peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/tests
/test_decomp.py
import itertools | |
import platform | |
import sys | |
import numpy as np | |
from numpy.testing import (assert_equal, assert_almost_equal, | |
assert_array_almost_equal, assert_array_equal, | |
assert_, assert_allclose) | |
import pytest | |
from pytest import raises as assert_raises | |
from scipy.linalg import (eig, eigvals, lu, svd, svdvals, cholesky, qr, | |
schur, rsf2csf, lu_solve, lu_factor, solve, diagsvd, | |
hessenberg, rq, eig_banded, eigvals_banded, eigh, | |
eigvalsh, qr_multiply, qz, orth, ordqz, | |
subspace_angles, hadamard, eigvalsh_tridiagonal, | |
eigh_tridiagonal, null_space, cdf2rdf, LinAlgError) | |
from scipy.linalg.lapack import (dgbtrf, dgbtrs, zgbtrf, zgbtrs, dsbev, | |
dsbevd, dsbevx, zhbevd, zhbevx) | |
from scipy.linalg._misc import norm | |
from scipy.linalg._decomp_qz import _select_function | |
from scipy.stats import ortho_group | |
from numpy import (array, diag, full, linalg, argsort, zeros, arange, | |
float32, complex64, ravel, sqrt, iscomplex, shape, sort, | |
sign, asarray, isfinite, ndarray, eye,) | |
from scipy.linalg._testutils import assert_no_overwrite | |
from scipy.sparse._sputils import matrix | |
from scipy._lib._testutils import check_free_memory | |
from scipy.linalg.blas import HAS_ILP64 | |
try: | |
from scipy.__config__ import CONFIG | |
except ImportError: | |
CONFIG = None | |
def _random_hermitian_matrix(n, posdef=False, dtype=float): | |
"Generate random sym/hermitian array of the given size n" | |
if dtype in COMPLEX_DTYPES: | |
A = np.random.rand(n, n) + np.random.rand(n, n)*1.0j | |
A = (A + A.conj().T)/2 | |
else: | |
A = np.random.rand(n, n) | |
A = (A + A.T)/2 | |
if posdef: | |
A += sqrt(2*n)*np.eye(n) | |
return A.astype(dtype) | |
REAL_DTYPES = [np.float32, np.float64] | |
COMPLEX_DTYPES = [np.complex64, np.complex128] | |
DTYPES = REAL_DTYPES + COMPLEX_DTYPES | |
# XXX: This function should not be defined here, but somewhere in | |
# scipy.linalg namespace | |
def symrand(dim_or_eigv, rng): | |
"""Return a random symmetric (Hermitian) matrix. | |
If 'dim_or_eigv' is an integer N, return a NxN matrix, with eigenvalues | |
uniformly distributed on (-1,1). | |
If 'dim_or_eigv' is 1-D real array 'a', return a matrix whose | |
eigenvalues are 'a'. | |
""" | |
if isinstance(dim_or_eigv, int): | |
dim = dim_or_eigv | |
d = rng.random(dim)*2 - 1 | |
elif (isinstance(dim_or_eigv, ndarray) and | |
len(dim_or_eigv.shape) == 1): | |
dim = dim_or_eigv.shape[0] | |
d = dim_or_eigv | |
else: | |
raise TypeError("input type not supported.") | |
v = ortho_group.rvs(dim) | |
h = v.T.conj() @ diag(d) @ v | |
# to avoid roundoff errors, symmetrize the matrix (again) | |
h = 0.5*(h.T+h) | |
return h | |
class TestEigVals: | |
def test_simple(self): | |
a = [[1, 2, 3], [1, 2, 3], [2, 5, 6]] | |
w = eigvals(a) | |
exact_w = [(9+sqrt(93))/2, 0, (9-sqrt(93))/2] | |
assert_array_almost_equal(w, exact_w) | |
def test_simple_tr(self): | |
a = array([[1, 2, 3], [1, 2, 3], [2, 5, 6]], 'd').T | |
a = a.copy() | |
a = a.T | |
w = eigvals(a) | |
exact_w = [(9+sqrt(93))/2, 0, (9-sqrt(93))/2] | |
assert_array_almost_equal(w, exact_w) | |
def test_simple_complex(self): | |
a = [[1, 2, 3], [1, 2, 3], [2, 5, 6+1j]] | |
w = eigvals(a) | |
exact_w = [(9+1j+sqrt(92+6j))/2, | |
0, | |
(9+1j-sqrt(92+6j))/2] | |
assert_array_almost_equal(w, exact_w) | |
def test_finite(self): | |
a = [[1, 2, 3], [1, 2, 3], [2, 5, 6]] | |
w = eigvals(a, check_finite=False) | |
exact_w = [(9+sqrt(93))/2, 0, (9-sqrt(93))/2] | |
assert_array_almost_equal(w, exact_w) | |
class TestEig: | |
def test_simple(self): | |
a = array([[1, 2, 3], [1, 2, 3], [2, 5, 6]]) | |
w, v = eig(a) | |
exact_w = [(9+sqrt(93))/2, 0, (9-sqrt(93))/2] | |
v0 = array([1, 1, (1+sqrt(93)/3)/2]) | |
v1 = array([3., 0, -1]) | |
v2 = array([1, 1, (1-sqrt(93)/3)/2]) | |
v0 = v0 / norm(v0) | |
v1 = v1 / norm(v1) | |
v2 = v2 / norm(v2) | |
assert_array_almost_equal(w, exact_w) | |
assert_array_almost_equal(v0, v[:, 0]*sign(v[0, 0])) | |
assert_array_almost_equal(v1, v[:, 1]*sign(v[0, 1])) | |
assert_array_almost_equal(v2, v[:, 2]*sign(v[0, 2])) | |
for i in range(3): | |
assert_array_almost_equal(a @ v[:, i], w[i]*v[:, i]) | |
w, v = eig(a, left=1, right=0) | |
for i in range(3): | |
assert_array_almost_equal(a.T @ v[:, i], w[i]*v[:, i]) | |
def test_simple_complex_eig(self): | |
a = array([[1, 2], [-2, 1]]) | |
w, vl, vr = eig(a, left=1, right=1) | |
assert_array_almost_equal(w, array([1+2j, 1-2j])) | |
for i in range(2): | |
assert_array_almost_equal(a @ vr[:, i], w[i]*vr[:, i]) | |
for i in range(2): | |
assert_array_almost_equal(a.conj().T @ vl[:, i], | |
w[i].conj()*vl[:, i]) | |
def test_simple_complex(self): | |
a = array([[1, 2, 3], [1, 2, 3], [2, 5, 6+1j]]) | |
w, vl, vr = eig(a, left=1, right=1) | |
for i in range(3): | |
assert_array_almost_equal(a @ vr[:, i], w[i]*vr[:, i]) | |
for i in range(3): | |
assert_array_almost_equal(a.conj().T @ vl[:, i], | |
w[i].conj()*vl[:, i]) | |
def test_gh_3054(self): | |
a = [[1]] | |
b = [[0]] | |
w, vr = eig(a, b, homogeneous_eigvals=True) | |
assert_allclose(w[1, 0], 0) | |
assert_(w[0, 0] != 0) | |
assert_allclose(vr, 1) | |
w, vr = eig(a, b) | |
assert_equal(w, np.inf) | |
assert_allclose(vr, 1) | |
def _check_gen_eig(self, A, B, atol_homog=1e-13, rtol_homog=1e-13): | |
if B is not None: | |
A, B = asarray(A), asarray(B) | |
B0 = B | |
else: | |
A = asarray(A) | |
B0 = B | |
B = np.eye(*A.shape) | |
msg = f"\n{A!r}\n{B!r}" | |
# Eigenvalues in homogeneous coordinates | |
w, vr = eig(A, B0, homogeneous_eigvals=True) | |
wt = eigvals(A, B0, homogeneous_eigvals=True) | |
val1 = A @ vr * w[1, :] | |
val2 = B @ vr * w[0, :] | |
for i in range(val1.shape[1]): | |
assert_allclose(val1[:, i], val2[:, i], | |
rtol=rtol_homog, atol=atol_homog, err_msg=msg) | |
if B0 is None: | |
assert_allclose(w[1, :], 1) | |
assert_allclose(wt[1, :], 1) | |
perm = np.lexsort(w) | |
permt = np.lexsort(wt) | |
assert_allclose(w[:, perm], wt[:, permt], atol=1e-7, rtol=1e-7, | |
err_msg=msg) | |
length = np.empty(len(vr)) | |
for i in range(len(vr)): | |
length[i] = norm(vr[:, i]) | |
assert_allclose(length, np.ones(length.size), err_msg=msg, | |
atol=1e-7, rtol=1e-7) | |
# Convert homogeneous coordinates | |
beta_nonzero = (w[1, :] != 0) | |
wh = w[0, beta_nonzero] / w[1, beta_nonzero] | |
# Eigenvalues in standard coordinates | |
w, vr = eig(A, B0) | |
wt = eigvals(A, B0) | |
val1 = A @ vr | |
val2 = B @ vr * w | |
res = val1 - val2 | |
for i in range(res.shape[1]): | |
if np.all(isfinite(res[:, i])): | |
assert_allclose(res[:, i], 0, | |
rtol=1e-13, atol=1e-13, err_msg=msg) | |
# try to consistently order eigenvalues, including complex conjugate pairs | |
w_fin = w[isfinite(w)] | |
wt_fin = wt[isfinite(wt)] | |
# prune noise in the real parts | |
w_fin = -1j * np.real_if_close(1j*w_fin, tol=1e-10) | |
wt_fin = -1j * np.real_if_close(1j*wt_fin, tol=1e-10) | |
perm = argsort(w_fin) | |
permt = argsort(wt_fin) | |
assert_allclose(w_fin[perm], wt_fin[permt], | |
atol=1e-7, rtol=1e-7, err_msg=msg) | |
length = np.empty(len(vr)) | |
for i in range(len(vr)): | |
length[i] = norm(vr[:, i]) | |
assert_allclose(length, np.ones(length.size), err_msg=msg) | |
# Compare homogeneous and nonhomogeneous versions | |
assert_allclose(sort(wh), sort(w[np.isfinite(w)])) | |
def test_singular(self): | |
# Example taken from | |
# https://web.archive.org/web/20040903121217/http://www.cs.umu.se/research/nla/singular_pairs/guptri/matlab.html | |
A = array([[22, 34, 31, 31, 17], | |
[45, 45, 42, 19, 29], | |
[39, 47, 49, 26, 34], | |
[27, 31, 26, 21, 15], | |
[38, 44, 44, 24, 30]]) | |
B = array([[13, 26, 25, 17, 24], | |
[31, 46, 40, 26, 37], | |
[26, 40, 19, 25, 25], | |
[16, 25, 27, 14, 23], | |
[24, 35, 18, 21, 22]]) | |
with np.errstate(all='ignore'): | |
self._check_gen_eig(A, B, atol_homog=5e-13) | |
def test_falker(self): | |
# Test matrices giving some Nan generalized eigenvalues. | |
M = diag(array([1, 0, 3])) | |
K = array(([2, -1, -1], [-1, 2, -1], [-1, -1, 2])) | |
D = array(([1, -1, 0], [-1, 1, 0], [0, 0, 0])) | |
Z = zeros((3, 3)) | |
I3 = eye(3) | |
A = np.block([[I3, Z], [Z, -K]]) | |
B = np.block([[Z, I3], [M, D]]) | |
with np.errstate(all='ignore'): | |
self._check_gen_eig(A, B) | |
def test_bad_geneig(self): | |
# Ticket #709 (strange return values from DGGEV) | |
def matrices(omega): | |
c1 = -9 + omega**2 | |
c2 = 2*omega | |
A = [[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, c1, 0], | |
[0, 0, 0, c1]] | |
B = [[0, 0, 1, 0], | |
[0, 0, 0, 1], | |
[1, 0, 0, -c2], | |
[0, 1, c2, 0]] | |
return A, B | |
# With a buggy LAPACK, this can fail for different omega on different | |
# machines -- so we need to test several values | |
with np.errstate(all='ignore'): | |
for k in range(100): | |
A, B = matrices(omega=k*5./100) | |
self._check_gen_eig(A, B) | |
def test_make_eigvals(self): | |
# Step through all paths in _make_eigvals | |
# Real eigenvalues | |
rng = np.random.RandomState(1234) | |
A = symrand(3, rng) | |
self._check_gen_eig(A, None) | |
B = symrand(3, rng) | |
self._check_gen_eig(A, B) | |
# Complex eigenvalues | |
A = rng.random((3, 3)) + 1j*rng.random((3, 3)) | |
self._check_gen_eig(A, None) | |
B = rng.random((3, 3)) + 1j*rng.random((3, 3)) | |
self._check_gen_eig(A, B) | |
def test_check_finite(self): | |
a = [[1, 2, 3], [1, 2, 3], [2, 5, 6]] | |
w, v = eig(a, check_finite=False) | |
exact_w = [(9+sqrt(93))/2, 0, (9-sqrt(93))/2] | |
v0 = array([1, 1, (1+sqrt(93)/3)/2]) | |
v1 = array([3., 0, -1]) | |
v2 = array([1, 1, (1-sqrt(93)/3)/2]) | |
v0 = v0 / norm(v0) | |
v1 = v1 / norm(v1) | |
v2 = v2 / norm(v2) | |
assert_array_almost_equal(w, exact_w) | |
assert_array_almost_equal(v0, v[:, 0]*sign(v[0, 0])) | |
assert_array_almost_equal(v1, v[:, 1]*sign(v[0, 1])) | |
assert_array_almost_equal(v2, v[:, 2]*sign(v[0, 2])) | |
for i in range(3): | |
assert_array_almost_equal(a @ v[:, i], w[i]*v[:, i]) | |
def test_not_square_error(self): | |
"""Check that passing a non-square array raises a ValueError.""" | |
A = np.arange(6).reshape(3, 2) | |
assert_raises(ValueError, eig, A) | |
def test_shape_mismatch(self): | |
"""Check that passing arrays of with different shapes | |
raises a ValueError.""" | |
A = eye(2) | |
B = np.arange(9.0).reshape(3, 3) | |
assert_raises(ValueError, eig, A, B) | |
assert_raises(ValueError, eig, B, A) | |
def test_gh_11577(self): | |
# https://github.com/scipy/scipy/issues/11577 | |
# `A - lambda B` should have 4 and 8 among the eigenvalues, and this | |
# was apparently broken on some platforms | |
A = np.array([[12.0, 28.0, 76.0, 220.0], | |
[16.0, 32.0, 80.0, 224.0], | |
[24.0, 40.0, 88.0, 232.0], | |
[40.0, 56.0, 104.0, 248.0]], dtype='float64') | |
B = np.array([[2.0, 4.0, 10.0, 28.0], | |
[3.0, 5.0, 11.0, 29.0], | |
[5.0, 7.0, 13.0, 31.0], | |
