peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/_internal
/_generics.py
from __future__ import annotations | |
import sys | |
import types | |
import typing | |
from collections import ChainMap | |
from contextlib import contextmanager | |
from contextvars import ContextVar | |
from types import prepare_class | |
from typing import TYPE_CHECKING, Any, Iterator, List, Mapping, MutableMapping, Tuple, TypeVar | |
from weakref import WeakValueDictionary | |
import typing_extensions | |
from ._core_utils import get_type_ref | |
from ._forward_ref import PydanticRecursiveRef | |
from ._typing_extra import TypeVarType, typing_base | |
from ._utils import all_identical, is_model_class | |
if sys.version_info >= (3, 10): | |
from typing import _UnionGenericAlias # type: ignore[attr-defined] | |
if TYPE_CHECKING: | |
from ..main import BaseModel | |
GenericTypesCacheKey = Tuple[Any, Any, Tuple[Any, ...]] | |
# Note: We want to remove LimitedDict, but to do this, we'd need to improve the handling of generics caching. | |
# Right now, to handle recursive generics, we some types must remain cached for brief periods without references. | |
# By chaining the WeakValuesDict with a LimitedDict, we have a way to retain caching for all types with references, | |
# while also retaining a limited number of types even without references. This is generally enough to build | |
# specific recursive generic models without losing required items out of the cache. | |
KT = TypeVar('KT') | |
VT = TypeVar('VT') | |
_LIMITED_DICT_SIZE = 100 | |
if TYPE_CHECKING: | |
class LimitedDict(dict, MutableMapping[KT, VT]): | |
def __init__(self, size_limit: int = _LIMITED_DICT_SIZE): | |
... | |
else: | |
class LimitedDict(dict): | |
"""Limit the size/length of a dict used for caching to avoid unlimited increase in memory usage. | |
Since the dict is ordered, and we always remove elements from the beginning, this is effectively a FIFO cache. | |
""" | |
def __init__(self, size_limit: int = _LIMITED_DICT_SIZE): | |
self.size_limit = size_limit | |
super().__init__() | |
def __setitem__(self, key: Any, value: Any, /) -> None: | |
super().__setitem__(key, value) | |
if len(self) > self.size_limit: | |
excess = len(self) - self.size_limit + self.size_limit // 10 | |
to_remove = list(self.keys())[:excess] | |
for k in to_remove: | |
del self[k] | |
# weak dictionaries allow the dynamically created parametrized versions of generic models to get collected | |
# once they are no longer referenced by the caller. | |
if sys.version_info >= (3, 9): # Typing for weak dictionaries available at 3.9 | |
GenericTypesCache = WeakValueDictionary[GenericTypesCacheKey, 'type[BaseModel]'] | |
else: | |
GenericTypesCache = WeakValueDictionary | |
if TYPE_CHECKING: | |
class DeepChainMap(ChainMap[KT, VT]): # type: ignore | |
... | |
else: | |
class DeepChainMap(ChainMap): | |
"""Variant of ChainMap that allows direct updates to inner scopes. | |
Taken from https://docs.python.org/3/library/collections.html#collections.ChainMap, | |
with some light modifications for this use case. | |
""" | |
def clear(self) -> None: | |
for mapping in self.maps: | |
mapping.clear() | |
def __setitem__(self, key: KT, value: VT) -> None: | |
for mapping in self.maps: | |
mapping[key] = value | |
def __delitem__(self, key: KT) -> None: | |
hit = False | |
for mapping in self.maps: | |
if key in mapping: | |
del mapping[key] | |
hit = True | |
if not hit: | |
raise KeyError(key) | |
# Despite the fact that LimitedDict _seems_ no longer necessary, I'm very nervous to actually remove it | |
# and discover later on that we need to re-add all this infrastructure... | |
# _GENERIC_TYPES_CACHE = DeepChainMap(GenericTypesCache(), LimitedDict()) | |
_GENERIC_TYPES_CACHE = GenericTypesCache() | |
class PydanticGenericMetadata(typing_extensions.TypedDict): | |
origin: type[BaseModel] | None # analogous to typing._GenericAlias.__origin__ | |
args: tuple[Any, ...] # analogous to typing._GenericAlias.__args__ | |
parameters: tuple[type[Any], ...] # analogous to typing.Generic.__parameters__ | |
def create_generic_submodel( | |
model_name: str, origin: type[BaseModel], args: tuple[Any, ...], params: tuple[Any, ...] | |
) -> type[BaseModel]: | |
