedSequence[bool]) -> ndenumerate[bool_]: ... | |
@overload | |
def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[int_]: ... | |
@overload | |
def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[float_]: ... | |
@overload | |
def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[complex_]: ... | |
def __next__(self: ndenumerate[_ScalarType]) -> tuple[_Shape, _ScalarType]: ... | |
def __iter__(self: _T) -> _T: ... | |
class ndindex: | |
@overload | |
def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ... | |
@overload | |
def __init__(self, *shape: SupportsIndex) -> None: ... | |
def __iter__(self: _T) -> _T: ... | |
def __next__(self) -> _Shape: ... | |
class DataSource: | |
def __init__( | |
self, | |
destpath: None | str | os.PathLike[str] = ..., | |
) -> None: ... | |
def __del__(self) -> None: ... | |
def abspath(self, path: str) -> str: ... | |
def exists(self, path: str) -> bool: ... | |
# Whether the file-object is opened in string or bytes mode (by default) | |
# depends on the file-extension of `path` | |
def open( | |
self, | |
path: str, | |
mode: str = ..., | |
encoding: None | str = ..., | |
newline: None | str = ..., | |
) -> IO[Any]: ... | |
# TODO: The type of each `__next__` and `iters` return-type depends | |
# on the length and dtype of `args`; we can't describe this behavior yet | |
# as we lack variadics (PEP 646). | |
@final | |
class broadcast: | |
def __new__(cls, *args: ArrayLike) -> broadcast: ... | |
@property | |
def index(self) -> int: ... | |
@property | |
def iters(self) -> tuple[flatiter[Any], ...]: ... | |
@property | |
def nd(self) -> int: ... | |
@property | |
def ndim(self) -> int: ... | |
@property | |
def numiter(self) -> int: ... | |
@property | |
def shape(self) -> _Shape: ... | |
@property | |
def size(self) -> int: ... | |
def __next__(self) -> tuple[Any, ...]: ... | |
def __iter__(self: _T) -> _T: ... | |
def reset(self) -> None: ... | |
@final | |
class busdaycalendar: | |
def __new__( | |
cls, | |
weekmask: ArrayLike = ..., | |
holidays: ArrayLike | dt.date | _NestedSequence[dt.date] = ..., | |
) -> busdaycalendar: ... | |
@property | |
def weekmask(self) -> NDArray[bool_]: ... | |
@property | |
def holidays(self) -> NDArray[datetime64]: ... | |
class finfo(Generic[_FloatType]): | |
dtype: dtype[_FloatType] | |
bits: int | |
eps: _FloatType | |
epsneg: _FloatType | |
iexp: int | |
machep: int | |
max: _FloatType | |
maxexp: int | |
min: _FloatType | |
minexp: int | |
negep: int | |
nexp: int | |
nmant: int | |
precision: int | |
resolution: _FloatType | |
smallest_subnormal: _FloatType | |
@property | |
def smallest_normal(self) -> _FloatType: ... | |
@property | |
def tiny(self) -> _FloatType: ... | |
@overload | |
def __new__( | |
cls, dtype: inexact[_NBit1] | _DTypeLike[inexact[_NBit1]] | |
) -> finfo[floating[_NBit1]]: ... | |
@overload | |
def __new__( | |
cls, dtype: complex | float | type[complex] | type[float] | |
) -> finfo[float_]: ... | |
@overload | |
def __new__( | |
cls, dtype: str | |
) -> finfo[floating[Any]]: ... | |
class iinfo(Generic[_IntType]): | |
dtype: dtype[_IntType] | |
kind: str | |
bits: int | |
key: str | |
@property | |
def min(self) -> int: ... | |
@property | |
def max(self) -> int: ... | |
@overload | |
def __new__(cls, dtype: _IntType | _DTypeLike[_IntType]) -> iinfo[_IntType]: ... | |
@overload | |
def __new__(cls, dtype: int | type[int]) -> iinfo[int_]: ... | |
@overload | |
def __new__(cls, dtype: str) -> iinfo[Any]: ... | |
class format_parser: | |
dtype: dtype[void] | |
def __init__( | |
self, | |
formats: DTypeLike, | |
names: None | str | Sequence[str], | |
titles: None | str | Sequence[str], | |
aligned: bool = ..., | |
byteorder: None | _ByteOrder = ..., | |
) -> None: ... | |
class recarray(ndarray[_ShapeType, _DType_co]): | |
# NOTE: While not strictly mandatory, we're demanding here that arguments | |
# for the `format_parser`- and `dtype`-based dtype constructors are | |
# mutually exclusive | |
@overload | |
def __new__( | |
subtype, | |
shape: _ShapeLike, | |
dtype: None = ..., | |
