peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_nonlin.py
# Copyright (C) 2009, Pauli Virtanen <[email protected]> | |
# Distributed under the same license as SciPy. | |
import inspect | |
import sys | |
import warnings | |
import numpy as np | |
from numpy import asarray, dot, vdot | |
from scipy.linalg import norm, solve, inv, qr, svd, LinAlgError | |
import scipy.sparse.linalg | |
import scipy.sparse | |
from scipy.linalg import get_blas_funcs | |
from scipy._lib._util import getfullargspec_no_self as _getfullargspec | |
from ._linesearch import scalar_search_wolfe1, scalar_search_armijo | |
__all__ = [ | |
'broyden1', 'broyden2', 'anderson', 'linearmixing', | |
'diagbroyden', 'excitingmixing', 'newton_krylov', | |
'BroydenFirst', 'KrylovJacobian', 'InverseJacobian', 'NoConvergence'] | |
#------------------------------------------------------------------------------ | |
# Utility functions | |
#------------------------------------------------------------------------------ | |
class NoConvergence(Exception): | |
"""Exception raised when nonlinear solver fails to converge within the specified | |
`maxiter`.""" | |
pass | |
def maxnorm(x): | |
return np.absolute(x).max() | |
def _as_inexact(x): | |
"""Return `x` as an array, of either floats or complex floats""" | |
x = asarray(x) | |
if not np.issubdtype(x.dtype, np.inexact): | |
return asarray(x, dtype=np.float64) | |
return x | |
def _array_like(x, x0): | |
"""Return ndarray `x` as same array subclass and shape as `x0`""" | |
x = np.reshape(x, np.shape(x0)) | |
wrap = getattr(x0, '__array_wrap__', x.__array_wrap__) | |
return wrap(x) | |
def _safe_norm(v): | |
if not np.isfinite(v).all(): | |
return np.array(np.inf) | |
return norm(v) | |
#------------------------------------------------------------------------------ | |
# Generic nonlinear solver machinery | |
#------------------------------------------------------------------------------ | |
_doc_parts = dict( | |
params_basic=""" | |
F : function(x) -> f | |
Function whose root to find; should take and return an array-like | |
object. | |
xin : array_like | |
Initial guess for the solution | |
""".strip(), | |
params_extra=""" | |
iter : int, optional | |
Number of iterations to make. If omitted (default), make as many | |
as required to meet tolerances. | |
verbose : bool, optional | |
Print status to stdout on every iteration. | |
maxiter : int, optional | |
Maximum number of iterations to make. If more are needed to | |
meet convergence, `NoConvergence` is raised. | |
f_tol : float, optional | |
Absolute tolerance (in max-norm) for the residual. | |
If omitted, default is 6e-6. | |
f_rtol : float, optional | |
Relative tolerance for the residual. If omitted, not used. | |
x_tol : float, optional | |
Absolute minimum step size, as determined from the Jacobian | |
approximation. If the step size is smaller than this, optimization | |
is terminated as successful. If omitted, not used. | |
x_rtol : float, optional | |
Relative minimum step size. If omitted, not used. | |
tol_norm : function(vector) -> scalar, optional | |
Norm to use in convergence check. Default is the maximum norm. | |
line_search : {None, 'armijo' (default), 'wolfe'}, optional | |
Which type of a line search to use to determine the step size in the | |
direction given by the Jacobian approximation. Defaults to 'armijo'. | |
callback : function, optional | |
Optional callback function. It is called on every iteration as | |
``callback(x, f)`` where `x` is the current solution and `f` | |
the corresponding residual. | |
Returns | |
------- | |
sol : ndarray | |
An array (of similar array type as `x0`) containing the final solution. | |
Raises | |
------ | |
NoConvergence | |
When a solution was not found. | |
""".strip() | |
) | |
def _set_doc(obj): | |
if obj.__doc__: | |
obj.__doc__ = obj.__doc__ % _doc_parts | |
def nonlin_solve(F, x0, jacobian='krylov', iter=None, verbose=False, | |
maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, | |
tol_norm=None, line_search='armijo', callback=None, | |
full_output=False, raise_exception=True): | |
""" | |
Find a root of a function, in a way suitable for large-scale problems. | |
Parameters | |
---------- | |
%(params_basic)s | |
jacobian : Jacobian | |
A Jacobian approximation: `Jacobian` object or something that | |
`asjacobian` can transform to one. Alternatively, a string specifying | |
which of the builtin Jacobian approximations to use: | |
krylov, broyden1, broyden2, anderson | |
diagbroyden, linearmixing, excitingmixing | |
%(params_extra)s | |
full_output : bool | |
If true, returns a dictionary `info` containing convergence | |
information. | |
raise_exception : bool | |
If True, a `NoConvergence` exception is raise if no solution is found. | |
See Also | |
-------- | |
asjacobian, Jacobian | |
Notes | |
----- | |
This algorithm implements the inexact Newton method, with | |
backtracking or full line searches. Several Jacobian | |
approximations are available, including Krylov and Quasi-Newton | |
methods. | |
References | |
---------- | |
.. [KIM] C. T. Kelley, \"Iterative Methods for Linear and Nonlinear | |
Equations\". Society for Industrial and Applied Mathematics. (1995) | |
https://archive.siam.org/books/kelley/fr16/ | |
""" | |
# Can't use default parameters because it's being explicitly passed as None | |
# from the calling function, so we need to set it here. | |
tol_norm = maxnorm if tol_norm is None else tol_norm | |
condition = TerminationCondition(f_tol=f_tol, f_rtol=f_rtol, | |