"""Dynamically create a submodel of a provided (generic) BaseModel. | |
This is used when producing concrete parametrizations of generic models. This function | |
only *creates* the new subclass; the schema/validators/serialization must be updated to | |
reflect a concrete parametrization elsewhere. | |
Args: | |
model_name: The name of the newly created model. | |
origin: The base class for the new model to inherit from. | |
args: A tuple of generic metadata arguments. | |
params: A tuple of generic metadata parameters. | |
Returns: | |
The created submodel. | |
""" | |
namespace: dict[str, Any] = {'__module__': origin.__module__} | |
bases = (origin,) | |
meta, ns, kwds = prepare_class(model_name, bases) | |
namespace.update(ns) | |
created_model = meta( | |
model_name, | |
bases, | |
namespace, | |
__pydantic_generic_metadata__={ | |
'origin': origin, | |
'args': args, | |
'parameters': params, | |
}, | |
__pydantic_reset_parent_namespace__=False, | |
**kwds, | |
) | |
model_module, called_globally = _get_caller_frame_info(depth=3) | |
if called_globally: # create global reference and therefore allow pickling | |
object_by_reference = None | |
reference_name = model_name | |
reference_module_globals = sys.modules[created_model.__module__].__dict__ | |
while object_by_reference is not created_model: | |
object_by_reference = reference_module_globals.setdefault(reference_name, created_model) | |
reference_name += '_' | |
return created_model | |
def _get_caller_frame_info(depth: int = 2) -> tuple[str | None, bool]: | |
"""Used inside a function to check whether it was called globally. | |
Args: | |
depth: The depth to get the frame. | |
Returns: | |
A tuple contains `module_name` and `called_globally`. | |
Raises: | |
RuntimeError: If the function is not called inside a function. | |
""" | |
try: | |
previous_caller_frame = sys._getframe(depth) | |
except ValueError as e: | |
raise RuntimeError('This function must be used inside another function') from e | |
except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it | |
return None, False | |
frame_globals = previous_caller_frame.f_globals | |
return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals | |
DictValues: type[Any] = {}.values().__class__ | |
def iter_contained_typevars(v: Any) -> Iterator[TypeVarType]: | |
"""Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found. | |
This is inspired as an alternative to directly accessing the `__parameters__` attribute of a GenericAlias, | |
since __parameters__ of (nested) generic BaseModel subclasses won't show up in that list. | |
""" | |
if isinstance(v, TypeVar): | |
yield v | |
elif is_model_class(v): | |
yield from v.__pydantic_generic_metadata__['parameters'] | |
elif isinstance(v, (DictValues, list)): | |
for var in v: | |
yield from iter_contained_typevars(var) | |
else: | |
args = get_args(v) | |
for arg in args: | |
yield from iter_contained_typevars(arg) | |
def get_args(v: Any) -> Any: | |
pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None) | |
if pydantic_generic_metadata: | |
return pydantic_generic_metadata.get('args') | |
return typing_extensions.get_args(v) | |
def get_origin(v: Any) -> Any: | |
pydantic_generic_metadata: PydanticGenericMetadata | None = getattr(v, '__pydantic_generic_metadata__', None) | |
if pydantic_generic_metadata: | |
return pydantic_generic_metadata.get('origin') | |
return typing_extensions.get_origin(v) | |
def get_standard_typevars_map(cls: type[Any]) -> dict[TypeVarType, Any] | None: | |
"""Package a generic type's typevars and parametrization (if present) into a dictionary compatible with the | |
`replace_types` function. Specifically, this works with standard typing generics and typing._GenericAlias. | |
""" | |
origin = get_origin(cls) | |
if origin is None: | |
return None | |
if not hasattr(origin, '__parameters__'): | |
return None | |
# In this case, we know that cls is a _GenericAlias, and origin is the generic type | |
# So it is safe to access cls.__args__ and origin.__parameters__ | |
args: tuple[Any, ...] = cls.__args__ # type: ignore | |
parameters: tuple[TypeVarType, ...] = origin.__parameters__ | |
return dict(zip(parameters, args)) | |
def get_model_typevars_map(cls: type[BaseModel]) -> dict[TypeVarType, Any] | None: | |
