peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sympy
/matrices
/matrices.py
import mpmath as mp | |
from collections.abc import Callable | |
from sympy.core.add import Add | |
from sympy.core.basic import Basic | |
from sympy.core.function import diff | |
from sympy.core.expr import Expr | |
from sympy.core.kind import _NumberKind, UndefinedKind | |
from sympy.core.mul import Mul | |
from sympy.core.power import Pow | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol | |
from sympy.core.sympify import sympify, _sympify | |
from sympy.functions.combinatorial.factorials import binomial, factorial | |
from sympy.functions.elementary.complexes import re | |
from sympy.functions.elementary.exponential import exp, log | |
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt | |
from sympy.functions.special.tensor_functions import KroneckerDelta, LeviCivita | |
from sympy.polys import cancel | |
from sympy.printing import sstr | |
from sympy.printing.defaults import Printable | |
from sympy.printing.str import StrPrinter | |
from sympy.utilities.iterables import flatten, NotIterable, is_sequence, reshape | |
from sympy.utilities.misc import as_int, filldedent | |
from .common import ( | |
MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError, | |
ShapeError, MatrixKind, a2idx) | |
from .utilities import _iszero, _is_zero_after_expand_mul, _simplify | |
from .determinant import ( | |
_find_reasonable_pivot, _find_reasonable_pivot_naive, | |
_adjugate, _charpoly, _cofactor, _cofactor_matrix, _per, | |
_det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix) | |
from .reductions import _is_echelon, _echelon_form, _rank, _rref | |
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize | |
from .eigen import ( | |
_eigenvals, _eigenvects, | |
_bidiagonalize, _bidiagonal_decomposition, | |
_is_diagonalizable, _diagonalize, | |
_is_positive_definite, _is_positive_semidefinite, | |
_is_negative_definite, _is_negative_semidefinite, _is_indefinite, | |
_jordan_form, _left_eigenvects, _singular_values) | |
from .decompositions import ( | |
_rank_decomposition, _cholesky, _LDLdecomposition, | |
_LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF, | |
_singular_value_decomposition, _QRdecomposition, _upper_hessenberg_decomposition) | |
from .graph import ( | |
_connected_components, _connected_components_decomposition, | |
_strongly_connected_components, _strongly_connected_components_decomposition) | |
from .solvers import ( | |
_diagonal_solve, _lower_triangular_solve, _upper_triangular_solve, | |
_cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve, | |
_pinv_solve, _solve, _solve_least_squares) | |
from .inverse import ( | |
_pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR, | |
_inv, _inv_block) | |
class DeferredVector(Symbol, NotIterable): | |
"""A vector whose components are deferred (e.g. for use with lambdify). | |
Examples | |
======== | |
>>> from sympy import DeferredVector, lambdify | |
>>> X = DeferredVector( 'X' ) | |
>>> X | |
X | |
>>> expr = (X[0] + 2, X[2] + 3) | |
>>> func = lambdify( X, expr) | |
>>> func( [1, 2, 3] ) | |
(3, 6) | |
""" | |
def __getitem__(self, i): | |
if i == -0: | |
i = 0 | |
if i < 0: | |
raise IndexError('DeferredVector index out of range') | |
component_name = '%s[%d]' % (self.name, i) | |
return Symbol(component_name) | |
def __str__(self): | |
return sstr(self) | |
def __repr__(self): | |
return "DeferredVector('%s')" % self.name | |
class MatrixDeterminant(MatrixCommon): | |
"""Provides basic matrix determinant operations. Should not be instantiated | |
directly. See ``determinant.py`` for their implementations.""" | |
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): | |
return _det_bareiss(self, iszerofunc=iszerofunc) | |
def _eval_det_berkowitz(self): | |
return _det_berkowitz(self) | |
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): | |
return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc) | |
def _eval_determinant(self): # for expressions.determinant.Determinant | |
return _det(self) | |
def adjugate(self, method="berkowitz"): | |
return _adjugate(self, method=method) | |
def charpoly(self, x='lambda', simplify=_simplify): | |
return _charpoly(self, x=x, simplify=simplify) | |
def cofactor(self, i, j, method="berkowitz"): | |
return _cofactor(self, i, j, method=method) | |
def cofactor_matrix(self, method="berkowitz"): | |
return _cofactor_matrix(self, method=method) | |
def det(self, method="bareiss", iszerofunc=None): | |
return _det(self, method=method, iszerofunc=iszerofunc) | |
def per(self): | |
return _per(self) | |
def minor(self, i, j, method="berkowitz"): | |
return _minor(self, i, j, method=method) | |
def minor_submatrix(self, i, j): | |
return _minor_submatrix(self, i, j) | |
_find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__ | |
_find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__ | |
_eval_det_bareiss.__doc__ = _det_bareiss.__doc__ | |
_eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__ | |
_eval_det_lu.__doc__ = _det_LU.__doc__ | |
_eval_determinant.__doc__ = _det.__doc__ | |
adjugate.__doc__ = _adjugate.__doc__ | |
charpoly.__doc__ = _charpoly.__doc__ | |
cofactor.__doc__ = _cofactor.__doc__ | |
cofactor_matrix.__doc__ = _cofactor_matrix.__doc__ | |
det.__doc__ = _det.__doc__ | |
per.__doc__ = _per.__doc__ | |
minor.__doc__ = _minor.__doc__ | |
minor_submatrix.__doc__ = _minor_submatrix.__doc__ | |
class MatrixReductions(MatrixDeterminant): | |
"""Provides basic matrix row/column operations. Should not be instantiated | |
directly. See ``reductions.py`` for some of their implementations.""" | |
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): | |
return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify, | |
with_pivots=with_pivots) | |
def is_echelon(self): | |
return _is_echelon(self) | |
def rank(self, iszerofunc=_iszero, simplify=False): | |
return _rank(self, iszerofunc=iszerofunc, simplify=simplify) | |
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, | |
normalize_last=True): | |
return _rref(self, iszerofunc=iszerofunc, simplify=simplify, | |
pivots=pivots, normalize_last=normalize_last) | |
echelon_form.__doc__ = _echelon_form.__doc__ | |
is_echelon.__doc__ = _is_echelon.__doc__ | |
rank.__doc__ = _rank.__doc__ | |
rref.__doc__ = _rref.__doc__ | |
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): | |
"""Validate the arguments for a row/column operation. ``error_str`` | |
can be one of "row" or "col" depending on the arguments being parsed.""" | |
if op not in ["n->kn", "n<->m", "n->n+km"]: | |
raise ValueError("Unknown {} operation '{}'. Valid col operations " | |
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) | |
# define self_col according to error_str | |
self_cols = self.cols if error_str == 'col' else self.rows | |
# normalize and validate the arguments | |
if op == "n->kn": | |
col = col if col is not None else col1 | |
if col is None or k is None: | |
raise ValueError("For a {0} operation 'n->kn' you must provide the " | |
"kwargs `{0}` and `k`".format(error_str)) | |
if not 0 <= col < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col)) | |
elif op == "n<->m": | |
# we need two cols to swap. It does not matter | |
# how they were specified, so gather them together and | |
# remove `None` | |
cols = {col, k, col1, col2}.difference([None]) | |
if len(cols) > 2: | |
# maybe the user left `k` by mistake? | |
cols = {col, col1, col2}.difference([None]) | |
if len(cols) != 2: | |
raise ValueError("For a {0} operation 'n<->m' you must provide the " | |
"kwargs `{0}1` and `{0}2`".format(error_str)) | |
col1, col2 = cols | |
if not 0 <= col1 < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col1)) | |