[9.0, 11.0, 17.0, 35.0]], dtype='float64') | |
D, V = eig(A, B) | |
# The problem is ill-conditioned, and two other eigenvalues | |
# depend on ATLAS/OpenBLAS version, compiler version etc | |
# see gh-11577 for discussion | |
# | |
# NB: it is tempting to use `assert_allclose(D[:2], [4, 8])` instead but | |
# the ordering of eigenvalues also comes out different on different | |
# systems depending on who knows what. | |
with np.testing.suppress_warnings() as sup: | |
# isclose chokes on inf/nan values | |
sup.filter(RuntimeWarning, "invalid value encountered in multiply") | |
assert np.isclose(D, 4.0, atol=1e-14).any() | |
assert np.isclose(D, 8.0, atol=1e-14).any() | |
class TestEigBanded: | |
def setup_method(self): | |
self.create_bandmat() | |
def create_bandmat(self): | |
"""Create the full matrix `self.fullmat` and | |
the corresponding band matrix `self.bandmat`.""" | |
N = 10 | |
self.KL = 2 # number of subdiagonals (below the diagonal) | |
self.KU = 2 # number of superdiagonals (above the diagonal) | |
# symmetric band matrix | |
self.sym_mat = (diag(full(N, 1.0)) | |
+ diag(full(N-1, -1.0), -1) + diag(full(N-1, -1.0), 1) | |
+ diag(full(N-2, -2.0), -2) + diag(full(N-2, -2.0), 2)) | |
# hermitian band matrix | |
self.herm_mat = (diag(full(N, -1.0)) | |
+ 1j*diag(full(N-1, 1.0), -1) | |
- 1j*diag(full(N-1, 1.0), 1) | |
+ diag(full(N-2, -2.0), -2) | |
+ diag(full(N-2, -2.0), 2)) | |
# general real band matrix | |
self.real_mat = (diag(full(N, 1.0)) | |
+ diag(full(N-1, -1.0), -1) + diag(full(N-1, -3.0), 1) | |
+ diag(full(N-2, 2.0), -2) + diag(full(N-2, -2.0), 2)) | |
# general complex band matrix | |
self.comp_mat = (1j*diag(full(N, 1.0)) | |
+ diag(full(N-1, -1.0), -1) | |
+ 1j*diag(full(N-1, -3.0), 1) | |
+ diag(full(N-2, 2.0), -2) | |
+ diag(full(N-2, -2.0), 2)) | |
# Eigenvalues and -vectors from linalg.eig | |
ew, ev = linalg.eig(self.sym_mat) | |
ew = ew.real | |
args = argsort(ew) | |
self.w_sym_lin = ew[args] | |
self.evec_sym_lin = ev[:, args] | |
ew, ev = linalg.eig(self.herm_mat) | |
ew = ew.real | |
args = argsort(ew) | |
self.w_herm_lin = ew[args] | |
self.evec_herm_lin = ev[:, args] | |
# Extract upper bands from symmetric and hermitian band matrices | |
# (for use in dsbevd, dsbevx, zhbevd, zhbevx | |
# and their single precision versions) | |
LDAB = self.KU + 1 | |
self.bandmat_sym = zeros((LDAB, N), dtype=float) | |
self.bandmat_herm = zeros((LDAB, N), dtype=complex) | |
for i in range(LDAB): | |
self.bandmat_sym[LDAB-i-1, i:N] = diag(self.sym_mat, i) | |
self.bandmat_herm[LDAB-i-1, i:N] = diag(self.herm_mat, i) | |
# Extract bands from general real and complex band matrix | |
# (for use in dgbtrf, dgbtrs and their single precision versions) | |
LDAB = 2*self.KL + self.KU + 1 | |
self.bandmat_real = zeros((LDAB, N), dtype=float) | |
self.bandmat_real[2*self.KL, :] = diag(self.real_mat) # diagonal | |
for i in range(self.KL): | |
# superdiagonals | |
self.bandmat_real[2*self.KL-1-i, i+1:N] = diag(self.real_mat, i+1) | |
# subdiagonals | |
self.bandmat_real[2*self.KL+1+i, 0:N-1-i] = diag(self.real_mat, | |
-i-1) | |
self.bandmat_comp = zeros((LDAB, N), dtype=complex) | |
self.bandmat_comp[2*self.KL, :] = diag(self.comp_mat) # diagonal | |
for i in range(self.KL): | |
# superdiagonals | |
self.bandmat_comp[2*self.KL-1-i, i+1:N] = diag(self.comp_mat, i+1) | |
# subdiagonals | |
self.bandmat_comp[2*self.KL+1+i, 0:N-1-i] = diag(self.comp_mat, | |
-i-1) | |
# absolute value for linear equation system A*x = b | |
self.b = 1.0*arange(N) | |
self.bc = self.b * (1 + 1j) | |
##################################################################### | |
def test_dsbev(self): | |
"""Compare dsbev eigenvalues and eigenvectors with | |
the result of linalg.eig.""" | |
w, evec, info = dsbev(self.bandmat_sym, compute_v=1) | |
evec_ = evec[:, argsort(w)] | |
assert_array_almost_equal(sort(w), self.w_sym_lin) | |
assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin)) | |
def test_dsbevd(self): | |
"""Compare dsbevd eigenvalues and eigenvectors with | |
the result of linalg.eig.""" | |
w, evec, info = dsbevd(self.bandmat_sym, compute_v=1) | |
evec_ = evec[:, argsort(w)] | |
assert_array_almost_equal(sort(w), self.w_sym_lin) | |
assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin)) | |
def test_dsbevx(self): | |
"""Compare dsbevx eigenvalues and eigenvectors | |
with the result of linalg.eig.""" | |
N, N = shape(self.sym_mat) | |
# Achtung: Argumente 0.0,0.0,range? | |
w, evec, num, ifail, info = dsbevx(self.bandmat_sym, 0.0, 0.0, 1, N, | |
compute_v=1, range=2) | |
evec_ = evec[:, argsort(w)] | |
assert_array_almost_equal(sort(w), self.w_sym_lin) | |
assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin)) | |
def test_zhbevd(self): | |
"""Compare zhbevd eigenvalues and eigenvectors | |
with the result of linalg.eig.""" | |
w, evec, info = zhbevd(self.bandmat_herm, compute_v=1) | |
evec_ = evec[:, argsort(w)] | |
assert_array_almost_equal(sort(w), self.w_herm_lin) | |
assert_array_almost_equal(abs(evec_), abs(self.evec_herm_lin)) | |
def test_zhbevx(self): | |
"""Compare zhbevx eigenvalues and eigenvectors | |
with the result of linalg.eig.""" | |
N, N = shape(self.herm_mat) | |
# Achtung: Argumente 0.0,0.0,range? | |
w, evec, num, ifail, info = zhbevx(self.bandmat_herm, 0.0, 0.0, 1, N, | |
compute_v=1, range=2) | |
evec_ = evec[:, argsort(w)] | |
assert_array_almost_equal(sort(w), self.w_herm_lin) | |
assert_array_almost_equal(abs(evec_), abs(self.evec_herm_lin)) | |
def test_eigvals_banded(self): | |
"""Compare eigenvalues of eigvals_banded with those of linalg.eig.""" | |
w_sym = eigvals_banded(self.bandmat_sym) | |
w_sym = w_sym.real | |
assert_array_almost_equal(sort(w_sym), self.w_sym_lin) | |
w_herm = eigvals_banded(self.bandmat_herm) | |
w_herm = w_herm.real | |
assert_array_almost_equal(sort(w_herm), self.w_herm_lin) | |
# extracting eigenvalues with respect to an index range | |
ind1 = 2 | |
ind2 = np.longlong(6) | |
w_sym_ind = eigvals_banded(self.bandmat_sym, | |
select='i', select_range=(ind1, ind2)) | |
assert_array_almost_equal(sort(w_sym_ind), | |
self.w_sym_lin[ind1:ind2+1]) | |
w_herm_ind = eigvals_banded(self.bandmat_herm, | |
select='i', select_range=(ind1, ind2)) | |
assert_array_almost_equal(sort(w_herm_ind), | |
self.w_herm_lin[ind1:ind2+1]) | |
# extracting eigenvalues with respect to a value range | |
v_lower = self.w_sym_lin[ind1] - 1.0e-5 | |
v_upper = self.w_sym_lin[ind2] + 1.0e-5 | |
w_sym_val = eigvals_banded(self.bandmat_sym, | |
select='v', select_range=(v_lower, v_upper)) | |
assert_array_almost_equal(sort(w_sym_val), | |
self.w_sym_lin[ind1:ind2+1]) | |
v_lower = self.w_herm_lin[ind1] - 1.0e-5 | |
v_upper = self.w_herm_lin[ind2] + 1.0e-5 | |
w_herm_val = eigvals_banded(self.bandmat_herm, | |
select='v', | |
select_range=(v_lower, v_upper)) | |
assert_array_almost_equal(sort(w_herm_val), | |
self.w_herm_lin[ind1:ind2+1]) | |
w_sym = eigvals_banded(self.bandmat_sym, check_finite=False) | |
w_sym = w_sym.real | |
assert_array_almost_equal(sort(w_sym), self.w_sym_lin) | |
def test_eig_banded(self): | |
"""Compare eigenvalues and eigenvectors of eig_banded | |
with those of linalg.eig. """ | |
w_sym, evec_sym = eig_banded(self.bandmat_sym) | |
evec_sym_ = evec_sym[:, argsort(w_sym.real)] | |
assert_array_almost_equal(sort(w_sym), self.w_sym_lin) | |
assert_array_almost_equal(abs(evec_sym_), abs(self.evec_sym_lin)) | |
w_herm, evec_herm = eig_banded(self.bandmat_herm) | |
evec_herm_ = evec_herm[:, argsort(w_herm.real)] | |
assert_array_almost_equal(sort(w_herm), self.w_herm_lin) | |
assert_array_almost_equal(abs(evec_herm_), abs(self.evec_herm_lin)) | |
# extracting eigenvalues with respect to an index range | |
ind1 = 2 | |
ind2 = 6 | |
w_sym_ind, evec_sym_ind = eig_banded(self.bandmat_sym, | |
select='i', | |
select_range=(ind1, ind2)) | |
assert_array_almost_equal(sort(w_sym_ind), | |
self.w_sym_lin[ind1:ind2+1]) | |
assert_array_almost_equal(abs(evec_sym_ind), | |
abs(self.evec_sym_lin[:, ind1:ind2+1])) | |
w_herm_ind, evec_herm_ind = eig_banded(self.bandmat_herm, | |
select='i', | |
select_range=(ind1, ind2)) | |
assert_array_almost_equal(sort(w_herm_ind), | |
self.w_herm_lin[ind1:ind2+1]) | |
assert_array_almost_equal(abs(evec_herm_ind), | |
abs(self.evec_herm_lin[:, ind1:ind2+1])) | |
# extracting eigenvalues with respect to a value range | |
v_lower = self.w_sym_lin[ind1] - 1.0e-5 | |
v_upper = self.w_sym_lin[ind2] + 1.0e-5 | |
w_sym_val, evec_sym_val = eig_banded(self.bandmat_sym, | |
select='v', | |
select_range=(v_lower, v_upper)) | |
assert_array_almost_equal(sort(w_sym_val), | |
self.w_sym_lin[ind1:ind2+1]) | |
assert_array_almost_equal(abs(evec_sym_val), | |
abs(self.evec_sym_lin[:, ind1:ind2+1])) | |
v_lower = self.w_herm_lin[ind1] - 1.0e-5 | |
v_upper = self.w_herm_lin[ind2] + 1.0e-5 | |
w_herm_val, evec_herm_val = eig_banded(self.bandmat_herm, | |
select='v', | |
select_range=(v_lower, v_upper)) | |
assert_array_almost_equal(sort(w_herm_val), | |
self.w_herm_lin[ind1:ind2+1]) | |
assert_array_almost_equal(abs(evec_herm_val), | |
abs(self.evec_herm_lin[:, ind1:ind2+1])) | |
w_sym, evec_sym = eig_banded(self.bandmat_sym, check_finite=False) | |
evec_sym_ = evec_sym[:, argsort(w_sym.real)] | |
assert_array_almost_equal(sort(w_sym), self.w_sym_lin) | |
assert_array_almost_equal(abs(evec_sym_), abs(self.evec_sym_lin)) | |
def test_dgbtrf(self): | |
"""Compare dgbtrf LU factorisation with the LU factorisation result | |
of linalg.lu.""" | |
M, N = shape(self.real_mat) | |
lu_symm_band, ipiv, info = dgbtrf(self.bandmat_real, self.KL, self.KU) | |
# extract matrix u from lu_symm_band | |
u = diag(lu_symm_band[2*self.KL, :]) | |
for i in range(self.KL + self.KU): | |
u += diag(lu_symm_band[2*self.KL-1-i, i+1:N], i+1) | |
p_lin, l_lin, u_lin = lu(self.real_mat, permute_l=0) | |
assert_array_almost_equal(u, u_lin) | |
def test_zgbtrf(self): | |
"""Compare zgbtrf LU factorisation with the LU factorisation result | |
of linalg.lu.""" | |
M, N = shape(self.comp_mat) | |
lu_symm_band, ipiv, info = zgbtrf(self.bandmat_comp, self.KL, self.KU) | |
# extract matrix u from lu_symm_band | |
u = diag(lu_symm_band[2*self.KL, :]) | |
for i in range(self.KL + self.KU): | |
u += diag(lu_symm_band[2*self.KL-1-i, i+1:N], i+1) | |
p_lin, l_lin, u_lin = lu(self.comp_mat, permute_l=0) | |
assert_array_almost_equal(u, u_lin) | |
def test_dgbtrs(self): | |
"""Compare dgbtrs solutions for linear equation system A*x = b | |
with solutions of linalg.solve.""" | |
lu_symm_band, ipiv, info = dgbtrf(self.bandmat_real, self.KL, self.KU) | |
y, info = dgbtrs(lu_symm_band, self.KL, self.KU, self.b, ipiv) | |
y_lin = linalg.solve(self.real_mat, self.b) | |
assert_array_almost_equal(y, y_lin) | |
def test_zgbtrs(self): | |
"""Compare zgbtrs solutions for linear equation system A*x = b | |
with solutions of linalg.solve.""" | |
lu_symm_band, ipiv, info = zgbtrf(self.bandmat_comp, self.KL, self.KU) | |