x_tol=x_tol, x_rtol=x_rtol, | |
iter=iter, norm=tol_norm) | |
x0 = _as_inexact(x0) | |
def func(z): | |
return _as_inexact(F(_array_like(z, x0))).flatten() | |
x = x0.flatten() | |
dx = np.full_like(x, np.inf) | |
Fx = func(x) | |
Fx_norm = norm(Fx) | |
jacobian = asjacobian(jacobian) | |
jacobian.setup(x.copy(), Fx, func) | |
if maxiter is None: | |
if iter is not None: | |
maxiter = iter + 1 | |
else: | |
maxiter = 100*(x.size+1) | |
if line_search is True: | |
line_search = 'armijo' | |
elif line_search is False: | |
line_search = None | |
if line_search not in (None, 'armijo', 'wolfe'): | |
raise ValueError("Invalid line search") | |
# Solver tolerance selection | |
gamma = 0.9 | |
eta_max = 0.9999 | |
eta_treshold = 0.1 | |
eta = 1e-3 | |
for n in range(maxiter): | |
status = condition.check(Fx, x, dx) | |
if status: | |
break | |
# The tolerance, as computed for scipy.sparse.linalg.* routines | |
tol = min(eta, eta*Fx_norm) | |
dx = -jacobian.solve(Fx, tol=tol) | |
if norm(dx) == 0: | |
raise ValueError("Jacobian inversion yielded zero vector. " | |
"This indicates a bug in the Jacobian " | |
"approximation.") | |
# Line search, or Newton step | |
if line_search: | |
s, x, Fx, Fx_norm_new = _nonlin_line_search(func, x, Fx, dx, | |
line_search) | |
else: | |
s = 1.0 | |
x = x + dx | |
Fx = func(x) | |
Fx_norm_new = norm(Fx) | |
jacobian.update(x.copy(), Fx) | |
if callback: | |
callback(x, Fx) | |
# Adjust forcing parameters for inexact methods | |
eta_A = gamma * Fx_norm_new**2 / Fx_norm**2 | |
if gamma * eta**2 < eta_treshold: | |
eta = min(eta_max, eta_A) | |
else: | |
eta = min(eta_max, max(eta_A, gamma*eta**2)) | |
Fx_norm = Fx_norm_new | |
# Print status | |
if verbose: | |
sys.stdout.write("%d: |F(x)| = %g; step %g\n" % ( | |
n, tol_norm(Fx), s)) | |
sys.stdout.flush() | |
else: | |
if raise_exception: | |
raise NoConvergence(_array_like(x, x0)) | |
else: | |
status = 2 | |
if full_output: | |
info = {'nit': condition.iteration, | |
'fun': Fx, | |
'status': status, | |
'success': status == 1, | |
'message': {1: 'A solution was found at the specified ' | |
'tolerance.', | |
2: 'The maximum number of iterations allowed ' | |
'has been reached.' | |
}[status] | |
} | |
return _array_like(x, x0), info | |
else: | |
return _array_like(x, x0) | |
_set_doc(nonlin_solve) | |
def _nonlin_line_search(func, x, Fx, dx, search_type='armijo', rdiff=1e-8, | |
smin=1e-2): | |
tmp_s = [0] | |
tmp_Fx = [Fx] | |
tmp_phi = [norm(Fx)**2] | |
s_norm = norm(x) / norm(dx) | |
def phi(s, store=True): | |
if s == tmp_s[0]: | |
return tmp_phi[0] | |
xt = x + s*dx | |
v = func(xt) | |
p = _safe_norm(v)**2 | |
if store: | |
tmp_s[0] = s | |
tmp_phi[0] = p | |
tmp_Fx[0] = v | |
return p | |
def derphi(s): | |
ds = (abs(s) + s_norm + 1) * rdiff | |
return (phi(s+ds, store=False) - phi(s)) / ds | |
if search_type == 'wolfe': | |
s, phi1, phi0 = scalar_search_wolfe1(phi, derphi, tmp_phi[0], | |
xtol=1e-2, amin=smin) | |
elif search_type == 'armijo': | |
s, phi1 = scalar_search_armijo(phi, tmp_phi[0], -tmp_phi[0], | |
amin=smin) | |
if s is None: | |
# XXX: No suitable step length found. Take the full Newton step, | |
# and hope for the best. | |
s = 1.0 | |
x = x + s*dx | |
if s == tmp_s[0]: | |
Fx = tmp_Fx[0] | |
else: | |
Fx = func(x) | |
Fx_norm = norm(Fx) | |
return s, x, Fx, Fx_norm | |
class TerminationCondition: | |
""" | |
Termination condition for an iteration. It is terminated if | |
- |F| < f_rtol*|F_0|, AND | |
- |F| < f_tol | |
AND | |
- |dx| < x_rtol*|x|, AND | |
- |dx| < x_tol | |
""" | |
def __init__(self, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, | |
iter=None, norm=maxnorm): | |
if f_tol is None: | |
f_tol = np.finfo(np.float64).eps ** (1./3) | |
if f_rtol is None: | |
f_rtol = np.inf | |
if x_tol is None: | |
x_tol = np.inf | |
if x_rtol is None: | |
x_rtol = np.inf | |
self.x_tol = x_tol | |
self.x_rtol = x_rtol | |
self.f_tol = f_tol | |
self.f_rtol = f_rtol | |
self.norm = norm | |
self.iter = iter | |
self.f0_norm = None | |
self.iteration = 0 | |
def check(self, f, x, dx): | |
self.iteration += 1 | |
f_norm = self.norm(f) | |
x_norm = self.norm(x) | |
dx_norm = self.norm(dx) | |
if self.f0_norm is None: | |
self.f0_norm = f_norm | |
if f_norm == 0: | |
return 1 | |
if self.iter is not None: | |
# backwards compatibility with SciPy 0.6.0 | |
return 2 * (self.iteration > self.iter) | |
# NB: condition must succeed for rtol=inf even if norm == 0 | |
return int((f_norm <= self.f_tol | |
and f_norm/self.f_rtol <= self.f0_norm) | |
and (dx_norm <= self.x_tol | |
and dx_norm/self.x_rtol <= x_norm)) | |
#------------------------------------------------------------------------------ | |
# Generic Jacobian approximation | |
#------------------------------------------------------------------------------ | |
class Jacobian: | |
""" | |
Common interface for Jacobians or Jacobian approximations. | |
The optional methods come useful when implementing trust region | |
etc., algorithms that often require evaluating transposes of the | |
Jacobian. | |
Methods | |
------- | |
solve | |
Returns J^-1 * v | |
update | |
Updates Jacobian to point `x` (where the function has residual `Fx`) | |
matvec : optional | |
Returns J * v | |
rmatvec : optional | |
Returns A^H * v | |
rsolve : optional | |
Returns A^-H * v | |
matmat : optional | |
Returns A * V, where V is a dense matrix with dimensions (N,K). | |
todense : optional | |
Form the dense Jacobian matrix. Necessary for dense trust region | |
algorithms, and useful for testing. | |