if not 0 <= col2 < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2)) | |
elif op == "n->n+km": | |
col = col1 if col is None else col | |
col2 = col1 if col2 is None else col2 | |
if col is None or col2 is None or k is None: | |
raise ValueError("For a {0} operation 'n->n+km' you must provide the " | |
"kwargs `{0}`, `k`, and `{0}2`".format(error_str)) | |
if col == col2: | |
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " | |
"be different.".format(error_str)) | |
if not 0 <= col < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col)) | |
if not 0 <= col2 < self_cols: | |
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2)) | |
else: | |
raise ValueError('invalid operation %s' % repr(op)) | |
return op, col, k, col1, col2 | |
def _eval_col_op_multiply_col_by_const(self, col, k): | |
def entry(i, j): | |
if j == col: | |
return k * self[i, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_col_op_swap(self, col1, col2): | |
def entry(i, j): | |
if j == col1: | |
return self[i, col2] | |
elif j == col2: | |
return self[i, col1] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): | |
def entry(i, j): | |
if j == col: | |
return self[i, j] + k * self[i, col2] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_row_op_swap(self, row1, row2): | |
def entry(i, j): | |
if i == row1: | |
return self[row2, j] | |
elif i == row2: | |
return self[row1, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_row_op_multiply_row_by_const(self, row, k): | |
def entry(i, j): | |
if i == row: | |
return k * self[i, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): | |
def entry(i, j): | |
if i == row: | |
return self[i, j] + k * self[row2, j] | |
return self[i, j] | |
return self._new(self.rows, self.cols, entry) | |
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): | |
"""Performs the elementary column operation `op`. | |
`op` may be one of | |
* ``"n->kn"`` (column n goes to k*n) | |
* ``"n<->m"`` (swap column n and column m) | |
* ``"n->n+km"`` (column n goes to column n + k*column m) | |
Parameters | |
========== | |
op : string; the elementary row operation | |
col : the column to apply the column operation | |
k : the multiple to apply in the column operation | |
col1 : one column of a column swap | |
col2 : second column of a column swap or column "m" in the column operation | |
"n->n+km" | |
""" | |
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") | |
# now that we've validated, we're all good to dispatch | |
if op == "n->kn": | |
return self._eval_col_op_multiply_col_by_const(col, k) | |
if op == "n<->m": | |
return self._eval_col_op_swap(col1, col2) | |
if op == "n->n+km": | |
return self._eval_col_op_add_multiple_to_other_col(col, k, col2) | |
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): | |
"""Performs the elementary row operation `op`. | |
`op` may be one of | |
* ``"n->kn"`` (row n goes to k*n) | |
* ``"n<->m"`` (swap row n and row m) | |
* ``"n->n+km"`` (row n goes to row n + k*row m) | |
Parameters | |
========== | |
op : string; the elementary row operation | |
row : the row to apply the row operation | |
k : the multiple to apply in the row operation | |
row1 : one row of a row swap | |
row2 : second row of a row swap or row "m" in the row operation | |
"n->n+km" | |
""" | |
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") | |
# now that we've validated, we're all good to dispatch | |
if op == "n->kn": | |
return self._eval_row_op_multiply_row_by_const(row, k) | |
if op == "n<->m": | |
return self._eval_row_op_swap(row1, row2) | |
if op == "n->n+km": | |
return self._eval_row_op_add_multiple_to_other_row(row, k, row2) | |
class MatrixSubspaces(MatrixReductions): | |
"""Provides methods relating to the fundamental subspaces of a matrix. | |
Should not be instantiated directly. See ``subspaces.py`` for their | |
implementations.""" | |
def columnspace(self, simplify=False): | |
return _columnspace(self, simplify=simplify) | |
def nullspace(self, simplify=False, iszerofunc=_iszero): | |
return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc) | |
def rowspace(self, simplify=False): | |
return _rowspace(self, simplify=simplify) | |
# This is a classmethod but is converted to such later in order to allow | |
# assignment of __doc__ since that does not work for already wrapped | |
# classmethods in Python 3.6. | |
def orthogonalize(cls, *vecs, **kwargs): | |
return _orthogonalize(cls, *vecs, **kwargs) | |
columnspace.__doc__ = _columnspace.__doc__ | |
nullspace.__doc__ = _nullspace.__doc__ | |
rowspace.__doc__ = _rowspace.__doc__ | |
orthogonalize.__doc__ = _orthogonalize.__doc__ | |
orthogonalize = classmethod(orthogonalize) # type:ignore | |
class MatrixEigen(MatrixSubspaces): | |
"""Provides basic matrix eigenvalue/vector operations. | |
Should not be instantiated directly. See ``eigen.py`` for their | |
implementations.""" | |
def eigenvals(self, error_when_incomplete=True, **flags): | |
return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags) | |
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): | |
return _eigenvects(self, error_when_incomplete=error_when_incomplete, | |
iszerofunc=iszerofunc, **flags) | |
def is_diagonalizable(self, reals_only=False, **kwargs): | |
return _is_diagonalizable(self, reals_only=reals_only, **kwargs) | |
def diagonalize(self, reals_only=False, sort=False, normalize=False): | |
return _diagonalize(self, reals_only=reals_only, sort=sort, | |
normalize=normalize) | |
def bidiagonalize(self, upper=True): | |
return _bidiagonalize(self, upper=upper) | |
def bidiagonal_decomposition(self, upper=True): | |
return _bidiagonal_decomposition(self, upper=upper) | |
def is_positive_definite(self): | |
return _is_positive_definite(self) | |
def is_positive_semidefinite(self): | |
return _is_positive_semidefinite(self) | |
def is_negative_definite(self): | |
return _is_negative_definite(self) | |
def is_negative_semidefinite(self): | |
return _is_negative_semidefinite(self) | |
def is_indefinite(self): | |
return _is_indefinite(self) | |
def jordan_form(self, calc_transform=True, **kwargs): | |
return _jordan_form(self, calc_transform=calc_transform, **kwargs) | |
def left_eigenvects(self, **flags): | |
return _left_eigenvects(self, **flags) | |
def singular_values(self): | |
return _singular_values(self) | |
eigenvals.__doc__ = _eigenvals.__doc__ | |
eigenvects.__doc__ = _eigenvects.__doc__ | |
is_diagonalizable.__doc__ = _is_diagonalizable.__doc__ | |
diagonalize.__doc__ = _diagonalize.__doc__ | |
is_positive_definite.__doc__ = _is_positive_definite.__doc__ | |
is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__ | |
is_negative_definite.__doc__ = _is_negative_definite.__doc__ | |
is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__ | |
is_indefinite.__doc__ = _is_indefinite.__doc__ | |
jordan_form.__doc__ = _jordan_form.__doc__ | |
left_eigenvects.__doc__ = _left_eigenvects.__doc__ | |
singular_values.__doc__ = _singular_values.__doc__ | |
bidiagonalize.__doc__ = _bidiagonalize.__doc__ | |
bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__ | |
class MatrixCalculus(MatrixCommon): | |
"""Provides calculus-related matrix operations.""" | |
def diff(self, *args, **kwargs): | |
"""Calculate the derivative of each element in the matrix. | |
``args`` will be passed to the ``integrate`` function. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x, y | |
>>> M = Matrix([[x, y], [1, 0]]) | |
>>> M.diff(x) | |
Matrix([ | |
[1, 0], | |
[0, 0]]) | |
See Also | |
======== | |
integrate | |
limit | |
""" | |
# XXX this should be handled here rather than in Derivative | |
from sympy.tensor.array.array_derivatives import ArrayDerivative | |