y, info = zgbtrs(lu_symm_band, self.KL, self.KU, self.bc, ipiv) | |
y_lin = linalg.solve(self.comp_mat, self.bc) | |
assert_array_almost_equal(y, y_lin) | |
class TestEigTridiagonal: | |
def setup_method(self): | |
self.create_trimat() | |
def create_trimat(self): | |
"""Create the full matrix `self.fullmat`, `self.d`, and `self.e`.""" | |
N = 10 | |
# symmetric band matrix | |
self.d = full(N, 1.0) | |
self.e = full(N-1, -1.0) | |
self.full_mat = (diag(self.d) + diag(self.e, -1) + diag(self.e, 1)) | |
ew, ev = linalg.eig(self.full_mat) | |
ew = ew.real | |
args = argsort(ew) | |
self.w = ew[args] | |
self.evec = ev[:, args] | |
def test_degenerate(self): | |
"""Test error conditions.""" | |
# Wrong sizes | |
assert_raises(ValueError, eigvalsh_tridiagonal, self.d, self.e[:-1]) | |
# Must be real | |
assert_raises(TypeError, eigvalsh_tridiagonal, self.d, self.e * 1j) | |
# Bad driver | |
assert_raises(TypeError, eigvalsh_tridiagonal, self.d, self.e, | |
lapack_driver=1.) | |
assert_raises(ValueError, eigvalsh_tridiagonal, self.d, self.e, | |
lapack_driver='foo') | |
# Bad bounds | |
assert_raises(ValueError, eigvalsh_tridiagonal, self.d, self.e, | |
select='i', select_range=(0, -1)) | |
def test_eigvalsh_tridiagonal(self): | |
"""Compare eigenvalues of eigvalsh_tridiagonal with those of eig.""" | |
# can't use ?STERF with subselection | |
for driver in ('sterf', 'stev', 'stebz', 'stemr', 'auto'): | |
w = eigvalsh_tridiagonal(self.d, self.e, lapack_driver=driver) | |
assert_array_almost_equal(sort(w), self.w) | |
for driver in ('sterf', 'stev'): | |
assert_raises(ValueError, eigvalsh_tridiagonal, self.d, self.e, | |
lapack_driver='stev', select='i', | |
select_range=(0, 1)) | |
for driver in ('stebz', 'stemr', 'auto'): | |
# extracting eigenvalues with respect to the full index range | |
w_ind = eigvalsh_tridiagonal( | |
self.d, self.e, select='i', select_range=(0, len(self.d)-1), | |
lapack_driver=driver) | |
assert_array_almost_equal(sort(w_ind), self.w) | |
# extracting eigenvalues with respect to an index range | |
ind1 = 2 | |
ind2 = 6 | |
w_ind = eigvalsh_tridiagonal( | |
self.d, self.e, select='i', select_range=(ind1, ind2), | |
lapack_driver=driver) | |
assert_array_almost_equal(sort(w_ind), self.w[ind1:ind2+1]) | |
# extracting eigenvalues with respect to a value range | |
v_lower = self.w[ind1] - 1.0e-5 | |
v_upper = self.w[ind2] + 1.0e-5 | |
w_val = eigvalsh_tridiagonal( | |
self.d, self.e, select='v', select_range=(v_lower, v_upper), | |
lapack_driver=driver) | |
assert_array_almost_equal(sort(w_val), self.w[ind1:ind2+1]) | |
def test_eigh_tridiagonal(self): | |
"""Compare eigenvalues and eigenvectors of eigh_tridiagonal | |
with those of eig. """ | |
# can't use ?STERF when eigenvectors are requested | |
assert_raises(ValueError, eigh_tridiagonal, self.d, self.e, | |
lapack_driver='sterf') | |
for driver in ('stebz', 'stev', 'stemr', 'auto'): | |
w, evec = eigh_tridiagonal(self.d, self.e, lapack_driver=driver) | |
evec_ = evec[:, argsort(w)] | |
assert_array_almost_equal(sort(w), self.w) | |
assert_array_almost_equal(abs(evec_), abs(self.evec)) | |
assert_raises(ValueError, eigh_tridiagonal, self.d, self.e, | |
lapack_driver='stev', select='i', select_range=(0, 1)) | |
for driver in ('stebz', 'stemr', 'auto'): | |
# extracting eigenvalues with respect to an index range | |
ind1 = 0 | |
ind2 = len(self.d)-1 | |
w, evec = eigh_tridiagonal( | |
self.d, self.e, select='i', select_range=(ind1, ind2), | |
lapack_driver=driver) | |
assert_array_almost_equal(sort(w), self.w) | |
assert_array_almost_equal(abs(evec), abs(self.evec)) | |
ind1 = 2 | |
ind2 = 6 | |
w, evec = eigh_tridiagonal( | |
self.d, self.e, select='i', select_range=(ind1, ind2), | |
lapack_driver=driver) | |
assert_array_almost_equal(sort(w), self.w[ind1:ind2+1]) | |
assert_array_almost_equal(abs(evec), | |
abs(self.evec[:, ind1:ind2+1])) | |
# extracting eigenvalues with respect to a value range | |
v_lower = self.w[ind1] - 1.0e-5 | |
v_upper = self.w[ind2] + 1.0e-5 | |
w, evec = eigh_tridiagonal( | |
self.d, self.e, select='v', select_range=(v_lower, v_upper), | |
lapack_driver=driver) | |
assert_array_almost_equal(sort(w), self.w[ind1:ind2+1]) | |
assert_array_almost_equal(abs(evec), | |
abs(self.evec[:, ind1:ind2+1])) | |
def test_eigh_tridiagonal_1x1(self): | |
"""See gh-20075""" | |
a = np.array([-2.0]) | |
b = np.array([]) | |
x = eigh_tridiagonal(a, b, eigvals_only=True) | |
assert x.ndim == 1 | |
assert_allclose(x, a) | |
x, V = eigh_tridiagonal(a, b, select="i", select_range=(0, 0)) | |
assert x.ndim == 1 | |
assert V.ndim == 2 | |
assert_allclose(x, a) | |
assert_allclose(V, array([[1.]])) | |
x, V = eigh_tridiagonal(a, b, select="v", select_range=(-2, 0)) | |
assert x.size == 0 | |
assert x.shape == (0,) | |
assert V.shape == (1, 0) | |
class TestEigh: | |
def setup_class(self): | |
np.random.seed(1234) | |
def test_wrong_inputs(self): | |
# Nonsquare a | |
assert_raises(ValueError, eigh, np.ones([1, 2])) | |
# Nonsquare b | |
assert_raises(ValueError, eigh, np.ones([2, 2]), np.ones([2, 1])) | |
# Incompatible a, b sizes | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([2, 2])) | |
# Wrong type parameter for generalized problem | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
type=4) | |
# Both value and index subsets requested | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
subset_by_value=[1, 2], subset_by_index=[2, 4]) | |
with np.testing.suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "Keyword argument 'eigvals") | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
subset_by_value=[1, 2], eigvals=[2, 4]) | |
# Invalid upper index spec | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
subset_by_index=[0, 4]) | |
with np.testing.suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "Keyword argument 'eigvals") | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
eigvals=[0, 4]) | |
# Invalid lower index | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
subset_by_index=[-2, 2]) | |
with np.testing.suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "Keyword argument 'eigvals") | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
eigvals=[-2, 2]) | |
# Invalid index spec #2 | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
subset_by_index=[2, 0]) | |
with np.testing.suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "Keyword argument 'eigvals") | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
subset_by_index=[2, 0]) | |
# Invalid value spec | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
subset_by_value=[2, 0]) | |
# Invalid driver name | |
assert_raises(ValueError, eigh, np.ones([2, 2]), driver='wrong') | |
# Generalized driver selection without b | |
assert_raises(ValueError, eigh, np.ones([3, 3]), None, driver='gvx') | |
# Standard driver with b | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
driver='evr') | |
# Subset request from invalid driver | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
driver='gvd', subset_by_index=[1, 2]) | |
assert_raises(ValueError, eigh, np.ones([3, 3]), np.ones([3, 3]), | |
driver='gvd', subset_by_index=[1, 2]) | |
def test_nonpositive_b(self): | |
assert_raises(LinAlgError, eigh, np.ones([3, 3]), np.ones([3, 3])) | |
# index based subsets are done in the legacy test_eigh() | |
def test_value_subsets(self): | |
for ind, dt in enumerate(DTYPES): | |
a = _random_hermitian_matrix(20, dtype=dt) | |
w, v = eigh(a, subset_by_value=[-2, 2]) | |
assert_equal(v.shape[1], len(w)) | |
assert all((w > -2) & (w < 2)) | |
b = _random_hermitian_matrix(20, posdef=True, dtype=dt) | |
w, v = eigh(a, b, subset_by_value=[-2, 2]) | |
assert_equal(v.shape[1], len(w)) | |
assert all((w > -2) & (w < 2)) | |
def test_eigh_integer(self): | |
a = array([[1, 2], [2, 7]]) | |
b = array([[3, 1], [1, 5]]) | |
w, z = eigh(a) | |
w, z = eigh(a, b) | |
def test_eigh_of_sparse(self): | |
# This tests the rejection of inputs that eigh cannot currently handle. | |
import scipy.sparse | |
a = scipy.sparse.identity(2).tocsc() | |
b = np.atleast_2d(a) | |
assert_raises(ValueError, eigh, a) | |
assert_raises(ValueError, eigh, b) | |
def test_various_drivers_standard(self, driver, dtype_): | |
a = _random_hermitian_matrix(n=20, dtype=dtype_) | |
w, v = eigh(a, driver=driver) | |
assert_allclose(a @ v - (v * w), 0., | |
atol=1000*np.finfo(dtype_).eps, | |
rtol=0.) | |
def test_various_drivers_generalized(self, driver, type): | |
atol = np.spacing(5000.) | |
a = _random_hermitian_matrix(20) | |
b = _random_hermitian_matrix(20, posdef=True) | |
w, v = eigh(a=a, b=b, driver=driver, type=type) | |
if type == 1: | |
assert_allclose(a @ v - w*(b @ v), 0., atol=atol, rtol=0.) | |
elif type == 2: | |
assert_allclose(a @ b @ v - v * w, 0., atol=atol, rtol=0.) | |
else: | |
assert_allclose(b @ a @ v - v * w, 0., atol=atol, rtol=0.) | |
def test_eigvalsh_new_args(self): | |
a = _random_hermitian_matrix(5) | |
w = eigvalsh(a, subset_by_index=[1, 2]) | |
assert_equal(len(w), 2) | |
w2 = eigvalsh(a, subset_by_index=[1, 2]) | |
assert_equal(len(w2), 2) | |
assert_allclose(w, w2) | |
b = np.diag([1, 1.2, 1.3, 1.5, 2]) | |
w3 = eigvalsh(b, subset_by_value=[1, 1.4]) | |
assert_equal(len(w3), 2) | |
assert_allclose(w3, np.array([1.2, 1.3])) | |
def test_deprecation_warnings(self, method): | |
with pytest.warns(DeprecationWarning, | |
match="Keyword argument 'turbo'"): | |
method(np.zeros((2, 2)), turbo=True) | |
with pytest.warns(DeprecationWarning, | |
match="Keyword argument 'eigvals'"): | |
method(np.zeros((2, 2)), eigvals=[0, 1]) | |
with pytest.deprecated_call(match="use keyword arguments"): | |
method(np.zeros((2,2)), np.eye(2, 2), True) | |
def test_deprecation_results(self): | |
a = _random_hermitian_matrix(3) | |
b = _random_hermitian_matrix(3, posdef=True) | |
# check turbo gives same result as driver='gvd' | |
with np.testing.suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "Keyword argument 'turbo'") | |
w_dep, v_dep = eigh(a, b, turbo=True) | |
w, v = eigh(a, b, driver='gvd') | |
assert_allclose(w_dep, w) | |
assert_allclose(v_dep, v) | |
# check eigvals gives the same result as subset_by_index | |
with np.testing.suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "Keyword argument 'eigvals'") | |
w_dep, v_dep = eigh(a, eigvals=[0, 1]) | |
w, v = eigh(a, subset_by_index=[0, 1]) | |
assert_allclose(w_dep, w) | |
assert_allclose(v_dep, v) | |
class TestSVD_GESDD: | |
lapack_driver = 'gesdd' | |
def test_degenerate(self): | |
assert_raises(TypeError, svd, [[1.]], lapack_driver=1.) | |
assert_raises(ValueError, svd, [[1.]], lapack_driver='foo') | |
def test_simple(self): | |
a = [[1, 2, 3], [1, 20, 3], [2, 5, 6]] | |
for full_matrices in (True, False): | |
u, s, vh = svd(a, full_matrices=full_matrices, | |
lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.T @ u, eye(3)) | |