buf: None | _SupportsBuffer = ..., | |
offset: SupportsIndex = ..., | |
strides: None | _ShapeLike = ..., | |
*, | |
formats: DTypeLike, | |
names: None | str | Sequence[str] = ..., | |
titles: None | str | Sequence[str] = ..., | |
byteorder: None | _ByteOrder = ..., | |
aligned: bool = ..., | |
order: _OrderKACF = ..., | |
) -> recarray[Any, dtype[record]]: ... | |
@overload | |
def __new__( | |
subtype, | |
shape: _ShapeLike, | |
dtype: DTypeLike, | |
buf: None | _SupportsBuffer = ..., | |
offset: SupportsIndex = ..., | |
strides: None | _ShapeLike = ..., | |
formats: None = ..., | |
names: None = ..., | |
titles: None = ..., | |
byteorder: None = ..., | |
aligned: L[False] = ..., | |
order: _OrderKACF = ..., | |
) -> recarray[Any, dtype[Any]]: ... | |
def __array_finalize__(self, obj: object) -> None: ... | |
def __getattribute__(self, attr: str) -> Any: ... | |
def __setattr__(self, attr: str, val: ArrayLike) -> None: ... | |
@overload | |
def __getitem__(self, indx: ( | |
SupportsIndex | |
| _ArrayLikeInt_co | |
| tuple[SupportsIndex | _ArrayLikeInt_co, ...] | |
)) -> Any: ... | |
@overload | |
def __getitem__(self: recarray[Any, dtype[void]], indx: ( | |
None | |
| slice | |
| ellipsis | |
| SupportsIndex | |
| _ArrayLikeInt_co | |
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] | |
)) -> recarray[Any, _DType_co]: ... | |
@overload | |
def __getitem__(self, indx: ( | |
None | |
| slice | |
| ellipsis | |
| SupportsIndex | |
| _ArrayLikeInt_co | |
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] | |
)) -> ndarray[Any, _DType_co]: ... | |
@overload | |
def __getitem__(self, indx: str) -> NDArray[Any]: ... | |
@overload | |
def __getitem__(self, indx: list[str]) -> recarray[_ShapeType, dtype[record]]: ... | |
@overload | |
def field(self, attr: int | str, val: None = ...) -> Any: ... | |
@overload | |
def field(self, attr: int | str, val: ArrayLike) -> None: ... | |
class record(void): | |
def __getattribute__(self, attr: str) -> Any: ... | |
def __setattr__(self, attr: str, val: ArrayLike) -> None: ... | |
def pprint(self) -> str: ... | |
@overload | |
def __getitem__(self, key: str | SupportsIndex) -> Any: ... | |
@overload | |
def __getitem__(self, key: list[str]) -> record: ... | |
_NDIterFlagsKind = L[ | |
"buffered", | |
"c_index", | |
"copy_if_overlap", | |
"common_dtype", | |
"delay_bufalloc", | |
"external_loop", | |
"f_index", | |
"grow_inner", "growinner", | |
"multi_index", | |
"ranged", | |
"refs_ok", | |
"reduce_ok", | |
"zerosize_ok", | |
] | |
_NDIterOpFlagsKind = L[ | |
"aligned", | |
"allocate", | |
"arraymask", | |
"copy", | |
"config", | |
"nbo", | |
"no_subtype", | |
"no_broadcast", | |
"overlap_assume_elementwise", | |
"readonly", | |
"readwrite", | |
"updateifcopy", | |
"virtual", | |
"writeonly", | |
"writemasked" | |
] | |
@final | |
class nditer: | |
def __new__( | |
cls, | |
op: ArrayLike | Sequence[ArrayLike], | |
flags: None | Sequence[_NDIterFlagsKind] = ..., | |
op_flags: None | Sequence[Sequence[_NDIterOpFlagsKind]] = ..., | |
op_dtypes: DTypeLike | Sequence[DTypeLike] = ..., | |
order: _OrderKACF = ..., | |
casting: _CastingKind = ..., | |
op_axes: None | Sequence[Sequence[SupportsIndex]] = ..., | |
itershape: None | _ShapeLike = ..., | |
buffersize: SupportsIndex = ..., | |
) -> nditer: ... | |
def __enter__(self) -> nditer: ... | |
def __exit__( | |
self, | |
exc_type: None | type[BaseException], | |
exc_value: None | BaseException, | |
traceback: None | TracebackType, | |
) -> None: ... | |
def __iter__(self) -> nditer: ... | |
def __next__(self) -> tuple[NDArray[Any], ...]: ... | |
def __len__(self) -> int: ... | |
def __copy__(self) -> nditer: ... | |
@overload | |
def __getitem__(self, index: SupportsIndex) -> NDArray[Any]: ... | |
@overload | |
def __getitem__(self, index: slice) -> tuple[NDArray[Any], ...]: ... | |
def __setitem__(self, index: slice | SupportsIndex, value: ArrayLike) -> None: ... | |
def close(self) -> None: ... | |
def copy(self) -> nditer: ... | |
def debug_print(self) -> None: ... | |
def enable_external_loop(self) -> None: ... | |