Attributes | |
---------- | |
shape | |
Matrix dimensions (M, N) | |
dtype | |
Data type of the matrix. | |
func : callable, optional | |
Function the Jacobian corresponds to | |
""" | |
def __init__(self, **kw): | |
names = ["solve", "update", "matvec", "rmatvec", "rsolve", | |
"matmat", "todense", "shape", "dtype"] | |
for name, value in kw.items(): | |
if name not in names: | |
raise ValueError("Unknown keyword argument %s" % name) | |
if value is not None: | |
setattr(self, name, kw[name]) | |
if hasattr(self, "todense"): | |
def __array__(self, dtype=None, copy=None): | |
if dtype is not None: | |
raise ValueError(f"`dtype` must be None, was {dtype}") | |
return self.todense() | |
def aspreconditioner(self): | |
return InverseJacobian(self) | |
def solve(self, v, tol=0): | |
raise NotImplementedError | |
def update(self, x, F): | |
pass | |
def setup(self, x, F, func): | |
self.func = func | |
self.shape = (F.size, x.size) | |
self.dtype = F.dtype | |
if self.__class__.setup is Jacobian.setup: | |
# Call on the first point unless overridden | |
self.update(x, F) | |
class InverseJacobian: | |
def __init__(self, jacobian): | |
self.jacobian = jacobian | |
self.matvec = jacobian.solve | |
self.update = jacobian.update | |
if hasattr(jacobian, 'setup'): | |
self.setup = jacobian.setup | |
if hasattr(jacobian, 'rsolve'): | |
self.rmatvec = jacobian.rsolve | |
def shape(self): | |
return self.jacobian.shape | |
def dtype(self): | |
return self.jacobian.dtype | |
def asjacobian(J): | |
""" | |
Convert given object to one suitable for use as a Jacobian. | |
""" | |
spsolve = scipy.sparse.linalg.spsolve | |
if isinstance(J, Jacobian): | |
return J | |
elif inspect.isclass(J) and issubclass(J, Jacobian): | |
return J() | |
elif isinstance(J, np.ndarray): | |
if J.ndim > 2: | |
raise ValueError('array must have rank <= 2') | |
J = np.atleast_2d(np.asarray(J)) | |
if J.shape[0] != J.shape[1]: | |
raise ValueError('array must be square') | |
return Jacobian(matvec=lambda v: dot(J, v), | |
rmatvec=lambda v: dot(J.conj().T, v), | |
solve=lambda v, tol=0: solve(J, v), | |
rsolve=lambda v, tol=0: solve(J.conj().T, v), | |
dtype=J.dtype, shape=J.shape) | |
elif scipy.sparse.issparse(J): | |
if J.shape[0] != J.shape[1]: | |
raise ValueError('matrix must be square') | |
return Jacobian(matvec=lambda v: J @ v, | |
rmatvec=lambda v: J.conj().T @ v, | |
solve=lambda v, tol=0: spsolve(J, v), | |
rsolve=lambda v, tol=0: spsolve(J.conj().T, v), | |
dtype=J.dtype, shape=J.shape) | |
elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'): | |
return Jacobian(matvec=getattr(J, 'matvec'), | |
rmatvec=getattr(J, 'rmatvec'), | |
solve=J.solve, | |
rsolve=getattr(J, 'rsolve'), | |
update=getattr(J, 'update'), | |
setup=getattr(J, 'setup'), | |
dtype=J.dtype, | |
shape=J.shape) | |
elif callable(J): | |
# Assume it's a function J(x) that returns the Jacobian | |
class Jac(Jacobian): | |
def update(self, x, F): | |
self.x = x | |
def solve(self, v, tol=0): | |
m = J(self.x) | |
if isinstance(m, np.ndarray): | |
return solve(m, v) | |
elif scipy.sparse.issparse(m): | |
return spsolve(m, v) | |
else: | |
raise ValueError("Unknown matrix type") | |
def matvec(self, v): | |
m = J(self.x) | |
if isinstance(m, np.ndarray): | |
return dot(m, v) | |
elif scipy.sparse.issparse(m): | |
return m @ v | |
else: | |
raise ValueError("Unknown matrix type") | |
def rsolve(self, v, tol=0): | |
m = J(self.x) | |
if isinstance(m, np.ndarray): | |
return solve(m.conj().T, v) | |
elif scipy.sparse.issparse(m): | |
return spsolve(m.conj().T, v) | |
else: | |
raise ValueError("Unknown matrix type") | |
def rmatvec(self, v): | |
m = J(self.x) | |
if isinstance(m, np.ndarray): | |
return dot(m.conj().T, v) | |
elif scipy.sparse.issparse(m): | |
return m.conj().T @ v | |
else: | |
raise ValueError("Unknown matrix type") | |
return Jac() | |
elif isinstance(J, str): | |
return dict(broyden1=BroydenFirst, | |
broyden2=BroydenSecond, | |
anderson=Anderson, | |
diagbroyden=DiagBroyden, | |
linearmixing=LinearMixing, | |
excitingmixing=ExcitingMixing, | |
krylov=KrylovJacobian)[J]() | |
else: | |
raise TypeError('Cannot convert object to a Jacobian') | |
#------------------------------------------------------------------------------ | |
# Broyden | |
#------------------------------------------------------------------------------ | |
class GenericBroyden(Jacobian): | |
def setup(self, x0, f0, func): | |
Jacobian.setup(self, x0, f0, func) | |
self.last_f = f0 | |
self.last_x = x0 | |
if hasattr(self, 'alpha') and self.alpha is None: | |
# Autoscale the initial Jacobian parameter | |
# unless we have already guessed the solution. | |
normf0 = norm(f0) | |
if normf0: | |
self.alpha = 0.5*max(norm(x0), 1) / normf0 | |
else: | |
self.alpha = 1.0 | |
def _update(self, x, f, dx, df, dx_norm, df_norm): | |
raise NotImplementedError | |
def update(self, x, f): | |
df = f - self.last_f | |
dx = x - self.last_x | |
self._update(x, f, dx, df, norm(dx), norm(df)) | |
self.last_f = f | |
self.last_x = x | |
class LowRankMatrix: | |
r""" | |
A matrix represented as | |
.. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger | |
However, if the rank of the matrix reaches the dimension of the vectors, | |
full matrix representation will be used thereon. | |
""" | |
def __init__(self, alpha, n, dtype): | |
self.alpha = alpha | |
self.cs = [] | |
self.ds = [] | |
self.n = n | |
self.dtype = dtype | |
self.collapsed = None | |
def _matvec(v, alpha, cs, ds): | |
axpy, scal, dotc = get_blas_funcs(['axpy', 'scal', 'dotc'], | |