assert_array_almost_equal(vh.T @ vh, eye(3)) | |
sigma = zeros((u.shape[0], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_simple_singular(self): | |
a = [[1, 2, 3], [1, 2, 3], [2, 5, 6]] | |
for full_matrices in (True, False): | |
u, s, vh = svd(a, full_matrices=full_matrices, | |
lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.T @ u, eye(3)) | |
assert_array_almost_equal(vh.T @ vh, eye(3)) | |
sigma = zeros((u.shape[0], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_simple_underdet(self): | |
a = [[1, 2, 3], [4, 5, 6]] | |
for full_matrices in (True, False): | |
u, s, vh = svd(a, full_matrices=full_matrices, | |
lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.T @ u, eye(u.shape[0])) | |
sigma = zeros((u.shape[0], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_simple_overdet(self): | |
a = [[1, 2], [4, 5], [3, 4]] | |
for full_matrices in (True, False): | |
u, s, vh = svd(a, full_matrices=full_matrices, | |
lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.T @ u, eye(u.shape[1])) | |
assert_array_almost_equal(vh.T @ vh, eye(2)) | |
sigma = zeros((u.shape[1], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_random(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
m = 15 | |
for i in range(3): | |
for a in [rng.random([n, m]), rng.random([m, n])]: | |
for full_matrices in (True, False): | |
u, s, vh = svd(a, full_matrices=full_matrices, | |
lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.T @ u, eye(u.shape[1])) | |
assert_array_almost_equal(vh @ vh.T, eye(vh.shape[0])) | |
sigma = zeros((u.shape[1], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_simple_complex(self): | |
a = [[1, 2, 3], [1, 2j, 3], [2, 5, 6]] | |
for full_matrices in (True, False): | |
u, s, vh = svd(a, full_matrices=full_matrices, | |
lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.conj().T @ u, eye(u.shape[1])) | |
assert_array_almost_equal(vh.conj().T @ vh, eye(vh.shape[0])) | |
sigma = zeros((u.shape[0], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_random_complex(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
m = 15 | |
for i in range(3): | |
for full_matrices in (True, False): | |
for a in [rng.random([n, m]), rng.random([m, n])]: | |
a = a + 1j*rng.random(list(a.shape)) | |
u, s, vh = svd(a, full_matrices=full_matrices, | |
lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.conj().T @ u, | |
eye(u.shape[1])) | |
# This fails when [m,n] | |
# assert_array_almost_equal(vh.conj().T @ vh, | |
# eye(len(vh),dtype=vh.dtype.char)) | |
sigma = zeros((u.shape[1], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_crash_1580(self): | |
rng = np.random.RandomState(1234) | |
sizes = [(13, 23), (30, 50), (60, 100)] | |
for sz in sizes: | |
for dt in [np.float32, np.float64, np.complex64, np.complex128]: | |
a = rng.rand(*sz).astype(dt) | |
# should not crash | |
svd(a, lapack_driver=self.lapack_driver) | |
def test_check_finite(self): | |
a = [[1, 2, 3], [1, 20, 3], [2, 5, 6]] | |
u, s, vh = svd(a, check_finite=False, lapack_driver=self.lapack_driver) | |
assert_array_almost_equal(u.T @ u, eye(3)) | |
assert_array_almost_equal(vh.T @ vh, eye(3)) | |
sigma = zeros((u.shape[0], vh.shape[0]), s.dtype.char) | |
for i in range(len(s)): | |
sigma[i, i] = s[i] | |
assert_array_almost_equal(u @ sigma @ vh, a) | |
def test_gh_5039(self): | |
# This is a smoke test for https://github.com/scipy/scipy/issues/5039 | |
# | |
# The following is reported to raise "ValueError: On entry to DGESDD | |
# parameter number 12 had an illegal value". | |
# `interp1d([1,2,3,4], [1,2,3,4], kind='cubic')` | |
# This is reported to only show up on LAPACK 3.0.3. | |
# | |
# The matrix below is taken from the call to | |
# `B = _fitpack._bsplmat(order, xk)` in interpolate._find_smoothest | |
b = np.array( | |
[[0.16666667, 0.66666667, 0.16666667, 0., 0., 0.], | |
[0., 0.16666667, 0.66666667, 0.16666667, 0., 0.], | |
[0., 0., 0.16666667, 0.66666667, 0.16666667, 0.], | |
[0., 0., 0., 0.16666667, 0.66666667, 0.16666667]]) | |
svd(b, lapack_driver=self.lapack_driver) | |
def test_large_matrix(self): | |
check_free_memory(free_mb=17000) | |
A = np.zeros([1, 2**31], dtype=np.float32) | |
A[0, -1] = 1 | |
u, s, vh = svd(A, full_matrices=False) | |
assert_allclose(s[0], 1.0) | |
assert_allclose(u[0, 0] * vh[0, -1], 1.0) | |
class TestSVD_GESVD(TestSVD_GESDD): | |
lapack_driver = 'gesvd' | |
def test_svd_gesdd_nofegfault(): | |
# svd(a) with {U,VT}.size > INT_MAX does not segfault | |
# cf https://github.com/scipy/scipy/issues/14001 | |
df=np.ones((4799, 53130), dtype=np.float64) | |
with assert_raises(ValueError): | |
svd(df) | |
class TestSVDVals: | |
def test_empty(self): | |
for a in [[]], np.empty((2, 0)), np.ones((0, 3)): | |
s = svdvals(a) | |
assert_equal(s, np.empty(0)) | |
def test_simple(self): | |
a = [[1, 2, 3], [1, 2, 3], [2, 5, 6]] | |
s = svdvals(a) | |
assert_(len(s) == 3) | |
assert_(s[0] >= s[1] >= s[2]) | |
def test_simple_underdet(self): | |
a = [[1, 2, 3], [4, 5, 6]] | |
s = svdvals(a) | |
assert_(len(s) == 2) | |
assert_(s[0] >= s[1]) | |
def test_simple_overdet(self): | |
a = [[1, 2], [4, 5], [3, 4]] | |
s = svdvals(a) | |
assert_(len(s) == 2) | |
assert_(s[0] >= s[1]) | |
def test_simple_complex(self): | |
a = [[1, 2, 3], [1, 20, 3j], [2, 5, 6]] | |
s = svdvals(a) | |
assert_(len(s) == 3) | |
assert_(s[0] >= s[1] >= s[2]) | |
def test_simple_underdet_complex(self): | |
a = [[1, 2, 3], [4, 5j, 6]] | |
s = svdvals(a) | |
assert_(len(s) == 2) | |
assert_(s[0] >= s[1]) | |
def test_simple_overdet_complex(self): | |
a = [[1, 2], [4, 5], [3j, 4]] | |
s = svdvals(a) | |
assert_(len(s) == 2) | |
assert_(s[0] >= s[1]) | |
def test_check_finite(self): | |
a = [[1, 2, 3], [1, 2, 3], [2, 5, 6]] | |
s = svdvals(a, check_finite=False) | |
assert_(len(s) == 3) | |
assert_(s[0] >= s[1] >= s[2]) | |
def test_crash_2609(self): | |
np.random.seed(1234) | |
a = np.random.rand(1500, 2800) | |
# Shouldn't crash: | |
svdvals(a) | |
class TestDiagSVD: | |
def test_simple(self): | |
assert_array_almost_equal(diagsvd([1, 0, 0], 3, 3), | |
[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) | |
class TestQR: | |
def test_simple(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
q, r = qr(a) | |
assert_array_almost_equal(q.T @ q, eye(3)) | |
assert_array_almost_equal(q @ r, a) | |
def test_simple_left(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
q, r = qr(a) | |
c = [1, 2, 3] | |
qc, r2 = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
assert_array_almost_equal(r, r2) | |
qc, r2 = qr_multiply(a, eye(3), "left") | |
assert_array_almost_equal(q, qc) | |
def test_simple_right(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
q, r = qr(a) | |
c = [1, 2, 3] | |
qc, r2 = qr_multiply(a, c) | |
assert_array_almost_equal(c @ q, qc) | |
assert_array_almost_equal(r, r2) | |
qc, r = qr_multiply(a, eye(3)) | |
assert_array_almost_equal(q, qc) | |
def test_simple_pivoting(self): | |
a = np.asarray([[8, 2, 3], [2, 9, 3], [5, 3, 6]]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(3)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_simple_left_pivoting(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
q, r, jpvt = qr(a, pivoting=True) | |
c = [1, 2, 3] | |
qc, r, jpvt = qr_multiply(a, c, "left", True) | |
assert_array_almost_equal(q @ c, qc) | |
def test_simple_right_pivoting(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
q, r, jpvt = qr(a, pivoting=True) | |
c = [1, 2, 3] | |
qc, r, jpvt = qr_multiply(a, c, pivoting=True) | |
assert_array_almost_equal(c @ q, qc) | |
def test_simple_trap(self): | |
a = [[8, 2, 3], [2, 9, 3]] | |
q, r = qr(a) | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a) | |
def test_simple_trap_pivoting(self): | |
a = np.asarray([[8, 2, 3], [2, 9, 3]]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_simple_tall(self): | |
# full version | |
a = [[8, 2], [2, 9], [5, 3]] | |
q, r = qr(a) | |
assert_array_almost_equal(q.T @ q, eye(3)) | |
assert_array_almost_equal(q @ r, a) | |
def test_simple_tall_pivoting(self): | |
# full version pivoting | |
a = np.asarray([[8, 2], [2, 9], [5, 3]]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(3)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_simple_tall_e(self): | |
# economy version | |
a = [[8, 2], [2, 9], [5, 3]] | |
q, r = qr(a, mode='economic') | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a) | |
assert_equal(q.shape, (3, 2)) | |
assert_equal(r.shape, (2, 2)) | |
def test_simple_tall_e_pivoting(self): | |
# economy version pivoting | |
a = np.asarray([[8, 2], [2, 9], [5, 3]]) | |
q, r, p = qr(a, pivoting=True, mode='economic') | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p], mode='economic') | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_simple_tall_left(self): | |
a = [[8, 2], [2, 9], [5, 3]] | |
q, r = qr(a, mode="economic") | |
c = [1, 2] | |
qc, r2 = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
assert_array_almost_equal(r, r2) | |
c = array([1, 2, 0]) | |
qc, r2 = qr_multiply(a, c, "left", overwrite_c=True) | |
assert_array_almost_equal(q @ c[:2], qc) | |
qc, r = qr_multiply(a, eye(2), "left") | |
assert_array_almost_equal(qc, q) | |
def test_simple_tall_left_pivoting(self): | |
a = [[8, 2], [2, 9], [5, 3]] | |
q, r, jpvt = qr(a, mode="economic", pivoting=True) | |
c = [1, 2] | |
qc, r, kpvt = qr_multiply(a, c, "left", True) | |
assert_array_equal(jpvt, kpvt) | |
assert_array_almost_equal(q @ c, qc) | |
qc, r, jpvt = qr_multiply(a, eye(2), "left", True) | |
assert_array_almost_equal(qc, q) | |
def test_simple_tall_right(self): | |
a = [[8, 2], [2, 9], [5, 3]] | |
q, r = qr(a, mode="economic") | |
c = [1, 2, 3] | |
cq, r2 = qr_multiply(a, c) | |
assert_array_almost_equal(c @ q, cq) | |
assert_array_almost_equal(r, r2) | |
cq, r = qr_multiply(a, eye(3)) | |
assert_array_almost_equal(cq, q) | |
def test_simple_tall_right_pivoting(self): | |
a = [[8, 2], [2, 9], [5, 3]] | |
q, r, jpvt = qr(a, pivoting=True, mode="economic") | |
c = [1, 2, 3] | |
cq, r, jpvt = qr_multiply(a, c, pivoting=True) | |
assert_array_almost_equal(c @ q, cq) | |
cq, r, jpvt = qr_multiply(a, eye(3), pivoting=True) | |
assert_array_almost_equal(cq, q) | |
def test_simple_fat(self): | |
# full version | |
a = [[8, 2, 5], [2, 9, 3]] | |
q, r = qr(a) | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a) | |
assert_equal(q.shape, (2, 2)) | |
assert_equal(r.shape, (2, 3)) | |
def test_simple_fat_pivoting(self): | |
# full version pivoting | |
a = np.asarray([[8, 2, 5], [2, 9, 3]]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
assert_equal(q.shape, (2, 2)) | |
assert_equal(r.shape, (2, 3)) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_simple_fat_e(self): | |
# economy version | |
a = [[8, 2, 3], [2, 9, 5]] | |
q, r = qr(a, mode='economic') | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a) | |
assert_equal(q.shape, (2, 2)) | |
