|
from sympy.core import S, pi, Rational |
|
from sympy.functions import assoc_laguerre, sqrt, exp, factorial, factorial2 |
|
|
|
|
|
def R_nl(n, l, nu, r): |
|
""" |
|
Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic |
|
oscillator. |
|
|
|
Parameters |
|
========== |
|
|
|
n : |
|
The "nodal" quantum number. Corresponds to the number of nodes in |
|
the wavefunction. ``n >= 0`` |
|
l : |
|
The quantum number for orbital angular momentum. |
|
nu : |
|
mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass |
|
and `omega` the frequency of the oscillator. |
|
(in atomic units ``nu == omega/2``) |
|
r : |
|
Radial coordinate. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.sho import R_nl |
|
>>> from sympy.abc import r, nu, l |
|
>>> R_nl(0, 0, 1, r) |
|
2*2**(3/4)*exp(-r**2)/pi**(1/4) |
|
>>> R_nl(1, 0, 1, r) |
|
4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4)) |
|
|
|
l, nu and r may be symbolic: |
|
|
|
>>> R_nl(0, 0, nu, r) |
|
2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4) |
|
>>> R_nl(0, l, 1, r) |
|
r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4) |
|
|
|
The normalization of the radial wavefunction is: |
|
|
|
>>> from sympy import Integral, oo |
|
>>> Integral(R_nl(0, 0, 1, r)**2*r**2, (r, 0, oo)).n() |
|
1.00000000000000 |
|
>>> Integral(R_nl(1, 0, 1, r)**2*r**2, (r, 0, oo)).n() |
|
1.00000000000000 |
|
>>> Integral(R_nl(1, 1, 1, r)**2*r**2, (r, 0, oo)).n() |
|
1.00000000000000 |
|
|
|
""" |
|
n, l, nu, r = map(S, [n, l, nu, r]) |
|
|
|
|
|
n = n + 1 |
|
C = sqrt( |
|
((2*nu)**(l + Rational(3, 2))*2**(n + l + 1)*factorial(n - 1))/ |
|
(sqrt(pi)*(factorial2(2*n + 2*l - 1))) |
|
) |
|
return C*r**(l)*exp(-nu*r**2)*assoc_laguerre(n - 1, l + S.Half, 2*nu*r**2) |
|
|
|
|
|
def E_nl(n, l, hw): |
|
""" |
|
Returns the Energy of an isotropic harmonic oscillator. |
|
|
|
Parameters |
|
========== |
|
|
|
n : |
|
The "nodal" quantum number. |
|
l : |
|
The orbital angular momentum. |
|
hw : |
|
The harmonic oscillator parameter. |
|
|
|
Notes |
|
===== |
|
|
|
The unit of the returned value matches the unit of hw, since the energy is |
|
calculated as: |
|
|
|
E_nl = (2*n + l + 3/2)*hw |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.sho import E_nl |
|
>>> from sympy import symbols |
|
>>> x, y, z = symbols('x, y, z') |
|
>>> E_nl(x, y, z) |
|
z*(2*x + y + 3/2) |
|
""" |
|
return (2*n + l + Rational(3, 2))*hw |
|
|