kwargs.setdefault('evaluate', True) | |
deriv = ArrayDerivative(self, *args, evaluate=True) | |
if not isinstance(self, Basic): | |
return deriv.as_mutable() | |
else: | |
return deriv | |
def _eval_derivative(self, arg): | |
return self.applyfunc(lambda x: x.diff(arg)) | |
def integrate(self, *args, **kwargs): | |
"""Integrate each element of the matrix. ``args`` will | |
be passed to the ``integrate`` function. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x, y | |
>>> M = Matrix([[x, y], [1, 0]]) | |
>>> M.integrate((x, )) | |
Matrix([ | |
[x**2/2, x*y], | |
[ x, 0]]) | |
>>> M.integrate((x, 0, 2)) | |
Matrix([ | |
[2, 2*y], | |
[2, 0]]) | |
See Also | |
======== | |
limit | |
diff | |
""" | |
return self.applyfunc(lambda x: x.integrate(*args, **kwargs)) | |
def jacobian(self, X): | |
"""Calculates the Jacobian matrix (derivative of a vector-valued function). | |
Parameters | |
========== | |
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). | |
X : set of x_i's in order, it can be a list or a Matrix | |
Both ``self`` and X can be a row or a column matrix in any order | |
(i.e., jacobian() should always work). | |
Examples | |
======== | |
>>> from sympy import sin, cos, Matrix | |
>>> from sympy.abc import rho, phi | |
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) | |
>>> Y = Matrix([rho, phi]) | |
>>> X.jacobian(Y) | |
Matrix([ | |
[cos(phi), -rho*sin(phi)], | |
[sin(phi), rho*cos(phi)], | |
[ 2*rho, 0]]) | |
>>> X = Matrix([rho*cos(phi), rho*sin(phi)]) | |
>>> X.jacobian(Y) | |
Matrix([ | |
[cos(phi), -rho*sin(phi)], | |
[sin(phi), rho*cos(phi)]]) | |
See Also | |
======== | |
hessian | |
wronskian | |
""" | |
if not isinstance(X, MatrixBase): | |
X = self._new(X) | |
# Both X and ``self`` can be a row or a column matrix, so we need to make | |
# sure all valid combinations work, but everything else fails: | |
if self.shape[0] == 1: | |
m = self.shape[1] | |
elif self.shape[1] == 1: | |
m = self.shape[0] | |
else: | |
raise TypeError("``self`` must be a row or a column matrix") | |
if X.shape[0] == 1: | |
n = X.shape[1] | |
elif X.shape[1] == 1: | |
n = X.shape[0] | |
else: | |
raise TypeError("X must be a row or a column matrix") | |
# m is the number of functions and n is the number of variables | |
# computing the Jacobian is now easy: | |
return self._new(m, n, lambda j, i: self[j].diff(X[i])) | |
def limit(self, *args): | |
"""Calculate the limit of each element in the matrix. | |
``args`` will be passed to the ``limit`` function. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.abc import x, y | |
>>> M = Matrix([[x, y], [1, 0]]) | |
>>> M.limit(x, 2) | |
Matrix([ | |
[2, y], | |
[1, 0]]) | |
See Also | |
======== | |
integrate | |
diff | |
""" | |
return self.applyfunc(lambda x: x.limit(*args)) | |
# https://github.com/sympy/sympy/pull/12854 | |
class MatrixDeprecated(MatrixCommon): | |
"""A class to house deprecated matrix methods.""" | |
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): | |
return self.charpoly(x=x) | |
def berkowitz_det(self): | |
"""Computes determinant using Berkowitz method. | |
See Also | |
======== | |
det | |
berkowitz | |
""" | |
return self.det(method='berkowitz') | |
def berkowitz_eigenvals(self, **flags): | |
"""Computes eigenvalues of a Matrix using Berkowitz method. | |
See Also | |
======== | |
berkowitz | |
""" | |
return self.eigenvals(**flags) | |
def berkowitz_minors(self): | |
"""Computes principal minors using Berkowitz method. | |
See Also | |
======== | |
berkowitz | |
""" | |
sign, minors = self.one, [] | |
for poly in self.berkowitz(): | |
minors.append(sign * poly[-1]) | |
sign = -sign | |
return tuple(minors) | |
def berkowitz(self): | |
from sympy.matrices import zeros | |
berk = ((1,),) | |
if not self: | |
return berk | |
if not self.is_square: | |
raise NonSquareMatrixError() | |
A, N = self, self.rows | |
transforms = [0] * (N - 1) | |
for n in range(N, 1, -1): | |
T, k = zeros(n + 1, n), n - 1 | |
R, C = -A[k, :k], A[:k, k] | |
A, a = A[:k, :k], -A[k, k] | |
items = [C] | |
for i in range(0, n - 2): | |
items.append(A * items[i]) | |
for i, B in enumerate(items): | |
items[i] = (R * B)[0, 0] | |
items = [self.one, a] + items | |
for i in range(n): | |
T[i:, i] = items[:n - i + 1] | |
transforms[k - 1] = T | |
polys = [self._new([self.one, -A[0, 0]])] | |
for i, T in enumerate(transforms): | |
polys.append(T * polys[i]) | |
return berk + tuple(map(tuple, polys)) | |
def cofactorMatrix(self, method="berkowitz"): | |
return self.cofactor_matrix(method=method) | |
def det_bareis(self): | |
return _det_bareiss(self) | |
def det_LU_decomposition(self): | |
"""Compute matrix determinant using LU decomposition. | |
Note that this method fails if the LU decomposition itself | |
fails. In particular, if the matrix has no inverse this method | |
will fail. | |
TODO: Implement algorithm for sparse matrices (SFF), | |
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. | |
See Also | |
======== | |
det | |
det_bareiss | |
berkowitz_det | |
""" | |
return self.det(method='lu') | |
def jordan_cell(self, eigenval, n): | |
return self.jordan_block(size=n, eigenvalue=eigenval) | |
def jordan_cells(self, calc_transformation=True): | |
P, J = self.jordan_form() | |
return P, J.get_diag_blocks() | |
def minorEntry(self, i, j, method="berkowitz"): | |
return self.minor(i, j, method=method) | |
def minorMatrix(self, i, j): | |
return self.minor_submatrix(i, j) | |
def permuteBkwd(self, perm): | |
"""Permute the rows of the matrix with the given permutation in reverse.""" | |
return self.permute_rows(perm, direction='backward') | |
def permuteFwd(self, perm): | |
"""Permute the rows of the matrix with the given permutation.""" | |
return self.permute_rows(perm, direction='forward') | |
def num_mat_mul(k1, k2): | |
""" | |
Return MatrixKind. The element kind is selected by recursive dispatching. | |
Do not need to dispatch in reversed order because KindDispatcher | |
searches for this automatically. | |
""" | |
# Deal with Mul._kind_dispatcher's commutativity | |
# XXX: this function is called with either k1 or k2 as MatrixKind because | |
# the Mul kind dispatcher is commutative. Maybe it shouldn't be. Need to | |
# swap the args here because NumberKind does not have an element_kind | |
# attribute. | |
if not isinstance(k2, MatrixKind): | |
k1, k2 = k2, k1 | |
elemk = Mul._kind_dispatcher(k1, k2.element_kind) | |
return MatrixKind(elemk) | |
def mat_mat_mul(k1, k2): | |
""" | |
Return MatrixKind. The element kind is selected by recursive dispatching. | |
""" | |
elemk = Mul._kind_dispatcher(k1.element_kind, k2.element_kind) | |
return MatrixKind(elemk) | |
class MatrixBase(MatrixDeprecated, | |
MatrixCalculus, | |
MatrixEigen, | |
MatrixCommon, | |
Printable): | |
"""Base class for matrix objects.""" | |
# Added just for numpy compatibility | |
__array_priority__ = 11 | |
is_Matrix = True | |
_class_priority = 3 | |
_sympify = staticmethod(sympify) | |
zero = S.Zero | |
one = S.One | |
def kind(self) -> MatrixKind: | |
elem_kinds = {e.kind for e in self.flat()} | |
if len(elem_kinds) == 1: | |
elemkind, = elem_kinds | |
else: | |
elemkind = UndefinedKind | |
return MatrixKind(elemkind) | |
def flat(self): | |
return [self[i, j] for i in range(self.rows) for j in range(self.cols)] | |
def __array__(self, dtype=object): | |
from .dense import matrix2numpy | |
return matrix2numpy(self, dtype=dtype) | |
def __len__(self): | |
"""Return the number of elements of ``self``. | |
Implemented mainly so bool(Matrix()) == False. | |
""" | |
return self.rows * self.cols | |
def _matrix_pow_by_jordan_blocks(self, num): | |
from sympy.matrices import diag, MutableMatrix | |
def jordan_cell_power(jc, n): | |
N = jc.shape[0] | |