def iternext(self) -> bool: ... | |
def remove_axis(self, i: SupportsIndex, /) -> None: ... | |
def remove_multi_index(self) -> None: ... | |
def reset(self) -> None: ... | |
@property | |
def dtypes(self) -> tuple[dtype[Any], ...]: ... | |
@property | |
def finished(self) -> bool: ... | |
@property | |
def has_delayed_bufalloc(self) -> bool: ... | |
@property | |
def has_index(self) -> bool: ... | |
@property | |
def has_multi_index(self) -> bool: ... | |
@property | |
def index(self) -> int: ... | |
@property | |
def iterationneedsapi(self) -> bool: ... | |
@property | |
def iterindex(self) -> int: ... | |
@property | |
def iterrange(self) -> tuple[int, ...]: ... | |
@property | |
def itersize(self) -> int: ... | |
@property | |
def itviews(self) -> tuple[NDArray[Any], ...]: ... | |
@property | |
def multi_index(self) -> tuple[int, ...]: ... | |
@property | |
def ndim(self) -> int: ... | |
@property | |
def nop(self) -> int: ... | |
@property | |
def operands(self) -> tuple[NDArray[Any], ...]: ... | |
@property | |
def shape(self) -> tuple[int, ...]: ... | |
@property | |
def value(self) -> tuple[NDArray[Any], ...]: ... | |
_MemMapModeKind = L[ | |
"readonly", "r", | |
"copyonwrite", "c", | |
"readwrite", "r+", | |
"write", "w+", | |
] | |
class memmap(ndarray[_ShapeType, _DType_co]): | |
__array_priority__: ClassVar[float] | |
filename: str | None | |
offset: int | |
mode: str | |
@overload | |
def __new__( | |
subtype, | |
filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, | |
dtype: type[uint8] = ..., | |
mode: _MemMapModeKind = ..., | |
offset: int = ..., | |
shape: None | int | tuple[int, ...] = ..., | |
order: _OrderKACF = ..., | |
) -> memmap[Any, dtype[uint8]]: ... | |
@overload | |
def __new__( | |
subtype, | |
filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, | |
dtype: _DTypeLike[_ScalarType], | |
mode: _MemMapModeKind = ..., | |
offset: int = ..., | |
shape: None | int | tuple[int, ...] = ..., | |
order: _OrderKACF = ..., | |
) -> memmap[Any, dtype[_ScalarType]]: ... | |
@overload | |
def __new__( | |
subtype, | |
filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, | |
dtype: DTypeLike, | |
mode: _MemMapModeKind = ..., | |
offset: int = ..., | |
shape: None | int | tuple[int, ...] = ..., | |
order: _OrderKACF = ..., | |
) -> memmap[Any, dtype[Any]]: ... | |
def __array_finalize__(self, obj: object) -> None: ... | |
def __array_wrap__( | |
self, | |
array: memmap[_ShapeType, _DType_co], | |
context: None | tuple[ufunc, tuple[Any, ...], int] = ..., | |
) -> Any: ... | |
def flush(self) -> None: ... | |
# TODO: Add a mypy plugin for managing functions whose output type is dependent | |
# on the literal value of some sort of signature (e.g. `einsum` and `vectorize`) | |
class vectorize: | |
pyfunc: Callable[..., Any] | |
cache: bool | |
signature: None | str | |
otypes: None | str | |
excluded: set[int | str] | |
__doc__: None | str | |
def __init__( | |
self, | |
pyfunc: Callable[..., Any], | |
otypes: None | str | Iterable[DTypeLike] = ..., | |
doc: None | str = ..., | |
excluded: None | Iterable[int | str] = ..., | |
cache: bool = ..., | |
signature: None | str = ..., | |
) -> None: ... | |
def __call__(self, *args: Any, **kwargs: Any) -> Any: ... | |
class poly1d: | |
@property | |
def variable(self) -> str: ... | |
@property | |
def order(self) -> int: ... | |
@property | |
def o(self) -> int: ... | |
@property | |
def roots(self) -> NDArray[Any]: ... | |
@property | |
def r(self) -> NDArray[Any]: ... | |
@property | |
def coeffs(self) -> NDArray[Any]: ... | |
@coeffs.setter | |
def coeffs(self, value: NDArray[Any]) -> None: ... | |
@property | |
def c(self) -> NDArray[Any]: ... | |
@c.setter | |
def c(self, value: NDArray[Any]) -> None: ... | |
@property | |
def coef(self) -> NDArray[Any]: ... | |
@coef.setter | |
def coef(self, value: NDArray[Any]) -> None: ... | |
@property | |
def coefficients(self) -> NDArray[Any]: ... | |
@coefficients.setter | |
def coefficients(self, value: NDArray[Any]) -> None: ... | |
__hash__: ClassVar[None] # type: ignore | |
@overload | |