"""Package a generic BaseModel's typevars and concrete parametrization (if present) into a dictionary compatible | |
with the `replace_types` function. | |
Since BaseModel.__class_getitem__ does not produce a typing._GenericAlias, and the BaseModel generic info is | |
stored in the __pydantic_generic_metadata__ attribute, we need special handling here. | |
""" | |
# TODO: This could be unified with `get_standard_typevars_map` if we stored the generic metadata | |
# in the __origin__, __args__, and __parameters__ attributes of the model. | |
generic_metadata = cls.__pydantic_generic_metadata__ | |
origin = generic_metadata['origin'] | |
args = generic_metadata['args'] | |
return dict(zip(iter_contained_typevars(origin), args)) | |
def replace_types(type_: Any, type_map: Mapping[Any, Any] | None) -> Any: | |
"""Return type with all occurrences of `type_map` keys recursively replaced with their values. | |
Args: | |
type_: The class or generic alias. | |
type_map: Mapping from `TypeVar` instance to concrete types. | |
Returns: | |
A new type representing the basic structure of `type_` with all | |
`typevar_map` keys recursively replaced. | |
Example: | |
```py | |
from typing import List, Tuple, Union | |
from pydantic._internal._generics import replace_types | |
replace_types(Tuple[str, Union[List[str], float]], {str: int}) | |
#> Tuple[int, Union[List[int], float]] | |
``` | |
""" | |
if not type_map: | |
return type_ | |
type_args = get_args(type_) | |
origin_type = get_origin(type_) | |
if origin_type is typing_extensions.Annotated: | |
annotated_type, *annotations = type_args | |
annotated = replace_types(annotated_type, type_map) | |
for annotation in annotations: | |
annotated = typing_extensions.Annotated[annotated, annotation] | |
return annotated | |
# Having type args is a good indicator that this is a typing module | |
# class instantiation or a generic alias of some sort. | |
if type_args: | |
resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args) | |
if all_identical(type_args, resolved_type_args): | |
# If all arguments are the same, there is no need to modify the | |
# type or create a new object at all | |
return type_ | |
if ( | |
origin_type is not None | |
and isinstance(type_, typing_base) | |
and not isinstance(origin_type, typing_base) | |
and getattr(type_, '_name', None) is not None | |
): | |
# In python < 3.9 generic aliases don't exist so any of these like `list`, | |
# `type` or `collections.abc.Callable` need to be translated. | |
# See: https://www.python.org/dev/peps/pep-0585 | |
origin_type = getattr(typing, type_._name) | |
assert origin_type is not None | |
# PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__. | |
# We also cannot use isinstance() since we have to compare types. | |
if sys.version_info >= (3, 10) and origin_type is types.UnionType: | |
return _UnionGenericAlias(origin_type, resolved_type_args) | |
# NotRequired[T] and Required[T] don't support tuple type resolved_type_args, hence the condition below | |
return origin_type[resolved_type_args[0] if len(resolved_type_args) == 1 else resolved_type_args] | |
# We handle pydantic generic models separately as they don't have the same | |
# semantics as "typing" classes or generic aliases | |
if not origin_type and is_model_class(type_): | |
parameters = type_.__pydantic_generic_metadata__['parameters'] | |
if not parameters: | |
return type_ | |
resolved_type_args = tuple(replace_types(t, type_map) for t in parameters) | |
if all_identical(parameters, resolved_type_args): | |
return type_ | |
return type_[resolved_type_args] | |
# Handle special case for typehints that can have lists as arguments. | |
# `typing.Callable[[int, str], int]` is an example for this. | |
if isinstance(type_, (List, list)): | |
resolved_list = list(replace_types(element, type_map) for element in type_) | |
if all_identical(type_, resolved_list): | |
return type_ | |
return resolved_list | |
# If all else fails, we try to resolve the type directly and otherwise just | |
# return the input with no modifications. | |
return type_map.get(type_, type_) | |
def has_instance_in_type(type_: Any, isinstance_target: Any) -> bool: | |
"""Checks if the type, or any of its arbitrary nested args, satisfy | |