l = jc[0,0] | |
if l.is_zero: | |
if N == 1 and n.is_nonnegative: | |
jc[0,0] = l**n | |
elif not (n.is_integer and n.is_nonnegative): | |
raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer") | |
else: | |
for i in range(N): | |
jc[0,i] = KroneckerDelta(i, n) | |
else: | |
for i in range(N): | |
bn = binomial(n, i) | |
if isinstance(bn, binomial): | |
bn = bn._eval_expand_func() | |
jc[0,i] = l**(n-i)*bn | |
for i in range(N): | |
for j in range(1, N-i): | |
jc[j,i+j] = jc [j-1,i+j-1] | |
P, J = self.jordan_form() | |
jordan_cells = J.get_diag_blocks() | |
# Make sure jordan_cells matrices are mutable: | |
jordan_cells = [MutableMatrix(j) for j in jordan_cells] | |
for j in jordan_cells: | |
jordan_cell_power(j, num) | |
return self._new(P.multiply(diag(*jordan_cells)) | |
.multiply(P.inv())) | |
def __str__(self): | |
if S.Zero in self.shape: | |
return 'Matrix(%s, %s, [])' % (self.rows, self.cols) | |
return "Matrix(%s)" % str(self.tolist()) | |
def _format_str(self, printer=None): | |
if not printer: | |
printer = StrPrinter() | |
# Handle zero dimensions: | |
if S.Zero in self.shape: | |
return 'Matrix(%s, %s, [])' % (self.rows, self.cols) | |
if self.rows == 1: | |
return "Matrix([%s])" % self.table(printer, rowsep=',\n') | |
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') | |
def irregular(cls, ntop, *matrices, **kwargs): | |
"""Return a matrix filled by the given matrices which | |
are listed in order of appearance from left to right, top to | |
bottom as they first appear in the matrix. They must fill the | |
matrix completely. | |
Examples | |
======== | |
>>> from sympy import ones, Matrix | |
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, | |
... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) | |
Matrix([ | |
[1, 2, 2, 2, 3, 3], | |
[1, 2, 2, 2, 3, 3], | |
[4, 2, 2, 2, 5, 5], | |
[6, 6, 7, 7, 5, 5]]) | |
""" | |
ntop = as_int(ntop) | |
# make sure we are working with explicit matrices | |
b = [i.as_explicit() if hasattr(i, 'as_explicit') else i | |
for i in matrices] | |
q = list(range(len(b))) | |
dat = [i.rows for i in b] | |
active = [q.pop(0) for _ in range(ntop)] | |
cols = sum([b[i].cols for i in active]) | |
rows = [] | |
while any(dat): | |
r = [] | |
for a, j in enumerate(active): | |
r.extend(b[j][-dat[j], :]) | |
dat[j] -= 1 | |
if dat[j] == 0 and q: | |
active[a] = q.pop(0) | |
if len(r) != cols: | |
raise ValueError(filldedent(''' | |
Matrices provided do not appear to fill | |
the space completely.''')) | |
rows.append(r) | |
return cls._new(rows) | |
def _handle_ndarray(cls, arg): | |
# NumPy array or matrix or some other object that implements | |
# __array__. So let's first use this method to get a | |
# numpy.array() and then make a Python list out of it. | |
arr = arg.__array__() | |
if len(arr.shape) == 2: | |
rows, cols = arr.shape[0], arr.shape[1] | |
flat_list = [cls._sympify(i) for i in arr.ravel()] | |
return rows, cols, flat_list | |
elif len(arr.shape) == 1: | |
flat_list = [cls._sympify(i) for i in arr] | |
return arr.shape[0], 1, flat_list | |
else: | |
raise NotImplementedError( | |
"SymPy supports just 1D and 2D matrices") | |
def _handle_creation_inputs(cls, *args, **kwargs): | |
"""Return the number of rows, cols and flat matrix elements. | |
Examples | |
======== | |
>>> from sympy import Matrix, I | |
Matrix can be constructed as follows: | |
* from a nested list of iterables | |
>>> Matrix( ((1, 2+I), (3, 4)) ) | |
Matrix([ | |
[1, 2 + I], | |
[3, 4]]) | |
* from un-nested iterable (interpreted as a column) | |
>>> Matrix( [1, 2] ) | |
Matrix([ | |
[1], | |
[2]]) | |
* from un-nested iterable with dimensions | |
>>> Matrix(1, 2, [1, 2] ) | |
Matrix([[1, 2]]) | |
* from no arguments (a 0 x 0 matrix) | |
>>> Matrix() | |
Matrix(0, 0, []) | |
* from a rule | |
>>> Matrix(2, 2, lambda i, j: i/(j + 1) ) | |
Matrix([ | |
[0, 0], | |
[1, 1/2]]) | |
See Also | |
======== | |
irregular - filling a matrix with irregular blocks | |
""" | |
from sympy.matrices import SparseMatrix | |
from sympy.matrices.expressions.matexpr import MatrixSymbol | |
from sympy.matrices.expressions.blockmatrix import BlockMatrix | |
flat_list = None | |
if len(args) == 1: | |
# Matrix(SparseMatrix(...)) | |
if isinstance(args[0], SparseMatrix): | |
return args[0].rows, args[0].cols, flatten(args[0].tolist()) | |
# Matrix(Matrix(...)) | |
elif isinstance(args[0], MatrixBase): | |
return args[0].rows, args[0].cols, args[0].flat() | |
# Matrix(MatrixSymbol('X', 2, 2)) | |
elif isinstance(args[0], Basic) and args[0].is_Matrix: | |
return args[0].rows, args[0].cols, args[0].as_explicit().flat() | |
elif isinstance(args[0], mp.matrix): | |
M = args[0] | |
flat_list = [cls._sympify(x) for x in M] | |
return M.rows, M.cols, flat_list | |
# Matrix(numpy.ones((2, 2))) | |
elif hasattr(args[0], "__array__"): | |
return cls._handle_ndarray(args[0]) | |
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) | |
elif is_sequence(args[0]) \ | |
and not isinstance(args[0], DeferredVector): | |
dat = list(args[0]) | |
ismat = lambda i: isinstance(i, MatrixBase) and ( | |
evaluate or | |
isinstance(i, BlockMatrix) or | |
isinstance(i, MatrixSymbol)) | |
raw = lambda i: is_sequence(i) and not ismat(i) | |
evaluate = kwargs.get('evaluate', True) | |
if evaluate: | |
def make_explicit(x): | |
"""make Block and Symbol explicit""" | |
if isinstance(x, BlockMatrix): | |
return x.as_explicit() | |
elif isinstance(x, MatrixSymbol) and all(_.is_Integer for _ in x.shape): | |
return x.as_explicit() | |
else: | |
return x | |
def make_explicit_row(row): | |
# Could be list or could be list of lists | |
if isinstance(row, (list, tuple)): | |
return [make_explicit(x) for x in row] | |
else: | |
return make_explicit(row) | |
if isinstance(dat, (list, tuple)): | |
dat = [make_explicit_row(row) for row in dat] | |
if dat in ([], [[]]): | |
rows = cols = 0 | |
flat_list = [] | |
elif not any(raw(i) or ismat(i) for i in dat): | |
# a column as a list of values | |
flat_list = [cls._sympify(i) for i in dat] | |
rows = len(flat_list) | |
cols = 1 if rows else 0 | |
elif evaluate and all(ismat(i) for i in dat): | |
# a column as a list of matrices | |
ncol = {i.cols for i in dat if any(i.shape)} | |
if ncol: | |
if len(ncol) != 1: | |
raise ValueError('mismatched dimensions') | |
flat_list = [_ for i in dat for r in i.tolist() for _ in r] | |
cols = ncol.pop() | |
rows = len(flat_list)//cols | |
else: | |
rows = cols = 0 | |
flat_list = [] | |
elif evaluate and any(ismat(i) for i in dat): | |
ncol = set() | |
flat_list = [] | |
for i in dat: | |
if ismat(i): | |
flat_list.extend( | |
[k for j in i.tolist() for k in j]) | |
if any(i.shape): | |
ncol.add(i.cols) | |
elif raw(i): | |
if i: | |
ncol.add(len(i)) | |
flat_list.extend([cls._sympify(ij) for ij in i]) | |
else: | |
ncol.add(1) | |
flat_list.append(i) | |
if len(ncol) > 1: | |
raise ValueError('mismatched dimensions') | |
cols = ncol.pop() | |
rows = len(flat_list)//cols | |
else: | |
# list of lists; each sublist is a logical row | |
# which might consist of many rows if the values in | |
# the row are matrices | |
flat_list = [] | |
ncol = set() | |
rows = cols = 0 | |
for row in dat: | |
if not is_sequence(row) and \ | |
not getattr(row, 'is_Matrix', False): | |
raise ValueError('expecting list of lists') | |
if hasattr(row, '__array__'): | |
if 0 in row.shape: | |
continue | |
elif not row: | |
continue | |
if evaluate and all(ismat(i) for i in row): | |
r, c, flatT = cls._handle_creation_inputs( | |
[i.T for i in row]) | |
T = reshape(flatT, [c]) | |
flat = \ | |
[T[i][j] for j in range(c) for i in range(r)] | |
r, c = c, r | |
else: | |
r = 1 | |
if getattr(row, 'is_Matrix', False): | |
c = 1 | |