def __array__(self, t: None = ...) -> NDArray[Any]: ... | |
@overload | |
def __array__(self, t: _DType) -> ndarray[Any, _DType]: ... | |
@overload | |
def __call__(self, val: _ScalarLike_co) -> Any: ... | |
@overload | |
def __call__(self, val: poly1d) -> poly1d: ... | |
@overload | |
def __call__(self, val: ArrayLike) -> NDArray[Any]: ... | |
def __init__( | |
self, | |
c_or_r: ArrayLike, | |
r: bool = ..., | |
variable: None | str = ..., | |
) -> None: ... | |
def __len__(self) -> int: ... | |
def __neg__(self) -> poly1d: ... | |
def __pos__(self) -> poly1d: ... | |
def __mul__(self, other: ArrayLike) -> poly1d: ... | |
def __rmul__(self, other: ArrayLike) -> poly1d: ... | |
def __add__(self, other: ArrayLike) -> poly1d: ... | |
def __radd__(self, other: ArrayLike) -> poly1d: ... | |
def __pow__(self, val: _FloatLike_co) -> poly1d: ... # Integral floats are accepted | |
def __sub__(self, other: ArrayLike) -> poly1d: ... | |
def __rsub__(self, other: ArrayLike) -> poly1d: ... | |
def __div__(self, other: ArrayLike) -> poly1d: ... | |
def __truediv__(self, other: ArrayLike) -> poly1d: ... | |
def __rdiv__(self, other: ArrayLike) -> poly1d: ... | |
def __rtruediv__(self, other: ArrayLike) -> poly1d: ... | |
def __getitem__(self, val: int) -> Any: ... | |
def __setitem__(self, key: int, val: Any) -> None: ... | |
def __iter__(self) -> Iterator[Any]: ... | |
def deriv(self, m: SupportsInt | SupportsIndex = ...) -> poly1d: ... | |
def integ( | |
self, | |
m: SupportsInt | SupportsIndex = ..., | |
k: None | _ArrayLikeComplex_co | _ArrayLikeObject_co = ..., | |
) -> poly1d: ... | |
class matrix(ndarray[_ShapeType, _DType_co]): | |
__array_priority__: ClassVar[float] | |
def __new__( | |
subtype, | |
data: ArrayLike, | |
dtype: DTypeLike = ..., | |
copy: bool = ..., | |
) -> matrix[Any, Any]: ... | |
def __array_finalize__(self, obj: object) -> None: ... | |
@overload | |
def __getitem__(self, key: ( | |
SupportsIndex | |
| _ArrayLikeInt_co | |
| tuple[SupportsIndex | _ArrayLikeInt_co, ...] | |
)) -> Any: ... | |
@overload | |
def __getitem__(self, key: ( | |
None | |
| slice | |
| ellipsis | |
| SupportsIndex | |
| _ArrayLikeInt_co | |
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] | |
)) -> matrix[Any, _DType_co]: ... | |
@overload | |
def __getitem__(self: NDArray[void], key: str) -> matrix[Any, dtype[Any]]: ... | |
@overload | |
def __getitem__(self: NDArray[void], key: list[str]) -> matrix[_ShapeType, dtype[void]]: ... | |
def __mul__(self, other: ArrayLike) -> matrix[Any, Any]: ... | |
def __rmul__(self, other: ArrayLike) -> matrix[Any, Any]: ... | |
def __imul__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ... | |
def __pow__(self, other: ArrayLike) -> matrix[Any, Any]: ... | |
def __ipow__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ... | |
@overload | |
def sum(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ... | |
@overload | |
def sum(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ... | |
@overload | |
def sum(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def mean(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ... | |
@overload | |
def mean(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ... | |
@overload | |
def mean(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def std(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ... | |
@overload | |
def std(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ... | |
@overload | |
def std(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ... | |
@overload | |
def var(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ... | |
@overload | |
def var(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ... | |
@overload | |
def var(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ... | |
@overload | |
def prod(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ... | |
@overload | |
def prod(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ... | |
@overload | |
def prod(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def any(self, axis: None = ..., out: None = ...) -> bool_: ... | |