cs[:1] + [v]) | |
w = alpha * v | |
for c, d in zip(cs, ds): | |
a = dotc(d, v) | |
w = axpy(c, w, w.size, a) | |
return w | |
def _solve(v, alpha, cs, ds): | |
"""Evaluate w = M^-1 v""" | |
if len(cs) == 0: | |
return v/alpha | |
# (B + C D^H)^-1 = B^-1 - B^-1 C (I + D^H B^-1 C)^-1 D^H B^-1 | |
axpy, dotc = get_blas_funcs(['axpy', 'dotc'], cs[:1] + [v]) | |
c0 = cs[0] | |
A = alpha * np.identity(len(cs), dtype=c0.dtype) | |
for i, d in enumerate(ds): | |
for j, c in enumerate(cs): | |
A[i,j] += dotc(d, c) | |
q = np.zeros(len(cs), dtype=c0.dtype) | |
for j, d in enumerate(ds): | |
q[j] = dotc(d, v) | |
q /= alpha | |
q = solve(A, q) | |
w = v/alpha | |
for c, qc in zip(cs, q): | |
w = axpy(c, w, w.size, -qc) | |
return w | |
def matvec(self, v): | |
"""Evaluate w = M v""" | |
if self.collapsed is not None: | |
return np.dot(self.collapsed, v) | |
return LowRankMatrix._matvec(v, self.alpha, self.cs, self.ds) | |
def rmatvec(self, v): | |
"""Evaluate w = M^H v""" | |
if self.collapsed is not None: | |
return np.dot(self.collapsed.T.conj(), v) | |
return LowRankMatrix._matvec(v, np.conj(self.alpha), self.ds, self.cs) | |
def solve(self, v, tol=0): | |
"""Evaluate w = M^-1 v""" | |
if self.collapsed is not None: | |
return solve(self.collapsed, v) | |
return LowRankMatrix._solve(v, self.alpha, self.cs, self.ds) | |
def rsolve(self, v, tol=0): | |
"""Evaluate w = M^-H v""" | |
if self.collapsed is not None: | |
return solve(self.collapsed.T.conj(), v) | |
return LowRankMatrix._solve(v, np.conj(self.alpha), self.ds, self.cs) | |
def append(self, c, d): | |
if self.collapsed is not None: | |
self.collapsed += c[:,None] * d[None,:].conj() | |
return | |
self.cs.append(c) | |
self.ds.append(d) | |
if len(self.cs) > c.size: | |
self.collapse() | |
def __array__(self, dtype=None, copy=None): | |
if dtype is not None: | |
warnings.warn("LowRankMatrix is scipy-internal code, `dtype` " | |
f"should only be None but was {dtype} (not handled)", | |
stacklevel=3) | |
if copy is not None: | |
warnings.warn("LowRankMatrix is scipy-internal code, `copy` " | |
f"should only be None but was {copy} (not handled)", | |
stacklevel=3) | |
if self.collapsed is not None: | |
return self.collapsed | |
Gm = self.alpha*np.identity(self.n, dtype=self.dtype) | |
for c, d in zip(self.cs, self.ds): | |
Gm += c[:,None]*d[None,:].conj() | |
return Gm | |
def collapse(self): | |
"""Collapse the low-rank matrix to a full-rank one.""" | |
self.collapsed = np.array(self) | |
self.cs = None | |
self.ds = None | |
self.alpha = None | |
def restart_reduce(self, rank): | |
""" | |
Reduce the rank of the matrix by dropping all vectors. | |
""" | |
if self.collapsed is not None: | |
return | |
assert rank > 0 | |
if len(self.cs) > rank: | |
del self.cs[:] | |
del self.ds[:] | |
def simple_reduce(self, rank): | |
""" | |
Reduce the rank of the matrix by dropping oldest vectors. | |
""" | |
if self.collapsed is not None: | |
return | |
assert rank > 0 | |
while len(self.cs) > rank: | |
del self.cs[0] | |
del self.ds[0] | |
def svd_reduce(self, max_rank, to_retain=None): | |
""" | |
Reduce the rank of the matrix by retaining some SVD components. | |
This corresponds to the \"Broyden Rank Reduction Inverse\" | |
algorithm described in [1]_. | |
Note that the SVD decomposition can be done by solving only a | |
problem whose size is the effective rank of this matrix, which | |
is viable even for large problems. | |
Parameters | |
---------- | |
max_rank : int | |
Maximum rank of this matrix after reduction. | |
to_retain : int, optional | |
Number of SVD components to retain when reduction is done | |
(ie. rank > max_rank). Default is ``max_rank - 2``. | |
References | |
---------- | |
.. [1] B.A. van der Rotten, PhD thesis, | |
\"A limited memory Broyden method to solve high-dimensional | |
systems of nonlinear equations\". Mathematisch Instituut, | |
Universiteit Leiden, The Netherlands (2003). | |
https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf | |
""" | |
if self.collapsed is not None: | |
return | |
p = max_rank | |
if to_retain is not None: | |
q = to_retain | |
else: | |
q = p - 2 | |
if self.cs: | |
p = min(p, len(self.cs[0])) | |
q = max(0, min(q, p-1)) | |
m = len(self.cs) | |
if m < p: | |
# nothing to do | |
return | |
C = np.array(self.cs).T | |
D = np.array(self.ds).T | |
D, R = qr(D, mode='economic') | |
C = dot(C, R.T.conj()) | |
U, S, WH = svd(C, full_matrices=False) | |
C = dot(C, inv(WH)) | |
D = dot(D, WH.T.conj()) | |
for k in range(q): | |
self.cs[k] = C[:,k].copy() | |
self.ds[k] = D[:,k].copy() | |
del self.cs[q:] | |
del self.ds[q:] | |
_doc_parts['broyden_params'] = """ | |
alpha : float, optional | |
Initial guess for the Jacobian is ``(-1/alpha)``. | |
reduction_method : str or tuple, optional | |
Method used in ensuring that the rank of the Broyden matrix | |
stays low. Can either be a string giving the name of the method, | |
or a tuple of the form ``(method, param1, param2, ...)`` | |
that gives the name of the method and values for additional parameters. | |
Methods available: | |
- ``restart``: drop all matrix columns. Has no extra parameters. | |
- ``simple``: drop oldest matrix column. Has no extra parameters. | |
- ``svd``: keep only the most significant SVD components. | |
Takes an extra parameter, ``to_retain``, which determines the | |
number of SVD components to retain when rank reduction is done. | |
Default is ``max_rank - 2``. | |
max_rank : int, optional | |
Maximum rank for the Broyden matrix. | |