flat = [row] | |
else: | |
c = len(row) | |
flat = [cls._sympify(i) for i in row] | |
ncol.add(c) | |
if len(ncol) > 1: | |
raise ValueError('mismatched dimensions') | |
flat_list.extend(flat) | |
rows += r | |
cols = ncol.pop() if ncol else 0 | |
elif len(args) == 3: | |
rows = as_int(args[0]) | |
cols = as_int(args[1]) | |
if rows < 0 or cols < 0: | |
raise ValueError("Cannot create a {} x {} matrix. " | |
"Both dimensions must be positive".format(rows, cols)) | |
# Matrix(2, 2, lambda i, j: i+j) | |
if len(args) == 3 and isinstance(args[2], Callable): | |
op = args[2] | |
flat_list = [] | |
for i in range(rows): | |
flat_list.extend( | |
[cls._sympify(op(cls._sympify(i), cls._sympify(j))) | |
for j in range(cols)]) | |
# Matrix(2, 2, [1, 2, 3, 4]) | |
elif len(args) == 3 and is_sequence(args[2]): | |
flat_list = args[2] | |
if len(flat_list) != rows * cols: | |
raise ValueError( | |
'List length should be equal to rows*columns') | |
flat_list = [cls._sympify(i) for i in flat_list] | |
# Matrix() | |
elif len(args) == 0: | |
# Empty Matrix | |
rows = cols = 0 | |
flat_list = [] | |
if flat_list is None: | |
raise TypeError(filldedent(''' | |
Data type not understood; expecting list of lists | |
or lists of values.''')) | |
return rows, cols, flat_list | |
def _setitem(self, key, value): | |
"""Helper to set value at location given by key. | |
Examples | |
======== | |
>>> from sympy import Matrix, I, zeros, ones | |
>>> m = Matrix(((1, 2+I), (3, 4))) | |
>>> m | |
Matrix([ | |
[1, 2 + I], | |
[3, 4]]) | |
>>> m[1, 0] = 9 | |
>>> m | |
Matrix([ | |
[1, 2 + I], | |
[9, 4]]) | |
>>> m[1, 0] = [[0, 1]] | |
To replace row r you assign to position r*m where m | |
is the number of columns: | |
>>> M = zeros(4) | |
>>> m = M.cols | |
>>> M[3*m] = ones(1, m)*2; M | |
Matrix([ | |
[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[2, 2, 2, 2]]) | |
And to replace column c you can assign to position c: | |
>>> M[2] = ones(m, 1)*4; M | |
Matrix([ | |
[0, 0, 4, 0], | |
[0, 0, 4, 0], | |
[0, 0, 4, 0], | |
[2, 2, 4, 2]]) | |
""" | |
from .dense import Matrix | |
is_slice = isinstance(key, slice) | |
i, j = key = self.key2ij(key) | |
is_mat = isinstance(value, MatrixBase) | |
if isinstance(i, slice) or isinstance(j, slice): | |
if is_mat: | |
self.copyin_matrix(key, value) | |
return | |
if not isinstance(value, Expr) and is_sequence(value): | |
self.copyin_list(key, value) | |
return | |
raise ValueError('unexpected value: %s' % value) | |
else: | |
if (not is_mat and | |
not isinstance(value, Basic) and is_sequence(value)): | |
value = Matrix(value) | |
is_mat = True | |
if is_mat: | |
if is_slice: | |
key = (slice(*divmod(i, self.cols)), | |
slice(*divmod(j, self.cols))) | |
else: | |
key = (slice(i, i + value.rows), | |
slice(j, j + value.cols)) | |
self.copyin_matrix(key, value) | |
else: | |
return i, j, self._sympify(value) | |
return | |
def add(self, b): | |
"""Return self + b.""" | |
return self + b | |
def condition_number(self): | |
"""Returns the condition number of a matrix. | |
This is the maximum singular value divided by the minimum singular value | |
Examples | |
======== | |
>>> from sympy import Matrix, S | |
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) | |
>>> A.condition_number() | |
100 | |
See Also | |
======== | |
singular_values | |
""" | |
if not self: | |
return self.zero | |
singularvalues = self.singular_values() | |
return Max(*singularvalues) / Min(*singularvalues) | |
def copy(self): | |
""" | |
Returns the copy of a matrix. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> A = Matrix(2, 2, [1, 2, 3, 4]) | |
>>> A.copy() | |
Matrix([ | |
[1, 2], | |
[3, 4]]) | |
""" | |
return self._new(self.rows, self.cols, self.flat()) | |
def cross(self, b): | |
r""" | |
Return the cross product of ``self`` and ``b`` relaxing the condition | |
of compatible dimensions: if each has 3 elements, a matrix of the | |
same type and shape as ``self`` will be returned. If ``b`` has the same | |
shape as ``self`` then common identities for the cross product (like | |
`a \times b = - b \times a`) will hold. | |
Parameters | |
========== | |
b : 3x1 or 1x3 Matrix | |
See Also | |
======== | |
dot | |
multiply | |
multiply_elementwise | |
""" | |
from sympy.matrices.expressions.matexpr import MatrixExpr | |
if not isinstance(b, (MatrixBase, MatrixExpr)): | |
raise TypeError( | |
"{} must be a Matrix, not {}.".format(b, type(b))) | |
if not (self.rows * self.cols == b.rows * b.cols == 3): | |
raise ShapeError("Dimensions incorrect for cross product: %s x %s" % | |
((self.rows, self.cols), (b.rows, b.cols))) | |
else: | |
return self._new(self.rows, self.cols, ( | |
(self[1] * b[2] - self[2] * b[1]), | |
(self[2] * b[0] - self[0] * b[2]), | |
(self[0] * b[1] - self[1] * b[0]))) | |
def D(self): | |
"""Return Dirac conjugate (if ``self.rows == 4``). | |
Examples | |
======== | |
>>> from sympy import Matrix, I, eye | |
>>> m = Matrix((0, 1 + I, 2, 3)) | |
>>> m.D | |
Matrix([[0, 1 - I, -2, -3]]) | |
>>> m = (eye(4) + I*eye(4)) | |
>>> m[0, 3] = 2 | |
>>> m.D | |
Matrix([ | |
[1 - I, 0, 0, 0], | |
[ 0, 1 - I, 0, 0], | |
[ 0, 0, -1 + I, 0], | |
[ 2, 0, 0, -1 + I]]) | |
If the matrix does not have 4 rows an AttributeError will be raised | |
because this property is only defined for matrices with 4 rows. | |
>>> Matrix(eye(2)).D | |
Traceback (most recent call last): | |
... | |
AttributeError: Matrix has no attribute D. | |
See Also | |
======== | |
sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation | |
sympy.matrices.common.MatrixCommon.H: Hermite conjugation | |
""" | |
from sympy.physics.matrices import mgamma | |
if self.rows != 4: | |
# In Python 3.2, properties can only return an AttributeError | |
# so we can't raise a ShapeError -- see commit which added the | |
# first line of this inline comment. Also, there is no need | |
# for a message since MatrixBase will raise the AttributeError | |
raise AttributeError | |
return self.H * mgamma(0) | |
def dot(self, b, hermitian=None, conjugate_convention=None): | |
"""Return the dot or inner product of two vectors of equal length. | |
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` | |
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. | |
A scalar is returned. | |
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are | |
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) | |
to compute the hermitian inner product. | |
Possible kwargs are ``hermitian`` and ``conjugate_convention``. | |
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, | |
the conjugate of the first vector (``self``) is used. If ``"right"`` | |
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
>>> v = Matrix([1, 1, 1]) | |
>>> M.row(0).dot(v) | |
6 | |
>>> M.col(0).dot(v) | |
12 | |
>>> v = [3, 2, 1] | |
>>> M.row(0).dot(v) | |
10 | |
>>> from sympy import I | |
>>> q = Matrix([1*I, 1*I, 1*I]) | |
>>> q.dot(q, hermitian=False) | |
-3 | |
>>> q.dot(q, hermitian=True) | |
3 | |
>>> q1 = Matrix([1, 1, 1*I]) | |
>>> q.dot(q1, hermitian=True, conjugate_convention="maths") | |
1 - 2*I | |
>>> q.dot(q1, hermitian=True, conjugate_convention="physics") | |
1 + 2*I | |
See Also | |
======== | |
cross | |
multiply | |
multiply_elementwise | |
""" | |
from .dense import Matrix | |
if not isinstance(b, MatrixBase): | |
if is_sequence(b): | |
if len(b) != self.cols and len(b) != self.rows: | |
raise ShapeError( | |
"Dimensions incorrect for dot product: %s, %s" % ( | |
self.shape, len(b))) | |
return self.dot(Matrix(b)) | |
else: | |
raise TypeError( | |
"`b` must be an ordered iterable or Matrix, not %s." % | |
type(b)) | |
if (1 not in self.shape) or (1 not in b.shape): | |
raise ShapeError | |
if len(self) != len(b): | |