@overload | |
def any(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ... | |
@overload | |
def any(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def all(self, axis: None = ..., out: None = ...) -> bool_: ... | |
@overload | |
def all(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ... | |
@overload | |
def all(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def max(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ... | |
@overload | |
def max(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ... | |
@overload | |
def max(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def min(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ... | |
@overload | |
def min(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ... | |
@overload | |
def min(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def argmax(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ... | |
@overload | |
def argmax(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ... | |
@overload | |
def argmax(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def argmin(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ... | |
@overload | |
def argmin(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ... | |
@overload | |
def argmin(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
@overload | |
def ptp(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ... | |
@overload | |
def ptp(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ... | |
@overload | |
def ptp(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... | |
def squeeze(self, axis: None | _ShapeLike = ...) -> matrix[Any, _DType_co]: ... | |
def tolist(self: matrix[Any, dtype[_SupportsItem[_T]]]) -> list[list[_T]]: ... # type: ignore[typevar] | |
def ravel(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ... | |
def flatten(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ... | |
@property | |
def T(self) -> matrix[Any, _DType_co]: ... | |
@property | |
def I(self) -> matrix[Any, Any]: ... | |
@property | |
def A(self) -> ndarray[_ShapeType, _DType_co]: ... | |
@property | |
def A1(self) -> ndarray[Any, _DType_co]: ... | |
@property | |
def H(self) -> matrix[Any, _DType_co]: ... | |
def getT(self) -> matrix[Any, _DType_co]: ... | |
def getI(self) -> matrix[Any, Any]: ... | |
def getA(self) -> ndarray[_ShapeType, _DType_co]: ... | |
def getA1(self) -> ndarray[Any, _DType_co]: ... | |
def getH(self) -> matrix[Any, _DType_co]: ... | |
_CharType = TypeVar("_CharType", str_, bytes_) | |
_CharDType = TypeVar("_CharDType", dtype[str_], dtype[bytes_]) | |
_CharArray = chararray[Any, dtype[_CharType]] | |
class chararray(ndarray[_ShapeType, _CharDType]): | |
@overload | |
def __new__( | |
subtype, | |
shape: _ShapeLike, | |
itemsize: SupportsIndex | SupportsInt = ..., | |
unicode: L[False] = ..., | |
buffer: _SupportsBuffer = ..., | |
offset: SupportsIndex = ..., | |
strides: _ShapeLike = ..., | |
order: _OrderKACF = ..., | |
) -> chararray[Any, dtype[bytes_]]: ... | |
@overload | |
def __new__( | |
subtype, | |
shape: _ShapeLike, | |
itemsize: SupportsIndex | SupportsInt = ..., | |
unicode: L[True] = ..., | |
buffer: _SupportsBuffer = ..., | |
offset: SupportsIndex = ..., | |
strides: _ShapeLike = ..., | |
order: _OrderKACF = ..., | |
) -> chararray[Any, dtype[str_]]: ... | |
def __array_finalize__(self, obj: object) -> None: ... | |
def __mul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ... | |
def __rmul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ... | |
def __mod__(self, i: Any) -> chararray[Any, _CharDType]: ... | |
@overload | |
def __eq__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __eq__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __ne__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __ne__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __ge__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __ge__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __le__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __le__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __gt__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __gt__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __lt__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __lt__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> NDArray[bool_]: ... | |