assert_equal(r.shape, (2, 3)) | |
def test_simple_fat_e_pivoting(self): | |
# economy version pivoting | |
a = np.asarray([[8, 2, 3], [2, 9, 5]]) | |
q, r, p = qr(a, pivoting=True, mode='economic') | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
assert_equal(q.shape, (2, 2)) | |
assert_equal(r.shape, (2, 3)) | |
q2, r2 = qr(a[:, p], mode='economic') | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_simple_fat_left(self): | |
a = [[8, 2, 3], [2, 9, 5]] | |
q, r = qr(a, mode="economic") | |
c = [1, 2] | |
qc, r2 = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
assert_array_almost_equal(r, r2) | |
qc, r = qr_multiply(a, eye(2), "left") | |
assert_array_almost_equal(qc, q) | |
def test_simple_fat_left_pivoting(self): | |
a = [[8, 2, 3], [2, 9, 5]] | |
q, r, jpvt = qr(a, mode="economic", pivoting=True) | |
c = [1, 2] | |
qc, r, jpvt = qr_multiply(a, c, "left", True) | |
assert_array_almost_equal(q @ c, qc) | |
qc, r, jpvt = qr_multiply(a, eye(2), "left", True) | |
assert_array_almost_equal(qc, q) | |
def test_simple_fat_right(self): | |
a = [[8, 2, 3], [2, 9, 5]] | |
q, r = qr(a, mode="economic") | |
c = [1, 2] | |
cq, r2 = qr_multiply(a, c) | |
assert_array_almost_equal(c @ q, cq) | |
assert_array_almost_equal(r, r2) | |
cq, r = qr_multiply(a, eye(2)) | |
assert_array_almost_equal(cq, q) | |
def test_simple_fat_right_pivoting(self): | |
a = [[8, 2, 3], [2, 9, 5]] | |
q, r, jpvt = qr(a, pivoting=True, mode="economic") | |
c = [1, 2] | |
cq, r, jpvt = qr_multiply(a, c, pivoting=True) | |
assert_array_almost_equal(c @ q, cq) | |
cq, r, jpvt = qr_multiply(a, eye(2), pivoting=True) | |
assert_array_almost_equal(cq, q) | |
def test_simple_complex(self): | |
a = [[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]] | |
q, r = qr(a) | |
assert_array_almost_equal(q.conj().T @ q, eye(3)) | |
assert_array_almost_equal(q @ r, a) | |
def test_simple_complex_left(self): | |
a = [[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]] | |
q, r = qr(a) | |
c = [1, 2, 3+4j] | |
qc, r = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
qc, r = qr_multiply(a, eye(3), "left") | |
assert_array_almost_equal(q, qc) | |
def test_simple_complex_right(self): | |
a = [[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]] | |
q, r = qr(a) | |
c = [1, 2, 3+4j] | |
qc, r = qr_multiply(a, c) | |
assert_array_almost_equal(c @ q, qc) | |
qc, r = qr_multiply(a, eye(3)) | |
assert_array_almost_equal(q, qc) | |
def test_simple_tall_complex_left(self): | |
a = [[8, 2+3j], [2, 9], [5+7j, 3]] | |
q, r = qr(a, mode="economic") | |
c = [1, 2+2j] | |
qc, r2 = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
assert_array_almost_equal(r, r2) | |
c = array([1, 2, 0]) | |
qc, r2 = qr_multiply(a, c, "left", overwrite_c=True) | |
assert_array_almost_equal(q @ c[:2], qc) | |
qc, r = qr_multiply(a, eye(2), "left") | |
assert_array_almost_equal(qc, q) | |
def test_simple_complex_left_conjugate(self): | |
a = [[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]] | |
q, r = qr(a) | |
c = [1, 2, 3+4j] | |
qc, r = qr_multiply(a, c, "left", conjugate=True) | |
assert_array_almost_equal(q.conj() @ c, qc) | |
def test_simple_complex_tall_left_conjugate(self): | |
a = [[3, 3+4j], [5, 2+2j], [3, 2]] | |
q, r = qr(a, mode='economic') | |
c = [1, 3+4j] | |
qc, r = qr_multiply(a, c, "left", conjugate=True) | |
assert_array_almost_equal(q.conj() @ c, qc) | |
def test_simple_complex_right_conjugate(self): | |
a = [[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]] | |
q, r = qr(a) | |
c = np.array([1, 2, 3+4j]) | |
qc, r = qr_multiply(a, c, conjugate=True) | |
assert_array_almost_equal(c @ q.conj(), qc) | |
def test_simple_complex_pivoting(self): | |
a = array([[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.conj().T @ q, eye(3)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_simple_complex_left_pivoting(self): | |
a = array([[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]]) | |
q, r, jpvt = qr(a, pivoting=True) | |
c = [1, 2, 3+4j] | |
qc, r, jpvt = qr_multiply(a, c, "left", True) | |
assert_array_almost_equal(q @ c, qc) | |
def test_simple_complex_right_pivoting(self): | |
a = array([[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]]) | |
q, r, jpvt = qr(a, pivoting=True) | |
c = [1, 2, 3+4j] | |
qc, r, jpvt = qr_multiply(a, c, pivoting=True) | |
assert_array_almost_equal(c @ q, qc) | |
def test_random(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) | |
q, r = qr(a) | |
assert_array_almost_equal(q.T @ q, eye(n)) | |
assert_array_almost_equal(q @ r, a) | |
def test_random_left(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) | |
q, r = qr(a) | |
c = rng.random([n]) | |
qc, r = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
qc, r = qr_multiply(a, eye(n), "left") | |
assert_array_almost_equal(q, qc) | |
def test_random_right(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) | |
q, r = qr(a) | |
c = rng.random([n]) | |
cq, r = qr_multiply(a, c) | |
assert_array_almost_equal(c @ q, cq) | |
cq, r = qr_multiply(a, eye(n)) | |
assert_array_almost_equal(q, cq) | |
def test_random_pivoting(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(n)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_random_tall(self): | |
rng = np.random.RandomState(1234) | |
# full version | |
m = 200 | |
n = 100 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r = qr(a) | |
assert_array_almost_equal(q.T @ q, eye(m)) | |
assert_array_almost_equal(q @ r, a) | |
def test_random_tall_left(self): | |
rng = np.random.RandomState(1234) | |
# full version | |
m = 200 | |
n = 100 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r = qr(a, mode="economic") | |
c = rng.random([n]) | |
qc, r = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
qc, r = qr_multiply(a, eye(n), "left") | |
assert_array_almost_equal(qc, q) | |
def test_random_tall_right(self): | |
rng = np.random.RandomState(1234) | |
# full version | |
m = 200 | |
n = 100 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r = qr(a, mode="economic") | |
c = rng.random([m]) | |
cq, r = qr_multiply(a, c) | |
assert_array_almost_equal(c @ q, cq) | |
cq, r = qr_multiply(a, eye(m)) | |
assert_array_almost_equal(cq, q) | |
def test_random_tall_pivoting(self): | |
rng = np.random.RandomState(1234) | |
# full version pivoting | |
m = 200 | |
n = 100 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(m)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_random_tall_e(self): | |
rng = np.random.RandomState(1234) | |
# economy version | |
m = 200 | |
n = 100 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r = qr(a, mode='economic') | |
assert_array_almost_equal(q.T @ q, eye(n)) | |
assert_array_almost_equal(q @ r, a) | |
assert_equal(q.shape, (m, n)) | |
assert_equal(r.shape, (n, n)) | |
def test_random_tall_e_pivoting(self): | |
rng = np.random.RandomState(1234) | |
# economy version pivoting | |
m = 200 | |
n = 100 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r, p = qr(a, pivoting=True, mode='economic') | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(n)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
assert_equal(q.shape, (m, n)) | |
assert_equal(r.shape, (n, n)) | |
q2, r2 = qr(a[:, p], mode='economic') | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_random_trap(self): | |
rng = np.random.RandomState(1234) | |
m = 100 | |
n = 200 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r = qr(a) | |
assert_array_almost_equal(q.T @ q, eye(m)) | |
assert_array_almost_equal(q @ r, a) | |
def test_random_trap_pivoting(self): | |
rng = np.random.RandomState(1234) | |
m = 100 | |
n = 200 | |
for k in range(2): | |
a = rng.random([m, n]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.T @ q, eye(m)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_random_complex(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) + 1j*rng.random([n, n]) | |
q, r = qr(a) | |
assert_array_almost_equal(q.conj().T @ q, eye(n)) | |
assert_array_almost_equal(q @ r, a) | |
def test_random_complex_left(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) + 1j*rng.random([n, n]) | |
q, r = qr(a) | |
c = rng.random([n]) + 1j*rng.random([n]) | |
qc, r = qr_multiply(a, c, "left") | |
assert_array_almost_equal(q @ c, qc) | |
qc, r = qr_multiply(a, eye(n), "left") | |
assert_array_almost_equal(q, qc) | |
def test_random_complex_right(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) + 1j*rng.random([n, n]) | |
q, r = qr(a) | |
c = rng.random([n]) + 1j*rng.random([n]) | |
cq, r = qr_multiply(a, c) | |
assert_array_almost_equal(c @ q, cq) | |
cq, r = qr_multiply(a, eye(n)) | |
assert_array_almost_equal(q, cq) | |
def test_random_complex_pivoting(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) + 1j*rng.random([n, n]) | |
q, r, p = qr(a, pivoting=True) | |
d = abs(diag(r)) | |
assert_(np.all(d[1:] <= d[:-1])) | |
assert_array_almost_equal(q.conj().T @ q, eye(n)) | |
assert_array_almost_equal(q @ r, a[:, p]) | |
q2, r2 = qr(a[:, p]) | |
assert_array_almost_equal(q, q2) | |
assert_array_almost_equal(r, r2) | |
def test_check_finite(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
q, r = qr(a, check_finite=False) | |
assert_array_almost_equal(q.T @ q, eye(3)) | |
assert_array_almost_equal(q @ r, a) | |
def test_lwork(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
# Get comparison values | |
q, r = qr(a, lwork=None) | |
# Test against minimum valid lwork | |
q2, r2 = qr(a, lwork=3) | |
assert_array_almost_equal(q2, q) | |
assert_array_almost_equal(r2, r) | |
# Test against larger lwork | |
q3, r3 = qr(a, lwork=10) | |
assert_array_almost_equal(q3, q) | |
assert_array_almost_equal(r3, r) | |
# Test against explicit lwork=-1 | |
q4, r4 = qr(a, lwork=-1) | |
assert_array_almost_equal(q4, q) | |
assert_array_almost_equal(r4, r) | |
# Test against invalid lwork | |
assert_raises(Exception, qr, (a,), {'lwork': 0}) | |
assert_raises(Exception, qr, (a,), {'lwork': 2}) | |
class TestRQ: | |
def test_simple(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
r, q = rq(a) | |
assert_array_almost_equal(q @ q.T, eye(3)) | |
assert_array_almost_equal(r @ q, a) | |
def test_r(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
r, q = rq(a) | |
r2 = rq(a, mode='r') | |
assert_array_almost_equal(r, r2) | |
def test_random(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) | |
r, q = rq(a) | |
assert_array_almost_equal(q @ q.T, eye(n)) | |
assert_array_almost_equal(r @ q, a) | |
def test_simple_trap(self): | |
a = [[8, 2, 3], [2, 9, 3]] | |
r, q = rq(a) | |
assert_array_almost_equal(q.T @ q, eye(3)) | |
assert_array_almost_equal(r @ q, a) | |
def test_simple_tall(self): | |
a = [[8, 2], [2, 9], [5, 3]] | |
r, q = rq(a) | |
assert_array_almost_equal(q.T @ q, eye(2)) | |
assert_array_almost_equal(r @ q, a) | |
def test_simple_fat(self): | |
a = [[8, 2, 5], [2, 9, 3]] | |
r, q = rq(a) | |
assert_array_almost_equal(q @ q.T, eye(3)) | |