raise ShapeError( | |
"Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) | |
mat = self | |
n = len(mat) | |
if mat.shape != (1, n): | |
mat = mat.reshape(1, n) | |
if b.shape != (n, 1): | |
b = b.reshape(n, 1) | |
# Now ``mat`` is a row vector and ``b`` is a column vector. | |
# If it so happens that only conjugate_convention is passed | |
# then automatically set hermitian to True. If only hermitian | |
# is true but no conjugate_convention is not passed then | |
# automatically set it to ``"maths"`` | |
if conjugate_convention is not None and hermitian is None: | |
hermitian = True | |
if hermitian and conjugate_convention is None: | |
conjugate_convention = "maths" | |
if hermitian == True: | |
if conjugate_convention in ("maths", "left", "math"): | |
mat = mat.conjugate() | |
elif conjugate_convention in ("physics", "right"): | |
b = b.conjugate() | |
else: | |
raise ValueError("Unknown conjugate_convention was entered." | |
" conjugate_convention must be one of the" | |
" following: math, maths, left, physics or right.") | |
return (mat * b)[0] | |
def dual(self): | |
"""Returns the dual of a matrix. | |
A dual of a matrix is: | |
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` | |
Since the levicivita method is anti_symmetric for any pairwise | |
exchange of indices, the dual of a symmetric matrix is the zero | |
matrix. Strictly speaking the dual defined here assumes that the | |
'matrix' `M` is a contravariant anti_symmetric second rank tensor, | |
so that the dual is a covariant second rank tensor. | |
""" | |
from sympy.matrices import zeros | |
M, n = self[:, :], self.rows | |
work = zeros(n) | |
if self.is_symmetric(): | |
return work | |
for i in range(1, n): | |
for j in range(1, n): | |
acum = 0 | |
for k in range(1, n): | |
acum += LeviCivita(i, j, 0, k) * M[0, k] | |
work[i, j] = acum | |
work[j, i] = -acum | |
for l in range(1, n): | |
acum = 0 | |
for a in range(1, n): | |
for b in range(1, n): | |
acum += LeviCivita(0, l, a, b) * M[a, b] | |
acum /= 2 | |
work[0, l] = -acum | |
work[l, 0] = acum | |
return work | |
def _eval_matrix_exp_jblock(self): | |
"""A helper function to compute an exponential of a Jordan block | |
matrix | |
Examples | |
======== | |
>>> from sympy import Symbol, Matrix | |
>>> l = Symbol('lamda') | |
A trivial example of 1*1 Jordan block: | |
>>> m = Matrix.jordan_block(1, l) | |
>>> m._eval_matrix_exp_jblock() | |
Matrix([[exp(lamda)]]) | |
An example of 3*3 Jordan block: | |
>>> m = Matrix.jordan_block(3, l) | |
>>> m._eval_matrix_exp_jblock() | |
Matrix([ | |
[exp(lamda), exp(lamda), exp(lamda)/2], | |
[ 0, exp(lamda), exp(lamda)], | |
[ 0, 0, exp(lamda)]]) | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition | |
""" | |
size = self.rows | |
l = self[0, 0] | |
exp_l = exp(l) | |
bands = {i: exp_l / factorial(i) for i in range(size)} | |
from .sparsetools import banded | |
return self.__class__(banded(size, bands)) | |
def analytic_func(self, f, x): | |
""" | |
Computes f(A) where A is a Square Matrix | |
and f is an analytic function. | |
Examples | |
======== | |
>>> from sympy import Symbol, Matrix, S, log | |
>>> x = Symbol('x') | |
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) | |
>>> f = log(x) | |
>>> m.analytic_func(f, x) | |
Matrix([ | |
[ 0, log(2)], | |
[log(2), 0]]) | |
Parameters | |
========== | |
f : Expr | |
Analytic Function | |
x : Symbol | |
parameter of f | |
""" | |
f, x = _sympify(f), _sympify(x) | |
if not self.is_square: | |
raise NonSquareMatrixError | |
if not x.is_symbol: | |
raise ValueError("{} must be a symbol.".format(x)) | |
if x not in f.free_symbols: | |
raise ValueError( | |
"{} must be a parameter of {}.".format(x, f)) | |
if x in self.free_symbols: | |
raise ValueError( | |
"{} must not be a parameter of {}.".format(x, self)) | |
eigen = self.eigenvals() | |
max_mul = max(eigen.values()) | |
derivative = {} | |
dd = f | |
for i in range(max_mul - 1): | |
dd = diff(dd, x) | |
derivative[i + 1] = dd | |
n = self.shape[0] | |
r = self.zeros(n) | |
f_val = self.zeros(n, 1) | |
row = 0 | |
for i in eigen: | |
mul = eigen[i] | |
f_val[row] = f.subs(x, i) | |
if f_val[row].is_number and not f_val[row].is_complex: | |
raise ValueError( | |
"Cannot evaluate the function because the " | |
"function {} is not analytic at the given " | |
"eigenvalue {}".format(f, f_val[row])) | |
val = 1 | |
for a in range(n): | |
r[row, a] = val | |
val *= i | |
if mul > 1: | |
coe = [1 for ii in range(n)] | |
deri = 1 | |
while mul > 1: | |
row = row + 1 | |
mul -= 1 | |
d_i = derivative[deri].subs(x, i) | |
if d_i.is_number and not d_i.is_complex: | |
raise ValueError( | |
"Cannot evaluate the function because the " | |
"derivative {} is not analytic at the given " | |
"eigenvalue {}".format(derivative[deri], d_i)) | |
f_val[row] = d_i | |
for a in range(n): | |
if a - deri + 1 <= 0: | |
r[row, a] = 0 | |
coe[a] = 0 | |
continue | |
coe[a] = coe[a]*(a - deri + 1) | |
r[row, a] = coe[a]*pow(i, a - deri) | |
deri += 1 | |
row += 1 | |
c = r.solve(f_val) | |
ans = self.zeros(n) | |
pre = self.eye(n) | |
for i in range(n): | |
ans = ans + c[i]*pre | |
pre *= self | |
return ans | |
def exp(self): | |
"""Return the exponential of a square matrix. | |
Examples | |
======== | |
>>> from sympy import Symbol, Matrix | |
>>> t = Symbol('t') | |
>>> m = Matrix([[0, 1], [-1, 0]]) * t | |
>>> m.exp() | |
Matrix([ | |
[ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2], | |
[I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]]) | |
""" | |
if not self.is_square: | |
raise NonSquareMatrixError( | |
"Exponentiation is valid only for square matrices") | |
try: | |
P, J = self.jordan_form() | |
cells = J.get_diag_blocks() | |
except MatrixError: | |
raise NotImplementedError( | |
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") | |
blocks = [cell._eval_matrix_exp_jblock() for cell in cells] | |
from sympy.matrices import diag | |
eJ = diag(*blocks) | |
# n = self.rows | |
ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None) | |
if all(value.is_real for value in self.values()): | |
return type(self)(re(ret)) | |
else: | |
return type(self)(ret) | |
def _eval_matrix_log_jblock(self): | |
"""Helper function to compute logarithm of a jordan block. | |
Examples | |
======== | |
>>> from sympy import Symbol, Matrix | |
>>> l = Symbol('lamda') | |
A trivial example of 1*1 Jordan block: | |
>>> m = Matrix.jordan_block(1, l) | |
>>> m._eval_matrix_log_jblock() | |
Matrix([[log(lamda)]]) | |
An example of 3*3 Jordan block: | |
>>> m = Matrix.jordan_block(3, l) | |
>>> m._eval_matrix_log_jblock() | |
Matrix([ | |
[log(lamda), 1/lamda, -1/(2*lamda**2)], | |
[ 0, log(lamda), 1/lamda], | |
[ 0, 0, log(lamda)]]) | |
""" | |
size = self.rows | |
l = self[0, 0] | |
if l.is_zero: | |
raise MatrixError( | |
'Could not take logarithm or reciprocal for the given ' | |
'eigenvalue {}'.format(l)) | |
bands = {0: log(l)} | |
for i in range(1, size): | |
bands[i] = -((-l) ** -i) / i | |
from .sparsetools import banded | |
return self.__class__(banded(size, bands)) | |
def log(self, simplify=cancel): | |
"""Return the logarithm of a square matrix. | |
Parameters | |
========== | |
simplify : function, bool | |
The function to simplify the result with. | |
Default is ``cancel``, which is effective to reduce the | |
expression growing for taking reciprocals and inverses for | |
symbolic matrices. | |
Examples | |
======== | |
>>> from sympy import S, Matrix | |
Examples for positive-definite matrices: | |
>>> m = Matrix([[1, 1], [0, 1]]) | |
>>> m.log() | |
Matrix([ | |
[0, 1], | |
[0, 0]]) | |
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) | |
>>> m.log() | |
Matrix([ | |
[ 0, log(2)], | |
[log(2), 0]]) | |