@overload | |
def __add__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> _CharArray[str_]: ... | |
@overload | |
def __add__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def __radd__( | |
self: _CharArray[str_], | |
other: _ArrayLikeStr_co, | |
) -> _CharArray[str_]: ... | |
@overload | |
def __radd__( | |
self: _CharArray[bytes_], | |
other: _ArrayLikeBytes_co, | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def center( | |
self: _CharArray[str_], | |
width: _ArrayLikeInt_co, | |
fillchar: _ArrayLikeStr_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def center( | |
self: _CharArray[bytes_], | |
width: _ArrayLikeInt_co, | |
fillchar: _ArrayLikeBytes_co = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def count( | |
self: _CharArray[str_], | |
sub: _ArrayLikeStr_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def count( | |
self: _CharArray[bytes_], | |
sub: _ArrayLikeBytes_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
def decode( | |
self: _CharArray[bytes_], | |
encoding: None | str = ..., | |
errors: None | str = ..., | |
) -> _CharArray[str_]: ... | |
def encode( | |
self: _CharArray[str_], | |
encoding: None | str = ..., | |
errors: None | str = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def endswith( | |
self: _CharArray[str_], | |
suffix: _ArrayLikeStr_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[bool_]: ... | |
@overload | |
def endswith( | |
self: _CharArray[bytes_], | |
suffix: _ArrayLikeBytes_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[bool_]: ... | |
def expandtabs( | |
self, | |
tabsize: _ArrayLikeInt_co = ..., | |
) -> chararray[Any, _CharDType]: ... | |
@overload | |
def find( | |
self: _CharArray[str_], | |
sub: _ArrayLikeStr_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def find( | |
self: _CharArray[bytes_], | |
sub: _ArrayLikeBytes_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def index( | |
self: _CharArray[str_], | |
sub: _ArrayLikeStr_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def index( | |
self: _CharArray[bytes_], | |
sub: _ArrayLikeBytes_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def join( | |
self: _CharArray[str_], | |
seq: _ArrayLikeStr_co, | |
) -> _CharArray[str_]: ... | |
@overload | |
def join( | |
self: _CharArray[bytes_], | |
seq: _ArrayLikeBytes_co, | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def ljust( | |
self: _CharArray[str_], | |
width: _ArrayLikeInt_co, | |
fillchar: _ArrayLikeStr_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def ljust( | |
self: _CharArray[bytes_], | |
width: _ArrayLikeInt_co, | |
fillchar: _ArrayLikeBytes_co = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def lstrip( | |
self: _CharArray[str_], | |
chars: None | _ArrayLikeStr_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def lstrip( | |
self: _CharArray[bytes_], | |
chars: None | _ArrayLikeBytes_co = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def partition( | |
self: _CharArray[str_], | |
sep: _ArrayLikeStr_co, | |
) -> _CharArray[str_]: ... | |
@overload | |
def partition( | |
self: _CharArray[bytes_], | |
sep: _ArrayLikeBytes_co, | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def replace( | |
self: _CharArray[str_], | |
old: _ArrayLikeStr_co, | |
new: _ArrayLikeStr_co, | |
count: None | _ArrayLikeInt_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def replace( | |
self: _CharArray[bytes_], | |
old: _ArrayLikeBytes_co, | |
new: _ArrayLikeBytes_co, | |
count: None | _ArrayLikeInt_co = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def rfind( | |
self: _CharArray[str_], | |
sub: _ArrayLikeStr_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def rfind( | |
self: _CharArray[bytes_], | |
sub: _ArrayLikeBytes_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def rindex( | |