assert_array_almost_equal(r @ q, a) | |
def test_simple_complex(self): | |
a = [[3, 3+4j, 5], [5, 2, 2+7j], [3, 2, 7]] | |
r, q = rq(a) | |
assert_array_almost_equal(q @ q.conj().T, eye(3)) | |
assert_array_almost_equal(r @ q, a) | |
def test_random_tall(self): | |
rng = np.random.RandomState(1234) | |
m = 200 | |
n = 100 | |
for k in range(2): | |
a = rng.random([m, n]) | |
r, q = rq(a) | |
assert_array_almost_equal(q @ q.T, eye(n)) | |
assert_array_almost_equal(r @ q, a) | |
def test_random_trap(self): | |
rng = np.random.RandomState(1234) | |
m = 100 | |
n = 200 | |
for k in range(2): | |
a = rng.random([m, n]) | |
r, q = rq(a) | |
assert_array_almost_equal(q @ q.T, eye(n)) | |
assert_array_almost_equal(r @ q, a) | |
def test_random_trap_economic(self): | |
rng = np.random.RandomState(1234) | |
m = 100 | |
n = 200 | |
for k in range(2): | |
a = rng.random([m, n]) | |
r, q = rq(a, mode='economic') | |
assert_array_almost_equal(q @ q.T, eye(m)) | |
assert_array_almost_equal(r @ q, a) | |
assert_equal(q.shape, (m, n)) | |
assert_equal(r.shape, (m, m)) | |
def test_random_complex(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) + 1j*rng.random([n, n]) | |
r, q = rq(a) | |
assert_array_almost_equal(q @ q.conj().T, eye(n)) | |
assert_array_almost_equal(r @ q, a) | |
def test_random_complex_economic(self): | |
rng = np.random.RandomState(1234) | |
m = 100 | |
n = 200 | |
for k in range(2): | |
a = rng.random([m, n]) + 1j*rng.random([m, n]) | |
r, q = rq(a, mode='economic') | |
assert_array_almost_equal(q @ q.conj().T, eye(m)) | |
assert_array_almost_equal(r @ q, a) | |
assert_equal(q.shape, (m, n)) | |
assert_equal(r.shape, (m, m)) | |
def test_check_finite(self): | |
a = [[8, 2, 3], [2, 9, 3], [5, 3, 6]] | |
r, q = rq(a, check_finite=False) | |
assert_array_almost_equal(q @ q.T, eye(3)) | |
assert_array_almost_equal(r @ q, a) | |
class TestSchur: | |
def check_schur(self, a, t, u, rtol, atol): | |
# Check that the Schur decomposition is correct. | |
assert_allclose(u @ t @ u.conj().T, a, rtol=rtol, atol=atol, | |
err_msg="Schur decomposition does not match 'a'") | |
# The expected value of u @ u.H - I is all zeros, so test | |
# with absolute tolerance only. | |
assert_allclose(u @ u.conj().T - np.eye(len(u)), 0, rtol=0, atol=atol, | |
err_msg="u is not unitary") | |
def test_simple(self): | |
a = [[8, 12, 3], [2, 9, 3], [10, 3, 6]] | |
t, z = schur(a) | |
self.check_schur(a, t, z, rtol=1e-14, atol=5e-15) | |
tc, zc = schur(a, 'complex') | |
assert_(np.any(ravel(iscomplex(zc))) and np.any(ravel(iscomplex(tc)))) | |
self.check_schur(a, tc, zc, rtol=1e-14, atol=5e-15) | |
tc2, zc2 = rsf2csf(tc, zc) | |
self.check_schur(a, tc2, zc2, rtol=1e-14, atol=5e-15) | |
def test_sort(self, sort, expected_diag): | |
# The exact eigenvalues of this matrix are | |
# -sqrt(2), sqrt(2), -1/2, 1/2. | |
a = [[4., 3., 1., -1.], | |
[-4.5, -3.5, -1., 1.], | |
[9., 6., -4., 4.5], | |
[6., 4., -3., 3.5]] | |
t, u, sdim = schur(a, sort=sort) | |
self.check_schur(a, t, u, rtol=1e-14, atol=5e-15) | |
assert_allclose(np.diag(t), expected_diag, rtol=1e-12) | |
assert_equal(2, sdim) | |
def test_sort_errors(self): | |
a = [[4., 3., 1., -1.], | |
[-4.5, -3.5, -1., 1.], | |
[9., 6., -4., 4.5], | |
[6., 4., -3., 3.5]] | |
assert_raises(ValueError, schur, a, sort='unsupported') | |
assert_raises(ValueError, schur, a, sort=1) | |
def test_check_finite(self): | |
a = [[8, 12, 3], [2, 9, 3], [10, 3, 6]] | |
t, z = schur(a, check_finite=False) | |
assert_array_almost_equal(z @ t @ z.conj().T, a) | |
class TestHessenberg: | |
def test_simple(self): | |
a = [[-149, -50, -154], | |
[537, 180, 546], | |
[-27, -9, -25]] | |
h1 = [[-149.0000, 42.2037, -156.3165], | |
[-537.6783, 152.5511, -554.9272], | |
[0, 0.0728, 2.4489]] | |
h, q = hessenberg(a, calc_q=1) | |
assert_array_almost_equal(q.T @ a @ q, h) | |
assert_array_almost_equal(h, h1, decimal=4) | |
def test_simple_complex(self): | |
a = [[-149, -50, -154], | |
[537, 180j, 546], | |
[-27j, -9, -25]] | |
h, q = hessenberg(a, calc_q=1) | |
assert_array_almost_equal(q.conj().T @ a @ q, h) | |
def test_simple2(self): | |
a = [[1, 2, 3, 4, 5, 6, 7], | |
[0, 2, 3, 4, 6, 7, 2], | |
[0, 2, 2, 3, 0, 3, 2], | |
[0, 0, 2, 8, 0, 0, 2], | |
[0, 3, 1, 2, 0, 1, 2], | |
[0, 1, 2, 3, 0, 1, 0], | |
[0, 0, 0, 0, 0, 1, 2]] | |
h, q = hessenberg(a, calc_q=1) | |
assert_array_almost_equal(q.T @ a @ q, h) | |
def test_simple3(self): | |
a = np.eye(3) | |
a[-1, 0] = 2 | |
h, q = hessenberg(a, calc_q=1) | |
assert_array_almost_equal(q.T @ a @ q, h) | |
def test_random(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) | |
h, q = hessenberg(a, calc_q=1) | |
assert_array_almost_equal(q.T @ a @ q, h) | |
def test_random_complex(self): | |
rng = np.random.RandomState(1234) | |
n = 20 | |
for k in range(2): | |
a = rng.random([n, n]) + 1j*rng.random([n, n]) | |
h, q = hessenberg(a, calc_q=1) | |
assert_array_almost_equal(q.conj().T @ a @ q, h) | |
def test_check_finite(self): | |
a = [[-149, -50, -154], | |
[537, 180, 546], | |
[-27, -9, -25]] | |
h1 = [[-149.0000, 42.2037, -156.3165], | |
[-537.6783, 152.5511, -554.9272], | |
[0, 0.0728, 2.4489]] | |
h, q = hessenberg(a, calc_q=1, check_finite=False) | |
assert_array_almost_equal(q.T @ a @ q, h) | |
assert_array_almost_equal(h, h1, decimal=4) | |
def test_2x2(self): | |
a = [[2, 1], [7, 12]] | |
h, q = hessenberg(a, calc_q=1) | |
assert_array_almost_equal(q, np.eye(2)) | |
assert_array_almost_equal(h, a) | |
b = [[2-7j, 1+2j], [7+3j, 12-2j]] | |
h2, q2 = hessenberg(b, calc_q=1) | |
assert_array_almost_equal(q2, np.eye(2)) | |
assert_array_almost_equal(h2, b) | |
blas_provider = blas_version = None | |
if CONFIG is not None: | |
blas_provider = CONFIG['Build Dependencies']['blas']['name'] | |
blas_version = CONFIG['Build Dependencies']['blas']['version'] | |
class TestQZ: | |
def test_qz_single(self): | |
rng = np.random.RandomState(12345) | |
n = 5 | |
A = rng.random([n, n]).astype(float32) | |
B = rng.random([n, n]).astype(float32) | |
AA, BB, Q, Z = qz(A, B) | |
assert_array_almost_equal(Q @ AA @ Z.T, A, decimal=5) | |
assert_array_almost_equal(Q @ BB @ Z.T, B, decimal=5) | |
assert_array_almost_equal(Q @ Q.T, eye(n), decimal=5) | |
assert_array_almost_equal(Z @ Z.T, eye(n), decimal=5) | |
assert_(np.all(diag(BB) >= 0)) | |
def test_qz_double(self): | |
rng = np.random.RandomState(12345) | |
n = 5 | |
A = rng.random([n, n]) | |
B = rng.random([n, n]) | |
AA, BB, Q, Z = qz(A, B) | |
assert_array_almost_equal(Q @ AA @ Z.T, A) | |
assert_array_almost_equal(Q @ BB @ Z.T, B) | |
assert_array_almost_equal(Q @ Q.T, eye(n)) | |
assert_array_almost_equal(Z @ Z.T, eye(n)) | |
assert_(np.all(diag(BB) >= 0)) | |
def test_qz_complex(self): | |
rng = np.random.RandomState(12345) | |
n = 5 | |
A = rng.random([n, n]) + 1j*rng.random([n, n]) | |
B = rng.random([n, n]) + 1j*rng.random([n, n]) | |
AA, BB, Q, Z = qz(A, B) | |
assert_array_almost_equal(Q @ AA @ Z.conj().T, A) | |
assert_array_almost_equal(Q @ BB @ Z.conj().T, B) | |
assert_array_almost_equal(Q @ Q.conj().T, eye(n)) | |
assert_array_almost_equal(Z @ Z.conj().T, eye(n)) | |
assert_(np.all(diag(BB) >= 0)) | |
assert_(np.all(diag(BB).imag == 0)) | |
def test_qz_complex64(self): | |
rng = np.random.RandomState(12345) | |
n = 5 | |
A = (rng.random([n, n]) + 1j*rng.random([n, n])).astype(complex64) | |
B = (rng.random([n, n]) + 1j*rng.random([n, n])).astype(complex64) | |
AA, BB, Q, Z = qz(A, B) | |
assert_array_almost_equal(Q @ AA @ Z.conj().T, A, decimal=5) | |
assert_array_almost_equal(Q @ BB @ Z.conj().T, B, decimal=5) | |
assert_array_almost_equal(Q @ Q.conj().T, eye(n), decimal=5) | |
assert_array_almost_equal(Z @ Z.conj().T, eye(n), decimal=5) | |
assert_(np.all(diag(BB) >= 0)) | |
assert_(np.all(diag(BB).imag == 0)) | |
def test_qz_double_complex(self): | |
rng = np.random.RandomState(12345) | |
n = 5 | |
A = rng.random([n, n]) | |
B = rng.random([n, n]) | |
AA, BB, Q, Z = qz(A, B, output='complex') | |
aa = Q @ AA @ Z.conj().T | |
assert_array_almost_equal(aa.real, A) | |
assert_array_almost_equal(aa.imag, 0) | |
bb = Q @ BB @ Z.conj().T | |
assert_array_almost_equal(bb.real, B) | |
assert_array_almost_equal(bb.imag, 0) | |
assert_array_almost_equal(Q @ Q.conj().T, eye(n)) | |
assert_array_almost_equal(Z @ Z.conj().T, eye(n)) | |
assert_(np.all(diag(BB) >= 0)) | |
def test_qz_double_sort(self): | |
# from https://www.nag.com/lapack-ex/node119.html | |
# NOTE: These matrices may be ill-conditioned and lead to a | |
# seg fault on certain python versions when compiled with | |
# sse2 or sse3 older ATLAS/LAPACK binaries for windows | |
# A = np.array([[3.9, 12.5, -34.5, -0.5], | |
# [ 4.3, 21.5, -47.5, 7.5], | |
# [ 4.3, 21.5, -43.5, 3.5], | |
# [ 4.4, 26.0, -46.0, 6.0 ]]) | |
# B = np.array([[ 1.0, 2.0, -3.0, 1.0], | |
# [1.0, 3.0, -5.0, 4.0], | |
# [1.0, 3.0, -4.0, 3.0], | |
# [1.0, 3.0, -4.0, 4.0]]) | |
A = np.array([[3.9, 12.5, -34.5, 2.5], | |
[4.3, 21.5, -47.5, 7.5], | |
[4.3, 1.5, -43.5, 3.5], | |
[4.4, 6.0, -46.0, 6.0]]) | |
B = np.array([[1.0, 1.0, -3.0, 1.0], | |
[1.0, 3.0, -5.0, 4.4], | |
[1.0, 2.0, -4.0, 1.0], | |
[1.2, 3.0, -4.0, 4.0]]) | |
assert_raises(ValueError, qz, A, B, sort=lambda ar, ai, beta: ai == 0) | |
if False: | |
AA, BB, Q, Z, sdim = qz(A, B, sort=lambda ar, ai, beta: ai == 0) | |
# assert_(sdim == 2) | |
assert_(sdim == 4) | |
assert_array_almost_equal(Q @ AA @ Z.T, A) | |
assert_array_almost_equal(Q @ BB @ Z.T, B) | |
# test absolute values bc the sign is ambiguous and | |
# might be platform dependent | |
assert_array_almost_equal(np.abs(AA), np.abs(np.array( | |
[[35.7864, -80.9061, -12.0629, -9.498], | |
[0., 2.7638, -2.3505, 7.3256], | |
[0., 0., 0.6258, -0.0398], | |
[0., 0., 0., -12.8217]])), 4) | |
assert_array_almost_equal(np.abs(BB), np.abs(np.array( | |
[[4.5324, -8.7878, 3.2357, -3.5526], | |
[0., 1.4314, -2.1894, 0.9709], | |
[0., 0., 1.3126, -0.3468], | |
[0., 0., 0., 0.559]])), 4) | |
assert_array_almost_equal(np.abs(Q), np.abs(np.array( | |
[[-0.4193, -0.605, -0.1894, -0.6498], | |
[-0.5495, 0.6987, 0.2654, -0.3734], | |
[-0.4973, -0.3682, 0.6194, 0.4832], | |
[-0.5243, 0.1008, -0.7142, 0.4526]])), 4) | |
assert_array_almost_equal(np.abs(Z), np.abs(np.array( | |
[[-0.9471, -0.2971, -0.1217, 0.0055], | |
[-0.0367, 0.1209, 0.0358, 0.9913], | |
[0.3171, -0.9041, -0.2547, 0.1312], | |
[0.0346, 0.2824, -0.9587, 0.0014]])), 4) | |