Default is infinity (i.e., no rank reduction). | |
""".strip() | |
class BroydenFirst(GenericBroyden): | |
r""" | |
Find a root of a function, using Broyden's first Jacobian approximation. | |
This method is also known as \"Broyden's good method\". | |
Parameters | |
---------- | |
%(params_basic)s | |
%(broyden_params)s | |
%(params_extra)s | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See ``method='broyden1'`` in particular. | |
Notes | |
----- | |
This algorithm implements the inverse Jacobian Quasi-Newton update | |
.. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df) | |
which corresponds to Broyden's first Jacobian update | |
.. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx | |
References | |
---------- | |
.. [1] B.A. van der Rotten, PhD thesis, | |
\"A limited memory Broyden method to solve high-dimensional | |
systems of nonlinear equations\". Mathematisch Instituut, | |
Universiteit Leiden, The Netherlands (2003). | |
https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf | |
Examples | |
-------- | |
The following functions define a system of nonlinear equations | |
>>> def fun(x): | |
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0, | |
... 0.5 * (x[1] - x[0])**3 + x[1]] | |
A solution can be obtained as follows. | |
>>> from scipy import optimize | |
>>> sol = optimize.broyden1(fun, [0, 0]) | |
>>> sol | |
array([0.84116396, 0.15883641]) | |
""" | |
def __init__(self, alpha=None, reduction_method='restart', max_rank=None): | |
GenericBroyden.__init__(self) | |
self.alpha = alpha | |
self.Gm = None | |
if max_rank is None: | |
max_rank = np.inf | |
self.max_rank = max_rank | |
if isinstance(reduction_method, str): | |
reduce_params = () | |
else: | |
reduce_params = reduction_method[1:] | |
reduction_method = reduction_method[0] | |
reduce_params = (max_rank - 1,) + reduce_params | |
if reduction_method == 'svd': | |
self._reduce = lambda: self.Gm.svd_reduce(*reduce_params) | |
elif reduction_method == 'simple': | |
self._reduce = lambda: self.Gm.simple_reduce(*reduce_params) | |
elif reduction_method == 'restart': | |
self._reduce = lambda: self.Gm.restart_reduce(*reduce_params) | |
else: | |
raise ValueError("Unknown rank reduction method '%s'" % | |
reduction_method) | |
def setup(self, x, F, func): | |
GenericBroyden.setup(self, x, F, func) | |
self.Gm = LowRankMatrix(-self.alpha, self.shape[0], self.dtype) | |
def todense(self): | |
return inv(self.Gm) | |
def solve(self, f, tol=0): | |
r = self.Gm.matvec(f) | |
if not np.isfinite(r).all(): | |
# singular; reset the Jacobian approximation | |
self.setup(self.last_x, self.last_f, self.func) | |
return self.Gm.matvec(f) | |
return r | |
def matvec(self, f): | |
return self.Gm.solve(f) | |
def rsolve(self, f, tol=0): | |
return self.Gm.rmatvec(f) | |
def rmatvec(self, f): | |
return self.Gm.rsolve(f) | |
def _update(self, x, f, dx, df, dx_norm, df_norm): | |
self._reduce() # reduce first to preserve secant condition | |
v = self.Gm.rmatvec(dx) | |
c = dx - self.Gm.matvec(df) | |
d = v / vdot(df, v) | |
self.Gm.append(c, d) | |
class BroydenSecond(BroydenFirst): | |
""" | |
Find a root of a function, using Broyden\'s second Jacobian approximation. | |
This method is also known as \"Broyden's bad method\". | |
Parameters | |
---------- | |
%(params_basic)s | |
%(broyden_params)s | |
%(params_extra)s | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See ``method='broyden2'`` in particular. | |
Notes | |
----- | |
This algorithm implements the inverse Jacobian Quasi-Newton update | |
.. math:: H_+ = H + (dx - H df) df^\\dagger / ( df^\\dagger df) | |
corresponding to Broyden's second method. | |
References | |
---------- | |
.. [1] B.A. van der Rotten, PhD thesis, | |
\"A limited memory Broyden method to solve high-dimensional | |
systems of nonlinear equations\". Mathematisch Instituut, | |
Universiteit Leiden, The Netherlands (2003). | |
https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf | |
Examples | |
-------- | |
The following functions define a system of nonlinear equations | |
>>> def fun(x): | |
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0, | |
... 0.5 * (x[1] - x[0])**3 + x[1]] | |
A solution can be obtained as follows. | |
>>> from scipy import optimize | |
>>> sol = optimize.broyden2(fun, [0, 0]) | |
>>> sol | |
array([0.84116365, 0.15883529]) | |
""" | |
def _update(self, x, f, dx, df, dx_norm, df_norm): | |
self._reduce() # reduce first to preserve secant condition | |
v = df | |
c = dx - self.Gm.matvec(df) | |
d = v / df_norm**2 | |
self.Gm.append(c, d) | |
#------------------------------------------------------------------------------ | |
# Broyden-like (restricted memory) | |
#------------------------------------------------------------------------------ | |
class Anderson(GenericBroyden): | |
""" | |
Find a root of a function, using (extended) Anderson mixing. | |
The Jacobian is formed by for a 'best' solution in the space | |
spanned by last `M` vectors. As a result, only a MxM matrix | |
inversions and MxN multiplications are required. [Ey]_ | |
Parameters | |
---------- | |
%(params_basic)s | |
alpha : float, optional | |
Initial guess for the Jacobian is (-1/alpha). | |
M : float, optional | |
Number of previous vectors to retain. Defaults to 5. | |
w0 : float, optional | |
Regularization parameter for numerical stability. | |
Compared to unity, good values of the order of 0.01. | |
%(params_extra)s | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See ``method='anderson'`` in particular. | |