Examples for non positive-definite matrices: | |
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]]) | |
>>> m.log() | |
Matrix([ | |
[ I*pi/2, log(2) - I*pi/2], | |
[log(2) - I*pi/2, I*pi/2]]) | |
>>> m = Matrix( | |
... [[0, 0, 0, 1], | |
... [0, 0, 1, 0], | |
... [0, 1, 0, 0], | |
... [1, 0, 0, 0]]) | |
>>> m.log() | |
Matrix([ | |
[ I*pi/2, 0, 0, -I*pi/2], | |
[ 0, I*pi/2, -I*pi/2, 0], | |
[ 0, -I*pi/2, I*pi/2, 0], | |
[-I*pi/2, 0, 0, I*pi/2]]) | |
""" | |
if not self.is_square: | |
raise NonSquareMatrixError( | |
"Logarithm is valid only for square matrices") | |
try: | |
if simplify: | |
P, J = simplify(self).jordan_form() | |
else: | |
P, J = self.jordan_form() | |
cells = J.get_diag_blocks() | |
except MatrixError: | |
raise NotImplementedError( | |
"Logarithm is implemented only for matrices for which " | |
"the Jordan normal form can be computed") | |
blocks = [ | |
cell._eval_matrix_log_jblock() | |
for cell in cells] | |
from sympy.matrices import diag | |
eJ = diag(*blocks) | |
if simplify: | |
ret = simplify(P * eJ * simplify(P.inv())) | |
ret = self.__class__(ret) | |
else: | |
ret = P * eJ * P.inv() | |
return ret | |
def is_nilpotent(self): | |
"""Checks if a matrix is nilpotent. | |
A matrix B is nilpotent if for some integer k, B**k is | |
a zero matrix. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) | |
>>> a.is_nilpotent() | |
True | |
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) | |
>>> a.is_nilpotent() | |
False | |
""" | |
if not self: | |
return True | |
if not self.is_square: | |
raise NonSquareMatrixError( | |
"Nilpotency is valid only for square matrices") | |
x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s) | |
p = self.charpoly(x) | |
if p.args[0] == x ** self.rows: | |
return True | |
return False | |
def key2bounds(self, keys): | |
"""Converts a key with potentially mixed types of keys (integer and slice) | |
into a tuple of ranges and raises an error if any index is out of ``self``'s | |
range. | |
See Also | |
======== | |
key2ij | |
""" | |
islice, jslice = [isinstance(k, slice) for k in keys] | |
if islice: | |
if not self.rows: | |
rlo = rhi = 0 | |
else: | |
rlo, rhi = keys[0].indices(self.rows)[:2] | |
else: | |
rlo = a2idx(keys[0], self.rows) | |
rhi = rlo + 1 | |
if jslice: | |
if not self.cols: | |
clo = chi = 0 | |
else: | |
clo, chi = keys[1].indices(self.cols)[:2] | |
else: | |
clo = a2idx(keys[1], self.cols) | |
chi = clo + 1 | |
return rlo, rhi, clo, chi | |
def key2ij(self, key): | |
"""Converts key into canonical form, converting integers or indexable | |
items into valid integers for ``self``'s range or returning slices | |
unchanged. | |
See Also | |
======== | |
key2bounds | |
""" | |
if is_sequence(key): | |
if not len(key) == 2: | |
raise TypeError('key must be a sequence of length 2') | |
return [a2idx(i, n) if not isinstance(i, slice) else i | |
for i, n in zip(key, self.shape)] | |
elif isinstance(key, slice): | |
return key.indices(len(self))[:2] | |
else: | |
return divmod(a2idx(key, len(self)), self.cols) | |
def normalized(self, iszerofunc=_iszero): | |
"""Return the normalized version of ``self``. | |
Parameters | |
========== | |
iszerofunc : Function, optional | |
A function to determine whether ``self`` is a zero vector. | |
The default ``_iszero`` tests to see if each element is | |
exactly zero. | |
Returns | |
======= | |
Matrix | |
Normalized vector form of ``self``. | |
It has the same length as a unit vector. However, a zero vector | |
will be returned for a vector with norm 0. | |
Raises | |
====== | |
ShapeError | |
If the matrix is not in a vector form. | |
See Also | |
======== | |
norm | |
""" | |
if self.rows != 1 and self.cols != 1: | |
raise ShapeError("A Matrix must be a vector to normalize.") | |
norm = self.norm() | |
if iszerofunc(norm): | |
out = self.zeros(self.rows, self.cols) | |
else: | |
out = self.applyfunc(lambda i: i / norm) | |
return out | |
def norm(self, ord=None): | |
"""Return the Norm of a Matrix or Vector. | |
In the simplest case this is the geometric size of the vector | |
Other norms can be specified by the ord parameter | |
===== ============================ ========================== | |
ord norm for matrices norm for vectors | |
===== ============================ ========================== | |
None Frobenius norm 2-norm | |
'fro' Frobenius norm - does not exist | |
inf maximum row sum max(abs(x)) | |
-inf -- min(abs(x)) | |
1 maximum column sum as below | |
-1 -- as below | |
2 2-norm (largest sing. value) as below | |
-2 smallest singular value as below | |
other - does not exist sum(abs(x)**ord)**(1./ord) | |
===== ============================ ========================== | |
Examples | |
======== | |
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo | |
>>> x = Symbol('x', real=True) | |
>>> v = Matrix([cos(x), sin(x)]) | |
>>> trigsimp( v.norm() ) | |
1 | |
>>> v.norm(10) | |
(sin(x)**10 + cos(x)**10)**(1/10) | |
>>> A = Matrix([[1, 1], [1, 1]]) | |
>>> A.norm(1) # maximum sum of absolute values of A is 2 | |
2 | |
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) | |
2 | |
>>> A.norm(-2) # Inverse spectral norm (smallest singular value) | |
0 | |
>>> A.norm() # Frobenius Norm | |
2 | |
>>> A.norm(oo) # Infinity Norm | |
2 | |
>>> Matrix([1, -2]).norm(oo) | |
2 | |
>>> Matrix([-1, 2]).norm(-oo) | |
1 | |
See Also | |
======== | |
normalized | |
""" | |
# Row or Column Vector Norms | |
vals = list(self.values()) or [0] | |
if S.One in self.shape: | |
if ord in (2, None): # Common case sqrt(<x, x>) | |
return sqrt(Add(*(abs(i) ** 2 for i in vals))) | |
elif ord == 1: # sum(abs(x)) | |
return Add(*(abs(i) for i in vals)) | |
elif ord is S.Infinity: # max(abs(x)) | |
return Max(*[abs(i) for i in vals]) | |
elif ord is S.NegativeInfinity: # min(abs(x)) | |
return Min(*[abs(i) for i in vals]) | |
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) | |
# Note that while useful this is not mathematically a norm | |
try: | |
return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord) | |
except (NotImplementedError, TypeError): | |
raise ValueError("Expected order to be Number, Symbol, oo") | |
# Matrix Norms | |
else: | |
if ord == 1: # Maximum column sum | |
m = self.applyfunc(abs) | |
return Max(*[sum(m.col(i)) for i in range(m.cols)]) | |
elif ord == 2: # Spectral Norm | |
# Maximum singular value | |
return Max(*self.singular_values()) | |
elif ord == -2: | |
# Minimum singular value | |
return Min(*self.singular_values()) | |
elif ord is S.Infinity: # Infinity Norm - Maximum row sum | |
m = self.applyfunc(abs) | |
return Max(*[sum(m.row(i)) for i in range(m.rows)]) | |
elif (ord is None or isinstance(ord, | |
str) and ord.lower() in | |
['f', 'fro', 'frobenius', 'vector']): | |
# Reshape as vector and send back to norm function | |
return self.vec().norm(ord=2) | |
else: | |
raise NotImplementedError("Matrix Norms under development") | |
def print_nonzero(self, symb="X"): | |
"""Shows location of non-zero entries for fast shape lookup. | |
Examples | |
======== | |
>>> from sympy import Matrix, eye | |
>>> m = Matrix(2, 3, lambda i, j: i*3+j) | |
>>> m | |
Matrix([ | |
[0, 1, 2], | |
[3, 4, 5]]) | |
>>> m.print_nonzero() | |
[ XX] | |
[XXX] | |
>>> m = eye(4) | |
>>> m.print_nonzero("x") | |
[x ] | |
[ x ] | |
[ x ] | |
[ x] | |
""" | |
s = [] | |
for i in range(self.rows): | |
line = [] | |
for j in range(self.cols): | |
if self[i, j] == 0: | |
line.append(" ") | |
else: | |
line.append(str(symb)) | |
s.append("[%s]" % ''.join(line)) | |
print('\n'.join(s)) | |
def project(self, v): | |
"""Return the projection of ``self`` onto the line containing ``v``. | |
Examples | |
======== | |
>>> from sympy import Matrix, S, sqrt | |