`isinstance(<type>, isinstance_target)`. | |
""" | |
if isinstance(type_, isinstance_target): | |
return True | |
type_args = get_args(type_) | |
origin_type = get_origin(type_) | |
if origin_type is typing_extensions.Annotated: | |
annotated_type, *annotations = type_args | |
return has_instance_in_type(annotated_type, isinstance_target) | |
# Having type args is a good indicator that this is a typing module | |
# class instantiation or a generic alias of some sort. | |
if any(has_instance_in_type(a, isinstance_target) for a in type_args): | |
return True | |
# Handle special case for typehints that can have lists as arguments. | |
# `typing.Callable[[int, str], int]` is an example for this. | |
if isinstance(type_, (List, list)) and not isinstance(type_, typing_extensions.ParamSpec): | |
if any(has_instance_in_type(element, isinstance_target) for element in type_): | |
return True | |
return False | |
def check_parameters_count(cls: type[BaseModel], parameters: tuple[Any, ...]) -> None: | |
"""Check the generic model parameters count is equal. | |
Args: | |
cls: The generic model. | |
parameters: A tuple of passed parameters to the generic model. | |
Raises: | |
TypeError: If the passed parameters count is not equal to generic model parameters count. | |
""" | |
actual = len(parameters) | |
expected = len(cls.__pydantic_generic_metadata__['parameters']) | |
if actual != expected: | |
description = 'many' if actual > expected else 'few' | |
raise TypeError(f'Too {description} parameters for {cls}; actual {actual}, expected {expected}') | |
_generic_recursion_cache: ContextVar[set[str] | None] = ContextVar('_generic_recursion_cache', default=None) | |
def generic_recursion_self_type( | |
origin: type[BaseModel], args: tuple[Any, ...] | |
) -> Iterator[PydanticRecursiveRef | None]: | |
"""This contextmanager should be placed around the recursive calls used to build a generic type, | |
and accept as arguments the generic origin type and the type arguments being passed to it. | |
If the same origin and arguments are observed twice, it implies that a self-reference placeholder | |
can be used while building the core schema, and will produce a schema_ref that will be valid in the | |
final parent schema. | |
""" | |
previously_seen_type_refs = _generic_recursion_cache.get() | |
if previously_seen_type_refs is None: | |
previously_seen_type_refs = set() | |
token = _generic_recursion_cache.set(previously_seen_type_refs) | |
else: | |
token = None | |
try: | |
type_ref = get_type_ref(origin, args_override=args) | |
if type_ref in previously_seen_type_refs: | |
self_type = PydanticRecursiveRef(type_ref=type_ref) | |
yield self_type | |
else: | |
previously_seen_type_refs.add(type_ref) | |
yield None | |
finally: | |
if token: | |
_generic_recursion_cache.reset(token) | |
def recursively_defined_type_refs() -> set[str]: | |
visited = _generic_recursion_cache.get() | |
if not visited: | |
return set() # not in a generic recursion, so there are no types | |
return visited.copy() # don't allow modifications | |
def get_cached_generic_type_early(parent: type[BaseModel], typevar_values: Any) -> type[BaseModel] | None: | |
"""The use of a two-stage cache lookup approach was necessary to have the highest performance possible for | |
repeated calls to `__class_getitem__` on generic types (which may happen in tighter loops during runtime), | |
while still ensuring that certain alternative parametrizations ultimately resolve to the same type. | |
As a concrete example, this approach was necessary to make Model[List[T]][int] equal to Model[List[int]]. | |
The approach could be modified to not use two different cache keys at different points, but the | |
_early_cache_key is optimized to be as quick to compute as possible (for repeated-access speed), and the | |
_late_cache_key is optimized to be as "correct" as possible, so that two types that will ultimately be the | |
same after resolving the type arguments will always produce cache hits. | |
If we wanted to move to only using a single cache key per type, we would either need to always use the | |
slower/more computationally intensive logic associated with _late_cache_key, or would need to accept | |
that Model[List[T]][int] is a different type than Model[List[T]][int]. Because we rely on subclass relationships | |