References | |
---------- | |
.. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996). | |
Examples | |
-------- | |
The following functions define a system of nonlinear equations | |
>>> def fun(x): | |
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0, | |
... 0.5 * (x[1] - x[0])**3 + x[1]] | |
A solution can be obtained as follows. | |
>>> from scipy import optimize | |
>>> sol = optimize.anderson(fun, [0, 0]) | |
>>> sol | |
array([0.84116588, 0.15883789]) | |
""" | |
# Note: | |
# | |
# Anderson method maintains a rank M approximation of the inverse Jacobian, | |
# | |
# J^-1 v ~ -v*alpha + (dX + alpha dF) A^-1 dF^H v | |
# A = W + dF^H dF | |
# W = w0^2 diag(dF^H dF) | |
# | |
# so that for w0 = 0 the secant condition applies for last M iterates, i.e., | |
# | |
# J^-1 df_j = dx_j | |
# | |
# for all j = 0 ... M-1. | |
# | |
# Moreover, (from Sherman-Morrison-Woodbury formula) | |
# | |
# J v ~ [ b I - b^2 C (I + b dF^H A^-1 C)^-1 dF^H ] v | |
# C = (dX + alpha dF) A^-1 | |
# b = -1/alpha | |
# | |
# and after simplification | |
# | |
# J v ~ -v/alpha + (dX/alpha + dF) (dF^H dX - alpha W)^-1 dF^H v | |
# | |
def __init__(self, alpha=None, w0=0.01, M=5): | |
GenericBroyden.__init__(self) | |
self.alpha = alpha | |
self.M = M | |
self.dx = [] | |
self.df = [] | |
self.gamma = None | |
self.w0 = w0 | |
def solve(self, f, tol=0): | |
dx = -self.alpha*f | |
n = len(self.dx) | |
if n == 0: | |
return dx | |
df_f = np.empty(n, dtype=f.dtype) | |
for k in range(n): | |
df_f[k] = vdot(self.df[k], f) | |
try: | |
gamma = solve(self.a, df_f) | |
except LinAlgError: | |
# singular; reset the Jacobian approximation | |
del self.dx[:] | |
del self.df[:] | |
return dx | |
for m in range(n): | |
dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m]) | |
return dx | |
def matvec(self, f): | |
dx = -f/self.alpha | |
n = len(self.dx) | |
if n == 0: | |
return dx | |
df_f = np.empty(n, dtype=f.dtype) | |
for k in range(n): | |
df_f[k] = vdot(self.df[k], f) | |
b = np.empty((n, n), dtype=f.dtype) | |
for i in range(n): | |
for j in range(n): | |
b[i,j] = vdot(self.df[i], self.dx[j]) | |
if i == j and self.w0 != 0: | |
b[i,j] -= vdot(self.df[i], self.df[i])*self.w0**2*self.alpha | |
gamma = solve(b, df_f) | |
for m in range(n): | |
dx += gamma[m]*(self.df[m] + self.dx[m]/self.alpha) | |
return dx | |
def _update(self, x, f, dx, df, dx_norm, df_norm): | |
if self.M == 0: | |
return | |
self.dx.append(dx) | |
self.df.append(df) | |
while len(self.dx) > self.M: | |
self.dx.pop(0) | |
self.df.pop(0) | |
n = len(self.dx) | |
a = np.zeros((n, n), dtype=f.dtype) | |
for i in range(n): | |
for j in range(i, n): | |
if i == j: | |
wd = self.w0**2 | |
else: | |
wd = 0 | |
a[i,j] = (1+wd)*vdot(self.df[i], self.df[j]) | |
a += np.triu(a, 1).T.conj() | |
self.a = a | |
#------------------------------------------------------------------------------ | |
# Simple iterations | |
#------------------------------------------------------------------------------ | |
class DiagBroyden(GenericBroyden): | |
""" | |
Find a root of a function, using diagonal Broyden Jacobian approximation. | |
The Jacobian approximation is derived from previous iterations, by | |
retaining only the diagonal of Broyden matrices. | |
.. warning:: | |
This algorithm may be useful for specific problems, but whether | |
it will work may depend strongly on the problem. | |
Parameters | |
---------- | |
%(params_basic)s | |
alpha : float, optional | |
Initial guess for the Jacobian is (-1/alpha). | |
%(params_extra)s | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See ``method='diagbroyden'`` in particular. | |
Examples | |
-------- | |
The following functions define a system of nonlinear equations | |
>>> def fun(x): | |
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0, | |
... 0.5 * (x[1] - x[0])**3 + x[1]] | |
A solution can be obtained as follows. | |
>>> from scipy import optimize | |
>>> sol = optimize.diagbroyden(fun, [0, 0]) | |
>>> sol | |
array([0.84116403, 0.15883384]) | |
""" | |
def __init__(self, alpha=None): | |
GenericBroyden.__init__(self) | |
self.alpha = alpha | |
def setup(self, x, F, func): | |
GenericBroyden.setup(self, x, F, func) | |
self.d = np.full((self.shape[0],), 1 / self.alpha, dtype=self.dtype) | |
def solve(self, f, tol=0): | |
return -f / self.d | |
def matvec(self, f): | |
return -f * self.d | |
def rsolve(self, f, tol=0): | |
return -f / self.d.conj() | |
def rmatvec(self, f): | |
return -f * self.d.conj() | |
def todense(self): | |
return np.diag(-self.d) | |
def _update(self, x, f, dx, df, dx_norm, df_norm): | |
self.d -= (df + self.d*dx)*dx/dx_norm**2 | |
class LinearMixing(GenericBroyden): | |
""" | |
Find a root of a function, using a scalar Jacobian approximation. | |
.. warning:: | |
This algorithm may be useful for specific problems, but whether | |
it will work may depend strongly on the problem. | |
Parameters | |
---------- | |
%(params_basic)s | |
alpha : float, optional | |
The Jacobian approximation is (-1/alpha). | |
%(params_extra)s | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See ``method='linearmixing'`` in particular. | |
""" | |
def __init__(self, alpha=None): | |
GenericBroyden.__init__(self) | |
self.alpha = alpha | |
def solve(self, f, tol=0): | |
return -f*self.alpha | |
def matvec(self, f): | |
return -f/self.alpha | |
def rsolve(self, f, tol=0): | |
return -f*np.conj(self.alpha) | |
def rmatvec(self, f): | |
return -f/np.conj(self.alpha) | |
def todense(self): | |