self: _CharArray[str_], | |
sub: _ArrayLikeStr_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def rindex( | |
self: _CharArray[bytes_], | |
sub: _ArrayLikeBytes_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[int_]: ... | |
@overload | |
def rjust( | |
self: _CharArray[str_], | |
width: _ArrayLikeInt_co, | |
fillchar: _ArrayLikeStr_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def rjust( | |
self: _CharArray[bytes_], | |
width: _ArrayLikeInt_co, | |
fillchar: _ArrayLikeBytes_co = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def rpartition( | |
self: _CharArray[str_], | |
sep: _ArrayLikeStr_co, | |
) -> _CharArray[str_]: ... | |
@overload | |
def rpartition( | |
self: _CharArray[bytes_], | |
sep: _ArrayLikeBytes_co, | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def rsplit( | |
self: _CharArray[str_], | |
sep: None | _ArrayLikeStr_co = ..., | |
maxsplit: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[object_]: ... | |
@overload | |
def rsplit( | |
self: _CharArray[bytes_], | |
sep: None | _ArrayLikeBytes_co = ..., | |
maxsplit: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[object_]: ... | |
@overload | |
def rstrip( | |
self: _CharArray[str_], | |
chars: None | _ArrayLikeStr_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def rstrip( | |
self: _CharArray[bytes_], | |
chars: None | _ArrayLikeBytes_co = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def split( | |
self: _CharArray[str_], | |
sep: None | _ArrayLikeStr_co = ..., | |
maxsplit: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[object_]: ... | |
@overload | |
def split( | |
self: _CharArray[bytes_], | |
sep: None | _ArrayLikeBytes_co = ..., | |
maxsplit: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[object_]: ... | |
def splitlines(self, keepends: None | _ArrayLikeBool_co = ...) -> NDArray[object_]: ... | |
@overload | |
def startswith( | |
self: _CharArray[str_], | |
prefix: _ArrayLikeStr_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[bool_]: ... | |
@overload | |
def startswith( | |
self: _CharArray[bytes_], | |
prefix: _ArrayLikeBytes_co, | |
start: _ArrayLikeInt_co = ..., | |
end: None | _ArrayLikeInt_co = ..., | |
) -> NDArray[bool_]: ... | |
@overload | |
def strip( | |
self: _CharArray[str_], | |
chars: None | _ArrayLikeStr_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def strip( | |
self: _CharArray[bytes_], | |
chars: None | _ArrayLikeBytes_co = ..., | |
) -> _CharArray[bytes_]: ... | |
@overload | |
def translate( | |
self: _CharArray[str_], | |
table: _ArrayLikeStr_co, | |
deletechars: None | _ArrayLikeStr_co = ..., | |
) -> _CharArray[str_]: ... | |
@overload | |
def translate( | |
self: _CharArray[bytes_], | |
table: _ArrayLikeBytes_co, | |
deletechars: None | _ArrayLikeBytes_co = ..., | |
) -> _CharArray[bytes_]: ... | |
def zfill(self, width: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ... | |
def capitalize(self) -> chararray[_ShapeType, _CharDType]: ... | |
def title(self) -> chararray[_ShapeType, _CharDType]: ... | |
def swapcase(self) -> chararray[_ShapeType, _CharDType]: ... | |
def lower(self) -> chararray[_ShapeType, _CharDType]: ... | |
def upper(self) -> chararray[_ShapeType, _CharDType]: ... | |
def isalnum(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def isalpha(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def isdigit(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def islower(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def isspace(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def istitle(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def isupper(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def isnumeric(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
def isdecimal(self) -> ndarray[_ShapeType, dtype[bool_]]: ... | |
# NOTE: Deprecated | |
# class MachAr: ... | |
class _SupportsDLPack(Protocol[_T_contra]): | |
def __dlpack__(self, *, stream: None | _T_contra = ...) -> _PyCapsule: ... | |
def from_dlpack(obj: _SupportsDLPack[None], /) -> NDArray[Any]: ... | |