# test absolute values bc the sign is ambiguous and might be platform | |
# dependent | |
# assert_array_almost_equal(abs(AA), abs(np.array([ | |
# [3.8009, -69.4505, 50.3135, -43.2884], | |
# [0.0000, 9.2033, -0.2001, 5.9881], | |
# [0.0000, 0.0000, 1.4279, 4.4453], | |
# [0.0000, 0.0000, 0.9019, -1.1962]])), 4) | |
# assert_array_almost_equal(abs(BB), abs(np.array([ | |
# [1.9005, -10.2285, 0.8658, -5.2134], | |
# [0.0000, 2.3008, 0.7915, 0.4262], | |
# [0.0000, 0.0000, 0.8101, 0.0000], | |
# [0.0000, 0.0000, 0.0000, -0.2823]])), 4) | |
# assert_array_almost_equal(abs(Q), abs(np.array([ | |
# [0.4642, 0.7886, 0.2915, -0.2786], | |
# [0.5002, -0.5986, 0.5638, -0.2713], | |
# [0.5002, 0.0154, -0.0107, 0.8657], | |
# [0.5331, -0.1395, -0.7727, -0.3151]])), 4) | |
# assert_array_almost_equal(dot(Q,Q.T), eye(4)) | |
# assert_array_almost_equal(abs(Z), abs(np.array([ | |
# [0.9961, -0.0014, 0.0887, -0.0026], | |
# [0.0057, -0.0404, -0.0938, -0.9948], | |
# [0.0626, 0.7194, -0.6908, 0.0363], | |
# [0.0626, -0.6934, -0.7114, 0.0956]])), 4) | |
# assert_array_almost_equal(dot(Z,Z.T), eye(4)) | |
# def test_qz_complex_sort(self): | |
# cA = np.array([ | |
# [-21.10+22.50*1j, 53.50+-50.50*1j, -34.50+127.50*1j, 7.50+ 0.50*1j], | |
# [-0.46+ -7.78*1j, -3.50+-37.50*1j, -15.50+ 58.50*1j,-10.50+ -1.50*1j], | |
# [ 4.30+ -5.50*1j, 39.70+-17.10*1j, -68.50+ 12.50*1j, -7.50+ -3.50*1j], | |
# [ 5.50+ 4.40*1j, 14.40+ 43.30*1j, -32.50+-46.00*1j,-19.00+-32.50*1j]]) | |
# cB = np.array([ | |
# [1.00+ -5.00*1j, 1.60+ 1.20*1j,-3.00+ 0.00*1j, 0.00+ -1.00*1j], | |
# [0.80+ -0.60*1j, 3.00+ -5.00*1j,-4.00+ 3.00*1j,-2.40+ -3.20*1j], | |
# [1.00+ 0.00*1j, 2.40+ 1.80*1j,-4.00+ -5.00*1j, 0.00+ -3.00*1j], | |
# [0.00+ 1.00*1j,-1.80+ 2.40*1j, 0.00+ -4.00*1j, 4.00+ -5.00*1j]]) | |
# AAS,BBS,QS,ZS,sdim = qz(cA,cB,sort='lhp') | |
# eigenvalues = diag(AAS)/diag(BBS) | |
# assert_(np.all(np.real(eigenvalues[:sdim] < 0))) | |
# assert_(np.all(np.real(eigenvalues[sdim:] > 0))) | |
def test_check_finite(self): | |
rng = np.random.RandomState(12345) | |
n = 5 | |
A = rng.random([n, n]) | |
B = rng.random([n, n]) | |
AA, BB, Q, Z = qz(A, B, check_finite=False) | |
assert_array_almost_equal(Q @ AA @ Z.T, A) | |
assert_array_almost_equal(Q @ BB @ Z.T, B) | |
assert_array_almost_equal(Q @ Q.T, eye(n)) | |
assert_array_almost_equal(Z @ Z.T, eye(n)) | |
assert_(np.all(diag(BB) >= 0)) | |
class TestOrdQZ: | |
def setup_class(cls): | |
# https://www.nag.com/lapack-ex/node119.html | |
A1 = np.array([[-21.10 - 22.50j, 53.5 - 50.5j, -34.5 + 127.5j, | |
7.5 + 0.5j], | |
[-0.46 - 7.78j, -3.5 - 37.5j, -15.5 + 58.5j, | |
-10.5 - 1.5j], | |
[4.30 - 5.50j, 39.7 - 17.1j, -68.5 + 12.5j, | |
-7.5 - 3.5j], | |
[5.50 + 4.40j, 14.4 + 43.3j, -32.5 - 46.0j, | |
-19.0 - 32.5j]]) | |
B1 = np.array([[1.0 - 5.0j, 1.6 + 1.2j, -3 + 0j, 0.0 - 1.0j], | |
[0.8 - 0.6j, .0 - 5.0j, -4 + 3j, -2.4 - 3.2j], | |
[1.0 + 0.0j, 2.4 + 1.8j, -4 - 5j, 0.0 - 3.0j], | |
[0.0 + 1.0j, -1.8 + 2.4j, 0 - 4j, 4.0 - 5.0j]]) | |
# https://www.nag.com/numeric/fl/nagdoc_fl23/xhtml/F08/f08yuf.xml | |
A2 = np.array([[3.9, 12.5, -34.5, -0.5], | |
[4.3, 21.5, -47.5, 7.5], | |
[4.3, 21.5, -43.5, 3.5], | |
[4.4, 26.0, -46.0, 6.0]]) | |
B2 = np.array([[1, 2, -3, 1], | |
[1, 3, -5, 4], | |
[1, 3, -4, 3], | |
[1, 3, -4, 4]]) | |
# example with the eigenvalues | |
# -0.33891648, 1.61217396+0.74013521j, 1.61217396-0.74013521j, | |
# 0.61244091 | |
# thus featuring: | |
# * one complex conjugate eigenvalue pair, | |
# * one eigenvalue in the lhp | |
# * 2 eigenvalues in the unit circle | |
# * 2 non-real eigenvalues | |
A3 = np.array([[5., 1., 3., 3.], | |
[4., 4., 2., 7.], | |
[7., 4., 1., 3.], | |
[0., 4., 8., 7.]]) | |
B3 = np.array([[8., 10., 6., 10.], | |
[7., 7., 2., 9.], | |
[9., 1., 6., 6.], | |
[5., 1., 4., 7.]]) | |
# example with infinite eigenvalues | |
A4 = np.eye(2) | |
B4 = np.diag([0, 1]) | |
# example with (alpha, beta) = (0, 0) | |
A5 = np.diag([1, 0]) | |
cls.A = [A1, A2, A3, A4, A5] | |
cls.B = [B1, B2, B3, B4, A5] | |
def qz_decomp(self, sort): | |
with np.errstate(all='raise'): | |
ret = [ordqz(Ai, Bi, sort=sort) for Ai, Bi in zip(self.A, self.B)] | |
return tuple(ret) | |
def check(self, A, B, sort, AA, BB, alpha, beta, Q, Z): | |
Id = np.eye(*A.shape) | |
# make sure Q and Z are orthogonal | |
assert_array_almost_equal(Q @ Q.T.conj(), Id) | |
assert_array_almost_equal(Z @ Z.T.conj(), Id) | |
# check factorization | |
assert_array_almost_equal(Q @ AA, A @ Z) | |
assert_array_almost_equal(Q @ BB, B @ Z) | |
# check shape of AA and BB | |
assert_array_equal(np.tril(AA, -2), np.zeros(AA.shape)) | |
assert_array_equal(np.tril(BB, -1), np.zeros(BB.shape)) | |
# check eigenvalues | |
for i in range(A.shape[0]): | |
# does the current diagonal element belong to a 2-by-2 block | |
# that was already checked? | |
if i > 0 and A[i, i - 1] != 0: | |
continue | |
# take care of 2-by-2 blocks | |
if i < AA.shape[0] - 1 and AA[i + 1, i] != 0: | |
evals, _ = eig(AA[i:i + 2, i:i + 2], BB[i:i + 2, i:i + 2]) | |
# make sure the pair of complex conjugate eigenvalues | |
# is ordered consistently (positive imaginary part first) | |
if evals[0].imag < 0: | |
evals = evals[[1, 0]] | |
tmp = alpha[i:i + 2]/beta[i:i + 2] | |
if tmp[0].imag < 0: | |
tmp = tmp[[1, 0]] | |
assert_array_almost_equal(evals, tmp) | |
else: | |
if alpha[i] == 0 and beta[i] == 0: | |
assert_equal(AA[i, i], 0) | |
assert_equal(BB[i, i], 0) | |
elif beta[i] == 0: | |
assert_equal(BB[i, i], 0) | |
else: | |
assert_almost_equal(AA[i, i]/BB[i, i], alpha[i]/beta[i]) | |
sortfun = _select_function(sort) | |
lastsort = True | |
for i in range(A.shape[0]): | |
cursort = sortfun(np.array([alpha[i]]), np.array([beta[i]])) | |
# once the sorting criterion was not matched all subsequent | |
# eigenvalues also shouldn't match | |
if not lastsort: | |
assert not cursort | |
lastsort = cursort | |
def check_all(self, sort): | |
ret = self.qz_decomp(sort) | |
for reti, Ai, Bi in zip(ret, self.A, self.B): | |
self.check(Ai, Bi, sort, *reti) | |
def test_lhp(self): | |
self.check_all('lhp') | |
def test_rhp(self): | |
self.check_all('rhp') | |
def test_iuc(self): | |
self.check_all('iuc') | |
def test_ouc(self): | |
self.check_all('ouc') | |
def test_ref(self): | |
# real eigenvalues first (top-left corner) | |
def sort(x, y): | |
out = np.empty_like(x, dtype=bool) | |
nonzero = (y != 0) | |
out[~nonzero] = False | |
out[nonzero] = (x[nonzero]/y[nonzero]).imag == 0 | |
return out | |
self.check_all(sort) | |
def test_cef(self): | |
# complex eigenvalues first (top-left corner) | |
def sort(x, y): | |
out = np.empty_like(x, dtype=bool) | |
nonzero = (y != 0) | |
out[~nonzero] = False | |
out[nonzero] = (x[nonzero]/y[nonzero]).imag != 0 | |
return out | |
self.check_all(sort) | |
def test_diff_input_types(self): | |
ret = ordqz(self.A[1], self.B[2], sort='lhp') | |
self.check(self.A[1], self.B[2], 'lhp', *ret) | |
ret = ordqz(self.B[2], self.A[1], sort='lhp') | |
self.check(self.B[2], self.A[1], 'lhp', *ret) | |
def test_sort_explicit(self): | |
# Test order of the eigenvalues in the 2 x 2 case where we can | |
# explicitly compute the solution | |
A1 = np.eye(2) | |
B1 = np.diag([-2, 0.5]) | |
expected1 = [('lhp', [-0.5, 2]), | |
('rhp', [2, -0.5]), | |
('iuc', [-0.5, 2]), | |
('ouc', [2, -0.5])] | |
A2 = np.eye(2) | |
B2 = np.diag([-2 + 1j, 0.5 + 0.5j]) | |
expected2 = [('lhp', [1/(-2 + 1j), 1/(0.5 + 0.5j)]), | |
('rhp', [1/(0.5 + 0.5j), 1/(-2 + 1j)]), | |
('iuc', [1/(-2 + 1j), 1/(0.5 + 0.5j)]), | |
('ouc', [1/(0.5 + 0.5j), 1/(-2 + 1j)])] | |
# 'lhp' is ambiguous so don't test it | |
A3 = np.eye(2) | |
B3 = np.diag([2, 0]) | |
expected3 = [('rhp', [0.5, np.inf]), | |
('iuc', [0.5, np.inf]), | |
('ouc', [np.inf, 0.5])] | |
# 'rhp' is ambiguous so don't test it | |
A4 = np.eye(2) | |
B4 = np.diag([-2, 0]) | |
expected4 = [('lhp', [-0.5, np.inf]), | |
('iuc', [-0.5, np.inf]), | |
('ouc', [np.inf, -0.5])] | |
A5 = np.diag([0, 1]) | |
B5 = np.diag([0, 0.5]) | |
# 'lhp' and 'iuc' are ambiguous so don't test them | |
expected5 = [('rhp', [2, np.nan]), | |
('ouc', [2, np.nan])] | |
A = [A1, A2, A3, A4, A5] | |
B = [B1, B2, B3, B4, B5] | |
expected = [expected1, expected2, expected3, expected4, expected5] | |
for Ai, Bi, expectedi in zip(A, B, expected): | |
for sortstr, expected_eigvals in expectedi: | |
_, _, alpha, beta, _, _ = ordqz(Ai, Bi, sort=sortstr) | |
azero = (alpha == 0) | |
bzero = (beta == 0) | |
x = np.empty_like(alpha) | |
x[azero & bzero] = np.nan | |
x[~azero & bzero] = np.inf | |
x[~bzero] = alpha[~bzero]/beta[~bzero] | |
assert_allclose(expected_eigvals, x) | |
class TestOrdQZWorkspaceSize: | |
def test_decompose(self): | |
rng = np.random.RandomState(12345) | |
N = 202 | |
# raises error if lwork parameter to dtrsen is too small | |
for ddtype in [np.float32, np.float64]: | |
A = rng.random((N, N)).astype(ddtype) | |
B = rng.random((N, N)).astype(ddtype) | |
# sort = lambda ar, ai, b: ar**2 + ai**2 < b**2 | |
_ = ordqz(A, B, sort=lambda alpha, beta: alpha < beta, | |
output='real') | |
for ddtype in [np.complex128, np.complex64]: | |
A = rng.random((N, N)).astype(ddtype) | |
B = rng.random((N, N)).astype(ddtype) | |
_ = ordqz(A, B, sort=lambda alpha, beta: alpha < beta, | |
output='complex') | |
def test_decompose_ouc(self): | |
rng = np.random.RandomState(12345) | |
N = 202 | |
# segfaults if lwork parameter to dtrsen is too small | |
for ddtype in [np.float32, np.float64, np.complex128, np.complex64]: | |
A = rng.random((N, N)).astype(ddtype) | |
B = rng.random((N, N)).astype(ddtype) | |
S, T, alpha, beta, U, V = ordqz(A, B, sort='ouc') | |
class TestDatacopied: | |
def test_datacopied(self): | |
from scipy.linalg._decomp import _datacopied | |
M = matrix([[0, 1], [2, 3]]) | |
A = asarray(M) | |
L = M.tolist() | |
M2 = M.copy() | |
class Fake1: | |
def __array__(self, dtype=None, copy=None): | |
return A | |
class Fake2: | |
__array_interface__ = A.__array_interface__ | |
F1 = Fake1() | |
F2 = Fake2() | |
for item, status in [(M, False), (A, False), (L, True), | |
(M2, False), (F1, False), (F2, False)]: | |
arr = asarray(item) | |
assert_equal(_datacopied(arr, item), status, | |
err_msg=repr(item)) | |
def test_aligned_mem_float(): | |
"""Check linalg works with non-aligned memory (float32)""" | |
# Allocate 402 bytes of memory (allocated on boundary) | |
a = arange(402, dtype=np.uint8) | |
# Create an array with boundary offset 4 | |
z = np.frombuffer(a.data, offset=2, count=100, dtype=float32) | |
z.shape = 10, 10 | |
eig(z, overwrite_a=True) | |
eig(z.T, overwrite_a=True) | |
def test_aligned_mem(): | |
"""Check linalg works with non-aligned memory (float64)""" | |
# Allocate 804 bytes of memory (allocated on boundary) | |
a = arange(804, dtype=np.uint8) | |
# Create an array with boundary offset 4 | |
z = np.frombuffer(a.data, offset=4, count=100, dtype=float) | |
z.shape = 10, 10 | |
eig(z, overwrite_a=True) | |
eig(z.T, overwrite_a=True) | |
def test_aligned_mem_complex(): | |
"""Check that complex objects don't need to be completely aligned""" | |
# Allocate 1608 bytes of memory (allocated on boundary) | |
a = zeros(1608, dtype=np.uint8) | |
# Create an array with boundary offset 8 | |
z = np.frombuffer(a.data, offset=8, count=100, dtype=complex) | |
z.shape = 10, 10 | |
eig(z, overwrite_a=True) | |
# This does not need special handling | |
eig(z.T, overwrite_a=True) | |
def check_lapack_misaligned(func, args, kwargs): | |