return np.diag(np.full(self.shape[0], -1/self.alpha)) | |
def _update(self, x, f, dx, df, dx_norm, df_norm): | |
pass | |
class ExcitingMixing(GenericBroyden): | |
""" | |
Find a root of a function, using a tuned diagonal Jacobian approximation. | |
The Jacobian matrix is diagonal and is tuned on each iteration. | |
.. warning:: | |
This algorithm may be useful for specific problems, but whether | |
it will work may depend strongly on the problem. | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See ``method='excitingmixing'`` in particular. | |
Parameters | |
---------- | |
%(params_basic)s | |
alpha : float, optional | |
Initial Jacobian approximation is (-1/alpha). | |
alphamax : float, optional | |
The entries of the diagonal Jacobian are kept in the range | |
``[alpha, alphamax]``. | |
%(params_extra)s | |
""" | |
def __init__(self, alpha=None, alphamax=1.0): | |
GenericBroyden.__init__(self) | |
self.alpha = alpha | |
self.alphamax = alphamax | |
self.beta = None | |
def setup(self, x, F, func): | |
GenericBroyden.setup(self, x, F, func) | |
self.beta = np.full((self.shape[0],), self.alpha, dtype=self.dtype) | |
def solve(self, f, tol=0): | |
return -f*self.beta | |
def matvec(self, f): | |
return -f/self.beta | |
def rsolve(self, f, tol=0): | |
return -f*self.beta.conj() | |
def rmatvec(self, f): | |
return -f/self.beta.conj() | |
def todense(self): | |
return np.diag(-1/self.beta) | |
def _update(self, x, f, dx, df, dx_norm, df_norm): | |
incr = f*self.last_f > 0 | |
self.beta[incr] += self.alpha | |
self.beta[~incr] = self.alpha | |
np.clip(self.beta, 0, self.alphamax, out=self.beta) | |
#------------------------------------------------------------------------------ | |
# Iterative/Krylov approximated Jacobians | |
#------------------------------------------------------------------------------ | |
class KrylovJacobian(Jacobian): | |
r""" | |
Find a root of a function, using Krylov approximation for inverse Jacobian. | |
This method is suitable for solving large-scale problems. | |
Parameters | |
---------- | |
%(params_basic)s | |
rdiff : float, optional | |
Relative step size to use in numerical differentiation. | |
method : str or callable, optional | |
Krylov method to use to approximate the Jacobian. Can be a string, | |
or a function implementing the same interface as the iterative | |
solvers in `scipy.sparse.linalg`. If a string, needs to be one of: | |
``'lgmres'``, ``'gmres'``, ``'bicgstab'``, ``'cgs'``, ``'minres'``, | |
``'tfqmr'``. | |
The default is `scipy.sparse.linalg.lgmres`. | |
inner_maxiter : int, optional | |
Parameter to pass to the "inner" Krylov solver: maximum number of | |
iterations. Iteration will stop after maxiter steps even if the | |
specified tolerance has not been achieved. | |
inner_M : LinearOperator or InverseJacobian | |
Preconditioner for the inner Krylov iteration. | |
Note that you can use also inverse Jacobians as (adaptive) | |
preconditioners. For example, | |
>>> from scipy.optimize import BroydenFirst, KrylovJacobian | |
>>> from scipy.optimize import InverseJacobian | |
>>> jac = BroydenFirst() | |
>>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac)) | |
If the preconditioner has a method named 'update', it will be called | |
as ``update(x, f)`` after each nonlinear step, with ``x`` giving | |
the current point, and ``f`` the current function value. | |
outer_k : int, optional | |
Size of the subspace kept across LGMRES nonlinear iterations. | |
See `scipy.sparse.linalg.lgmres` for details. | |
inner_kwargs : kwargs | |
Keyword parameters for the "inner" Krylov solver | |
(defined with `method`). Parameter names must start with | |
the `inner_` prefix which will be stripped before passing on | |
the inner method. See, e.g., `scipy.sparse.linalg.gmres` for details. | |
%(params_extra)s | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See ``method='krylov'`` in particular. | |
scipy.sparse.linalg.gmres | |
scipy.sparse.linalg.lgmres | |
Notes | |
----- | |
This function implements a Newton-Krylov solver. The basic idea is | |
to compute the inverse of the Jacobian with an iterative Krylov | |
method. These methods require only evaluating the Jacobian-vector | |
products, which are conveniently approximated by a finite difference: | |
.. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega | |
Due to the use of iterative matrix inverses, these methods can | |
deal with large nonlinear problems. | |
SciPy's `scipy.sparse.linalg` module offers a selection of Krylov | |
solvers to choose from. The default here is `lgmres`, which is a | |
variant of restarted GMRES iteration that reuses some of the | |
information obtained in the previous Newton steps to invert | |
Jacobians in subsequent steps. | |
For a review on Newton-Krylov methods, see for example [1]_, | |
and for the LGMRES sparse inverse method, see [2]_. | |
References | |
---------- | |
.. [1] C. T. Kelley, Solving Nonlinear Equations with Newton's Method, | |
SIAM, pp.57-83, 2003. | |
:doi:`10.1137/1.9780898718898.ch3` | |
.. [2] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004). | |
:doi:`10.1016/j.jcp.2003.08.010` | |
.. [3] A.H. Baker and E.R. Jessup and T. Manteuffel, | |
SIAM J. Matrix Anal. Appl. 26, 962 (2005). | |
:doi:`10.1137/S0895479803422014` | |
Examples | |
-------- | |
The following functions define a system of nonlinear equations | |
>>> def fun(x): | |
... return [x[0] + 0.5 * x[1] - 1.0, | |
... 0.5 * (x[1] - x[0]) ** 2] | |
A solution can be obtained as follows. | |
>>> from scipy import optimize | |