during validation, I think it is worthwhile to ensure that types that are functionally equivalent are actually | |
equal. | |
""" | |
return _GENERIC_TYPES_CACHE.get(_early_cache_key(parent, typevar_values)) | |
def get_cached_generic_type_late( | |
parent: type[BaseModel], typevar_values: Any, origin: type[BaseModel], args: tuple[Any, ...] | |
) -> type[BaseModel] | None: | |
"""See the docstring of `get_cached_generic_type_early` for more information about the two-stage cache lookup.""" | |
cached = _GENERIC_TYPES_CACHE.get(_late_cache_key(origin, args, typevar_values)) | |
if cached is not None: | |
set_cached_generic_type(parent, typevar_values, cached, origin, args) | |
return cached | |
def set_cached_generic_type( | |
parent: type[BaseModel], | |
typevar_values: tuple[Any, ...], | |
type_: type[BaseModel], | |
origin: type[BaseModel] | None = None, | |
args: tuple[Any, ...] | None = None, | |
) -> None: | |
"""See the docstring of `get_cached_generic_type_early` for more information about why items are cached with | |
two different keys. | |
""" | |
_GENERIC_TYPES_CACHE[_early_cache_key(parent, typevar_values)] = type_ | |
if len(typevar_values) == 1: | |
_GENERIC_TYPES_CACHE[_early_cache_key(parent, typevar_values[0])] = type_ | |
if origin and args: | |
_GENERIC_TYPES_CACHE[_late_cache_key(origin, args, typevar_values)] = type_ | |
def _union_orderings_key(typevar_values: Any) -> Any: | |
"""This is intended to help differentiate between Union types with the same arguments in different order. | |
Thanks to caching internal to the `typing` module, it is not possible to distinguish between | |
List[Union[int, float]] and List[Union[float, int]] (and similarly for other "parent" origins besides List) | |
because `typing` considers Union[int, float] to be equal to Union[float, int]. | |
However, you _can_ distinguish between (top-level) Union[int, float] vs. Union[float, int]. | |
Because we parse items as the first Union type that is successful, we get slightly more consistent behavior | |
if we make an effort to distinguish the ordering of items in a union. It would be best if we could _always_ | |
get the exact-correct order of items in the union, but that would require a change to the `typing` module itself. | |
(See https://github.com/python/cpython/issues/86483 for reference.) | |
""" | |
if isinstance(typevar_values, tuple): | |
args_data = [] | |
for value in typevar_values: | |
args_data.append(_union_orderings_key(value)) | |
return tuple(args_data) | |
elif typing_extensions.get_origin(typevar_values) is typing.Union: | |
return get_args(typevar_values) | |
else: | |
return () | |
def _early_cache_key(cls: type[BaseModel], typevar_values: Any) -> GenericTypesCacheKey: | |
"""This is intended for minimal computational overhead during lookups of cached types. | |
Note that this is overly simplistic, and it's possible that two different cls/typevar_values | |
inputs would ultimately result in the same type being created in BaseModel.__class_getitem__. | |
To handle this, we have a fallback _late_cache_key that is checked later if the _early_cache_key | |
lookup fails, and should result in a cache hit _precisely_ when the inputs to __class_getitem__ | |
would result in the same type. | |
""" | |
return cls, typevar_values, _union_orderings_key(typevar_values) | |
def _late_cache_key(origin: type[BaseModel], args: tuple[Any, ...], typevar_values: Any) -> GenericTypesCacheKey: | |
"""This is intended for use later in the process of creating a new type, when we have more information | |
about the exact args that will be passed. If it turns out that a different set of inputs to | |
__class_getitem__ resulted in the same inputs to the generic type creation process, we can still | |
return the cached type, and update the cache with the _early_cache_key as well. | |
""" | |
# The _union_orderings_key is placed at the start here to ensure there cannot be a collision with an | |
# _early_cache_key, as that function will always produce a BaseModel subclass as the first item in the key, | |
# whereas this function will always produce a tuple as the first item in the key. | |
return _union_orderings_key(typevar_values), origin, args | |