>>> V = Matrix([sqrt(3)/2, S.Half]) | |
>>> x = Matrix([[1, 0]]) | |
>>> V.project(x) | |
Matrix([[sqrt(3)/2, 0]]) | |
>>> V.project(-x) | |
Matrix([[sqrt(3)/2, 0]]) | |
""" | |
return v * (self.dot(v) / v.dot(v)) | |
def table(self, printer, rowstart='[', rowend=']', rowsep='\n', | |
colsep=', ', align='right'): | |
r""" | |
String form of Matrix as a table. | |
``printer`` is the printer to use for on the elements (generally | |
something like StrPrinter()) | |
``rowstart`` is the string used to start each row (by default '['). | |
``rowend`` is the string used to end each row (by default ']'). | |
``rowsep`` is the string used to separate rows (by default a newline). | |
``colsep`` is the string used to separate columns (by default ', '). | |
``align`` defines how the elements are aligned. Must be one of 'left', | |
'right', or 'center'. You can also use '<', '>', and '^' to mean the | |
same thing, respectively. | |
This is used by the string printer for Matrix. | |
Examples | |
======== | |
>>> from sympy import Matrix, StrPrinter | |
>>> M = Matrix([[1, 2], [-33, 4]]) | |
>>> printer = StrPrinter() | |
>>> M.table(printer) | |
'[ 1, 2]\n[-33, 4]' | |
>>> print(M.table(printer)) | |
[ 1, 2] | |
[-33, 4] | |
>>> print(M.table(printer, rowsep=',\n')) | |
[ 1, 2], | |
[-33, 4] | |
>>> print('[%s]' % M.table(printer, rowsep=',\n')) | |
[[ 1, 2], | |
[-33, 4]] | |
>>> print(M.table(printer, colsep=' ')) | |
[ 1 2] | |
[-33 4] | |
>>> print(M.table(printer, align='center')) | |
[ 1 , 2] | |
[-33, 4] | |
>>> print(M.table(printer, rowstart='{', rowend='}')) | |
{ 1, 2} | |
{-33, 4} | |
""" | |
# Handle zero dimensions: | |
if S.Zero in self.shape: | |
return '[]' | |
# Build table of string representations of the elements | |
res = [] | |
# Track per-column max lengths for pretty alignment | |
maxlen = [0] * self.cols | |
for i in range(self.rows): | |
res.append([]) | |
for j in range(self.cols): | |
s = printer._print(self[i, j]) | |
res[-1].append(s) | |
maxlen[j] = max(len(s), maxlen[j]) | |
# Patch strings together | |
align = { | |
'left': 'ljust', | |
'right': 'rjust', | |
'center': 'center', | |
'<': 'ljust', | |
'>': 'rjust', | |
'^': 'center', | |
}[align] | |
for i, row in enumerate(res): | |
for j, elem in enumerate(row): | |
row[j] = getattr(elem, align)(maxlen[j]) | |
res[i] = rowstart + colsep.join(row) + rowend | |
return rowsep.join(res) | |
def rank_decomposition(self, iszerofunc=_iszero, simplify=False): | |
return _rank_decomposition(self, iszerofunc=iszerofunc, | |
simplify=simplify) | |
def cholesky(self, hermitian=True): | |
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') | |
def LDLdecomposition(self, hermitian=True): | |
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') | |
def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, | |
rankcheck=False): | |
return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc, | |
rankcheck=rankcheck) | |
def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, | |
rankcheck=False): | |
return _LUdecomposition_Simple(self, iszerofunc=iszerofunc, | |
simpfunc=simpfunc, rankcheck=rankcheck) | |
def LUdecompositionFF(self): | |
return _LUdecompositionFF(self) | |
def singular_value_decomposition(self): | |
return _singular_value_decomposition(self) | |
def QRdecomposition(self): | |
return _QRdecomposition(self) | |
def upper_hessenberg_decomposition(self): | |
return _upper_hessenberg_decomposition(self) | |
def diagonal_solve(self, rhs): | |
return _diagonal_solve(self, rhs) | |
def lower_triangular_solve(self, rhs): | |
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') | |
def upper_triangular_solve(self, rhs): | |
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') | |
def cholesky_solve(self, rhs): | |
return _cholesky_solve(self, rhs) | |
def LDLsolve(self, rhs): | |
return _LDLsolve(self, rhs) | |
def LUsolve(self, rhs, iszerofunc=_iszero): | |
return _LUsolve(self, rhs, iszerofunc=iszerofunc) | |
def QRsolve(self, b): | |
return _QRsolve(self, b) | |
def gauss_jordan_solve(self, B, freevar=False): | |
return _gauss_jordan_solve(self, B, freevar=freevar) | |
def pinv_solve(self, B, arbitrary_matrix=None): | |
return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix) | |
def solve(self, rhs, method='GJ'): | |
return _solve(self, rhs, method=method) | |
def solve_least_squares(self, rhs, method='CH'): | |
return _solve_least_squares(self, rhs, method=method) | |
def pinv(self, method='RD'): | |
return _pinv(self, method=method) | |
def inv_mod(self, m): | |
return _inv_mod(self, m) | |
def inverse_ADJ(self, iszerofunc=_iszero): | |
return _inv_ADJ(self, iszerofunc=iszerofunc) | |
def inverse_BLOCK(self, iszerofunc=_iszero): | |
return _inv_block(self, iszerofunc=iszerofunc) | |
def inverse_GE(self, iszerofunc=_iszero): | |
return _inv_GE(self, iszerofunc=iszerofunc) | |
def inverse_LU(self, iszerofunc=_iszero): | |
return _inv_LU(self, iszerofunc=iszerofunc) | |
def inverse_CH(self, iszerofunc=_iszero): | |
return _inv_CH(self, iszerofunc=iszerofunc) | |
def inverse_LDL(self, iszerofunc=_iszero): | |
return _inv_LDL(self, iszerofunc=iszerofunc) | |
def inverse_QR(self, iszerofunc=_iszero): | |
return _inv_QR(self, iszerofunc=iszerofunc) | |
def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False): | |
return _inv(self, method=method, iszerofunc=iszerofunc, | |
try_block_diag=try_block_diag) | |
def connected_components(self): | |
return _connected_components(self) | |
def connected_components_decomposition(self): | |
return _connected_components_decomposition(self) | |
def strongly_connected_components(self): | |
return _strongly_connected_components(self) | |
def strongly_connected_components_decomposition(self, lower=True): | |
return _strongly_connected_components_decomposition(self, lower=lower) | |
_sage_ = Basic._sage_ | |
rank_decomposition.__doc__ = _rank_decomposition.__doc__ | |
cholesky.__doc__ = _cholesky.__doc__ | |
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__ | |
LUdecomposition.__doc__ = _LUdecomposition.__doc__ | |
LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__ | |
LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__ | |
singular_value_decomposition.__doc__ = _singular_value_decomposition.__doc__ | |
QRdecomposition.__doc__ = _QRdecomposition.__doc__ | |
upper_hessenberg_decomposition.__doc__ = _upper_hessenberg_decomposition.__doc__ | |
diagonal_solve.__doc__ = _diagonal_solve.__doc__ | |
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__ | |
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__ | |
cholesky_solve.__doc__ = _cholesky_solve.__doc__ | |
LDLsolve.__doc__ = _LDLsolve.__doc__ | |
LUsolve.__doc__ = _LUsolve.__doc__ | |
QRsolve.__doc__ = _QRsolve.__doc__ | |
gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__ | |
pinv_solve.__doc__ = _pinv_solve.__doc__ | |
solve.__doc__ = _solve.__doc__ | |
solve_least_squares.__doc__ = _solve_least_squares.__doc__ | |
pinv.__doc__ = _pinv.__doc__ | |
inv_mod.__doc__ = _inv_mod.__doc__ | |
inverse_ADJ.__doc__ = _inv_ADJ.__doc__ | |
inverse_GE.__doc__ = _inv_GE.__doc__ | |
inverse_LU.__doc__ = _inv_LU.__doc__ | |
inverse_CH.__doc__ = _inv_CH.__doc__ | |
inverse_LDL.__doc__ = _inv_LDL.__doc__ | |
inverse_QR.__doc__ = _inv_QR.__doc__ | |
inverse_BLOCK.__doc__ = _inv_block.__doc__ | |
inv.__doc__ = _inv.__doc__ | |
connected_components.__doc__ = _connected_components.__doc__ | |
connected_components_decomposition.__doc__ = \ | |
_connected_components_decomposition.__doc__ | |
strongly_connected_components.__doc__ = \ | |
_strongly_connected_components.__doc__ | |
strongly_connected_components_decomposition.__doc__ = \ | |
_strongly_connected_components_decomposition.__doc__ | |