>>> sol = optimize.newton_krylov(fun, [0, 0]) | |
>>> sol | |
array([0.66731771, 0.66536458]) | |
""" | |
def __init__(self, rdiff=None, method='lgmres', inner_maxiter=20, | |
inner_M=None, outer_k=10, **kw): | |
self.preconditioner = inner_M | |
self.rdiff = rdiff | |
# Note that this retrieves one of the named functions, or otherwise | |
# uses `method` as is (i.e., for a user-provided callable). | |
self.method = dict( | |
bicgstab=scipy.sparse.linalg.bicgstab, | |
gmres=scipy.sparse.linalg.gmres, | |
lgmres=scipy.sparse.linalg.lgmres, | |
cgs=scipy.sparse.linalg.cgs, | |
minres=scipy.sparse.linalg.minres, | |
tfqmr=scipy.sparse.linalg.tfqmr, | |
).get(method, method) | |
self.method_kw = dict(maxiter=inner_maxiter, M=self.preconditioner) | |
if self.method is scipy.sparse.linalg.gmres: | |
# Replace GMRES's outer iteration with Newton steps | |
self.method_kw['restart'] = inner_maxiter | |
self.method_kw['maxiter'] = 1 | |
self.method_kw.setdefault('atol', 0) | |
elif self.method in (scipy.sparse.linalg.gcrotmk, | |
scipy.sparse.linalg.bicgstab, | |
scipy.sparse.linalg.cgs): | |
self.method_kw.setdefault('atol', 0) | |
elif self.method is scipy.sparse.linalg.lgmres: | |
self.method_kw['outer_k'] = outer_k | |
# Replace LGMRES's outer iteration with Newton steps | |
self.method_kw['maxiter'] = 1 | |
# Carry LGMRES's `outer_v` vectors across nonlinear iterations | |
self.method_kw.setdefault('outer_v', []) | |
self.method_kw.setdefault('prepend_outer_v', True) | |
# But don't carry the corresponding Jacobian*v products, in case | |
# the Jacobian changes a lot in the nonlinear step | |
# | |
# XXX: some trust-region inspired ideas might be more efficient... | |
# See e.g., Brown & Saad. But needs to be implemented separately | |
# since it's not an inexact Newton method. | |
self.method_kw.setdefault('store_outer_Av', False) | |
self.method_kw.setdefault('atol', 0) | |
for key, value in kw.items(): | |
if not key.startswith('inner_'): | |
raise ValueError("Unknown parameter %s" % key) | |
self.method_kw[key[6:]] = value | |
def _update_diff_step(self): | |
mx = abs(self.x0).max() | |
mf = abs(self.f0).max() | |
self.omega = self.rdiff * max(1, mx) / max(1, mf) | |
def matvec(self, v): | |
nv = norm(v) | |
if nv == 0: | |
return 0*v | |
sc = self.omega / nv | |
r = (self.func(self.x0 + sc*v) - self.f0) / sc | |
if not np.all(np.isfinite(r)) and np.all(np.isfinite(v)): | |
raise ValueError('Function returned non-finite results') | |
return r | |
def solve(self, rhs, tol=0): | |
if 'rtol' in self.method_kw: | |
sol, info = self.method(self.op, rhs, **self.method_kw) | |
else: | |
sol, info = self.method(self.op, rhs, rtol=tol, **self.method_kw) | |
return sol | |
def update(self, x, f): | |
self.x0 = x | |
self.f0 = f | |
self._update_diff_step() | |
# Update also the preconditioner, if possible | |
if self.preconditioner is not None: | |
if hasattr(self.preconditioner, 'update'): | |
self.preconditioner.update(x, f) | |
def setup(self, x, f, func): | |
Jacobian.setup(self, x, f, func) | |
self.x0 = x | |
self.f0 = f | |
self.op = scipy.sparse.linalg.aslinearoperator(self) | |
if self.rdiff is None: | |
self.rdiff = np.finfo(x.dtype).eps ** (1./2) | |
self._update_diff_step() | |
# Setup also the preconditioner, if possible | |
if self.preconditioner is not None: | |
if hasattr(self.preconditioner, 'setup'): | |
self.preconditioner.setup(x, f, func) | |
#------------------------------------------------------------------------------ | |
# Wrapper functions | |
#------------------------------------------------------------------------------ | |
def _nonlin_wrapper(name, jac): | |
""" | |
Construct a solver wrapper with given name and Jacobian approx. | |
It inspects the keyword arguments of ``jac.__init__``, and allows to | |
use the same arguments in the wrapper function, in addition to the | |
keyword arguments of `nonlin_solve` | |
""" | |
signature = _getfullargspec(jac.__init__) | |
args, varargs, varkw, defaults, kwonlyargs, kwdefaults, _ = signature | |
kwargs = list(zip(args[-len(defaults):], defaults)) | |
kw_str = ", ".join([f"{k}={v!r}" for k, v in kwargs]) | |
if kw_str: | |
kw_str = ", " + kw_str | |
kwkw_str = ", ".join([f"{k}={k}" for k, v in kwargs]) | |
if kwkw_str: | |
kwkw_str = kwkw_str + ", " | |
if kwonlyargs: | |
raise ValueError('Unexpected signature %s' % signature) | |
# Construct the wrapper function so that its keyword arguments | |
# are visible in pydoc.help etc. | |
wrapper = """ | |
def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None, | |
f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, | |
tol_norm=None, line_search='armijo', callback=None, **kw): | |
jac = %(jac)s(%(kwkw)s **kw) | |
return nonlin_solve(F, xin, jac, iter, verbose, maxiter, | |
f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search, | |
callback) | |
""" | |
wrapper = wrapper % dict(name=name, kw=kw_str, jac=jac.__name__, | |
kwkw=kwkw_str) | |
ns = {} | |
ns.update(globals()) | |
exec(wrapper, ns) | |
func = ns[name] | |
func.__doc__ = jac.__doc__ | |
_set_doc(func) | |
return func | |
broyden1 = _nonlin_wrapper('broyden1', BroydenFirst) | |
broyden2 = _nonlin_wrapper('broyden2', BroydenSecond) | |
anderson = _nonlin_wrapper('anderson', Anderson) | |
linearmixing = _nonlin_wrapper('linearmixing', LinearMixing) | |
diagbroyden = _nonlin_wrapper('diagbroyden', DiagBroyden) | |
excitingmixing = _nonlin_wrapper('excitingmixing', ExcitingMixing) | |
newton_krylov = _nonlin_wrapper('newton_krylov', KrylovJacobian) | |