args = list(args) | |
for i in range(len(args)): | |
a = args[:] | |
if isinstance(a[i], np.ndarray): | |
# Try misaligning a[i] | |
aa = np.zeros(a[i].size*a[i].dtype.itemsize+8, dtype=np.uint8) | |
aa = np.frombuffer(aa.data, offset=4, count=a[i].size, | |
dtype=a[i].dtype) | |
aa.shape = a[i].shape | |
aa[...] = a[i] | |
a[i] = aa | |
func(*a, **kwargs) | |
if len(a[i].shape) > 1: | |
a[i] = a[i].T | |
func(*a, **kwargs) | |
def test_lapack_misaligned(): | |
M = np.eye(10, dtype=float) | |
R = np.arange(100) | |
R.shape = 10, 10 | |
S = np.arange(20000, dtype=np.uint8) | |
S = np.frombuffer(S.data, offset=4, count=100, dtype=float) | |
S.shape = 10, 10 | |
b = np.ones(10) | |
LU, piv = lu_factor(S) | |
for (func, args, kwargs) in [ | |
(eig, (S,), dict(overwrite_a=True)), # crash | |
(eigvals, (S,), dict(overwrite_a=True)), # no crash | |
(lu, (S,), dict(overwrite_a=True)), # no crash | |
(lu_factor, (S,), dict(overwrite_a=True)), # no crash | |
(lu_solve, ((LU, piv), b), dict(overwrite_b=True)), | |
(solve, (S, b), dict(overwrite_a=True, overwrite_b=True)), | |
(svd, (M,), dict(overwrite_a=True)), # no crash | |
(svd, (R,), dict(overwrite_a=True)), # no crash | |
(svd, (S,), dict(overwrite_a=True)), # crash | |
(svdvals, (S,), dict()), # no crash | |
(svdvals, (S,), dict(overwrite_a=True)), # crash | |
(cholesky, (M,), dict(overwrite_a=True)), # no crash | |
(qr, (S,), dict(overwrite_a=True)), # crash | |
(rq, (S,), dict(overwrite_a=True)), # crash | |
(hessenberg, (S,), dict(overwrite_a=True)), # crash | |
(schur, (S,), dict(overwrite_a=True)), # crash | |
]: | |
check_lapack_misaligned(func, args, kwargs) | |
# not properly tested | |
# cholesky, rsf2csf, lu_solve, solve, eig_banded, eigvals_banded, eigh, diagsvd | |
class TestOverwrite: | |
def test_eig(self): | |
assert_no_overwrite(eig, [(3, 3)]) | |
assert_no_overwrite(eig, [(3, 3), (3, 3)]) | |
def test_eigh(self): | |
assert_no_overwrite(eigh, [(3, 3)]) | |
assert_no_overwrite(eigh, [(3, 3), (3, 3)]) | |
def test_eig_banded(self): | |
assert_no_overwrite(eig_banded, [(3, 2)]) | |
def test_eigvals(self): | |
assert_no_overwrite(eigvals, [(3, 3)]) | |
def test_eigvalsh(self): | |
assert_no_overwrite(eigvalsh, [(3, 3)]) | |
def test_eigvals_banded(self): | |
assert_no_overwrite(eigvals_banded, [(3, 2)]) | |
def test_hessenberg(self): | |
assert_no_overwrite(hessenberg, [(3, 3)]) | |
def test_lu_factor(self): | |
assert_no_overwrite(lu_factor, [(3, 3)]) | |
def test_lu_solve(self): | |
x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 8]]) | |
xlu = lu_factor(x) | |
assert_no_overwrite(lambda b: lu_solve(xlu, b), [(3,)]) | |
def test_lu(self): | |
assert_no_overwrite(lu, [(3, 3)]) | |
def test_qr(self): | |
assert_no_overwrite(qr, [(3, 3)]) | |
def test_rq(self): | |
assert_no_overwrite(rq, [(3, 3)]) | |
def test_schur(self): | |
assert_no_overwrite(schur, [(3, 3)]) | |
def test_schur_complex(self): | |
assert_no_overwrite(lambda a: schur(a, 'complex'), [(3, 3)], | |
dtypes=[np.float32, np.float64]) | |
def test_svd(self): | |
assert_no_overwrite(svd, [(3, 3)]) | |
assert_no_overwrite(lambda a: svd(a, lapack_driver='gesvd'), [(3, 3)]) | |
def test_svdvals(self): | |
assert_no_overwrite(svdvals, [(3, 3)]) | |
def _check_orth(n, dtype, skip_big=False): | |
X = np.ones((n, 2), dtype=float).astype(dtype) | |
eps = np.finfo(dtype).eps | |
tol = 1000 * eps | |
Y = orth(X) | |
assert_equal(Y.shape, (n, 1)) | |
assert_allclose(Y, Y.mean(), atol=tol) | |
Y = orth(X.T) | |
assert_equal(Y.shape, (2, 1)) | |
assert_allclose(Y, Y.mean(), atol=tol) | |
if n > 5 and not skip_big: | |
np.random.seed(1) | |
X = np.random.rand(n, 5) @ np.random.rand(5, n) | |
X = X + 1e-4 * np.random.rand(n, 1) @ np.random.rand(1, n) | |
X = X.astype(dtype) | |
Y = orth(X, rcond=1e-3) | |
assert_equal(Y.shape, (n, 5)) | |
Y = orth(X, rcond=1e-6) | |
assert_equal(Y.shape, (n, 5 + 1)) | |
def test_orth_memory_efficiency(): | |
# Pick n so that 16*n bytes is reasonable but 8*n*n bytes is unreasonable. | |
# Keep in mind that @pytest.mark.slow tests are likely to be running | |
# under configurations that support 4Gb+ memory for tests related to | |
# 32 bit overflow. | |
n = 10*1000*1000 | |
try: | |
_check_orth(n, np.float64, skip_big=True) | |
except MemoryError as e: | |
raise AssertionError( | |
'memory error perhaps caused by orth regression' | |
) from e | |
def test_orth(): | |
dtypes = [np.float32, np.float64, np.complex64, np.complex128] | |
sizes = [1, 2, 3, 10, 100] | |
for dt, n in itertools.product(dtypes, sizes): | |
_check_orth(n, dt) | |
def test_null_space(): | |
np.random.seed(1) | |
dtypes = [np.float32, np.float64, np.complex64, np.complex128] | |
sizes = [1, 2, 3, 10, 100] | |
for dt, n in itertools.product(dtypes, sizes): | |
X = np.ones((2, n), dtype=dt) | |
eps = np.finfo(dt).eps | |
tol = 1000 * eps | |
Y = null_space(X) | |
assert_equal(Y.shape, (n, n-1)) | |
assert_allclose(X @ Y, 0, atol=tol) | |
Y = null_space(X.T) | |
assert_equal(Y.shape, (2, 1)) | |
assert_allclose(X.T @ Y, 0, atol=tol) | |
X = np.random.randn(1 + n//2, n) | |
Y = null_space(X) | |
assert_equal(Y.shape, (n, n - 1 - n//2)) | |
assert_allclose(X @ Y, 0, atol=tol) | |
if n > 5: | |
np.random.seed(1) | |
X = np.random.rand(n, 5) @ np.random.rand(5, n) | |
X = X + 1e-4 * np.random.rand(n, 1) @ np.random.rand(1, n) | |
X = X.astype(dt) | |
Y = null_space(X, rcond=1e-3) | |
assert_equal(Y.shape, (n, n - 5)) | |
Y = null_space(X, rcond=1e-6) | |
assert_equal(Y.shape, (n, n - 6)) | |
def test_subspace_angles(): | |
H = hadamard(8, float) | |
A = H[:, :3] | |
B = H[:, 3:] | |
assert_allclose(subspace_angles(A, B), [np.pi / 2.] * 3, atol=1e-14) | |
assert_allclose(subspace_angles(B, A), [np.pi / 2.] * 3, atol=1e-14) | |
for x in (A, B): | |
assert_allclose(subspace_angles(x, x), np.zeros(x.shape[1]), | |
atol=1e-14) | |
# From MATLAB function "subspace", which effectively only returns the | |
# last value that we calculate | |
x = np.array( | |
[[0.537667139546100, 0.318765239858981, 3.578396939725760, 0.725404224946106], # noqa: E501 | |
[1.833885014595086, -1.307688296305273, 2.769437029884877, -0.063054873189656], # noqa: E501 | |
[-2.258846861003648, -0.433592022305684, -1.349886940156521, 0.714742903826096], # noqa: E501 | |
[0.862173320368121, 0.342624466538650, 3.034923466331855, -0.204966058299775]]) # noqa: E501 | |
expected = 1.481454682101605 | |
assert_allclose(subspace_angles(x[:, :2], x[:, 2:])[0], expected, | |
rtol=1e-12) | |
assert_allclose(subspace_angles(x[:, 2:], x[:, :2])[0], expected, | |
rtol=1e-12) | |
expected = 0.746361174247302 | |
assert_allclose(subspace_angles(x[:, :2], x[:, [2]]), expected, rtol=1e-12) | |
assert_allclose(subspace_angles(x[:, [2]], x[:, :2]), expected, rtol=1e-12) | |
expected = 0.487163718534313 | |
assert_allclose(subspace_angles(x[:, :3], x[:, [3]]), expected, rtol=1e-12) | |
assert_allclose(subspace_angles(x[:, [3]], x[:, :3]), expected, rtol=1e-12) | |
expected = 0.328950515907756 | |
assert_allclose(subspace_angles(x[:, :2], x[:, 1:]), [expected, 0], | |
atol=1e-12) | |
# Degenerate conditions | |
assert_raises(ValueError, subspace_angles, x[0], x) | |
assert_raises(ValueError, subspace_angles, x, x[0]) | |
assert_raises(ValueError, subspace_angles, x[:-1], x) | |
# Test branch if mask.any is True: | |
A = np.array([[1, 0, 0], | |
[0, 1, 0], | |
[0, 0, 1], | |
[0, 0, 0], | |
[0, 0, 0]]) | |
B = np.array([[1, 0, 0], | |
[0, 1, 0], | |
[0, 0, 0], | |
[0, 0, 0], | |
[0, 0, 1]]) | |
expected = np.array([np.pi/2, 0, 0]) | |
assert_allclose(subspace_angles(A, B), expected, rtol=1e-12) | |
# Complex | |
# second column in "b" does not affect result, just there so that | |
# b can have more cols than a, and vice-versa (both conditional code paths) | |
a = [[1 + 1j], [0]] | |
b = [[1 - 1j, 0], [0, 1]] | |
assert_allclose(subspace_angles(a, b), 0., atol=1e-14) | |
assert_allclose(subspace_angles(b, a), 0., atol=1e-14) | |
class TestCDF2RDF: | |
def matmul(self, a, b): | |
return np.einsum('...ij,...jk->...ik', a, b) | |
def assert_eig_valid(self, w, v, x): | |
assert_array_almost_equal( | |
self.matmul(v, w), | |
self.matmul(x, v) | |
) | |
def test_single_array0x0real(self): | |
# eig doesn't support 0x0 in old versions of numpy | |
X = np.empty((0, 0)) | |
w, v = np.empty(0), np.empty((0, 0)) | |
wr, vr = cdf2rdf(w, v) | |
self.assert_eig_valid(wr, vr, X) | |
def test_single_array2x2_real(self): | |
X = np.array([[1, 2], [3, -1]]) | |
w, v = np.linalg.eig(X) | |
wr, vr = cdf2rdf(w, v) | |
self.assert_eig_valid(wr, vr, X) | |
def test_single_array2x2_complex(self): | |
X = np.array([[1, 2], [-2, 1]]) | |
w, v = np.linalg.eig(X) | |
wr, vr = cdf2rdf(w, v) | |
self.assert_eig_valid(wr, vr, X) | |
def test_single_array3x3_real(self): | |
X = np.array([[1, 2, 3], [1, 2, 3], [2, 5, 6]]) | |
w, v = np.linalg.eig(X) | |
wr, vr = cdf2rdf(w, v) | |
self.assert_eig_valid(wr, vr, X) | |
def test_single_array3x3_complex(self): | |
X = np.array([[1, 2, 3], [0, 4, 5], [0, -5, 4]]) | |
w, v = np.linalg.eig(X) | |
wr, vr = cdf2rdf(w, v) | |
self.assert_eig_valid(wr, vr, X) | |
def test_random_1d_stacked_arrays(self): | |
# cannot test M == 0 due to bug in old numpy | |
for M in range(1, 7): | |
np.random.seed(999999999) | |
X = np.random.rand(100, M, M) | |
w, v = np.linalg.eig(X) | |
wr, vr = cdf2rdf(w, v) | |
self.assert_eig_valid(wr, vr, X) | |
def test_random_2d_stacked_arrays(self): | |
# cannot test M == 0 due to bug in old numpy | |
for M in range(1, 7): | |
X = np.random.rand(10, 10, M, M) | |
w, v = np.linalg.eig(X) | |
wr, vr = cdf2rdf(w, v) | |
self.assert_eig_valid(wr, vr, X) | |
def test_low_dimensionality_error(self): | |
w, v = np.empty(()), np.array((2,)) | |
assert_raises(ValueError, cdf2rdf, w, v) | |
def test_not_square_error(self): | |
# Check that passing a non-square array raises a ValueError. | |
w, v = np.arange(3), np.arange(6).reshape(3, 2) | |
assert_raises(ValueError, cdf2rdf, w, v) | |
def test_swapped_v_w_error(self): | |
# Check that exchanging places of w and v raises ValueError. | |
X = np.array([[1, 2, 3], [0, 4, 5], [0, -5, 4]]) | |
w, v = np.linalg.eig(X) | |
assert_raises(ValueError, cdf2rdf, v, w) | |
def test_non_associated_error(self): | |
# Check that passing non-associated eigenvectors raises a ValueError. | |
w, v = np.arange(3), np.arange(16).reshape(4, 4) | |
assert_raises(ValueError, cdf2rdf, w, v) | |
def test_not_conjugate_pairs(self): | |
# Check that passing non-conjugate pairs raises a ValueError. | |
X = np.array([[1, 2, 3], [1, 2, 3], [2, 5, 6+1j]]) | |
w, v = np.linalg.eig(X) | |
assert_raises(ValueError, cdf2rdf, w, v) | |
# different arrays in the stack, so not conjugate | |
X = np.array([ | |
[[1, 2, 3], [1, 2, 3], [2, 5, 6+1j]], | |
[[1, 2, 3], [1, 2, 3], [2, 5, 6-1j]], | |
]) | |
w, v = np.linalg.eig(X) | |
assert_raises(ValueError, cdf2rdf, w, v) | |