peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_qap.py
import numpy as np | |
import operator | |
from . import (linear_sum_assignment, OptimizeResult) | |
from ._optimize import _check_unknown_options | |
from scipy._lib._util import check_random_state | |
import itertools | |
QUADRATIC_ASSIGNMENT_METHODS = ['faq', '2opt'] | |
def quadratic_assignment(A, B, method="faq", options=None): | |
r""" | |
Approximates solution to the quadratic assignment problem and | |
the graph matching problem. | |
Quadratic assignment solves problems of the following form: | |
.. math:: | |
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\ | |
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\ | |
where :math:`\mathcal{P}` is the set of all permutation matrices, | |
and :math:`A` and :math:`B` are square matrices. | |
Graph matching tries to *maximize* the same objective function. | |
This algorithm can be thought of as finding the alignment of the | |
nodes of two graphs that minimizes the number of induced edge | |
disagreements, or, in the case of weighted graphs, the sum of squared | |
edge weight differences. | |
Note that the quadratic assignment problem is NP-hard. The results given | |
here are approximations and are not guaranteed to be optimal. | |
Parameters | |
---------- | |
A : 2-D array, square | |
The square matrix :math:`A` in the objective function above. | |
B : 2-D array, square | |
The square matrix :math:`B` in the objective function above. | |
method : str in {'faq', '2opt'} (default: 'faq') | |
The algorithm used to solve the problem. | |
:ref:`'faq' <optimize.qap-faq>` (default) and | |
:ref:`'2opt' <optimize.qap-2opt>` are available. | |
options : dict, optional | |
A dictionary of solver options. All solvers support the following: | |
maximize : bool (default: False) | |
Maximizes the objective function if ``True``. | |
partial_match : 2-D array of integers, optional (default: None) | |
Fixes part of the matching. Also known as a "seed" [2]_. | |
Each row of `partial_match` specifies a pair of matched nodes: | |
node ``partial_match[i, 0]`` of `A` is matched to node | |
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``, | |
where ``m`` is not greater than the number of nodes, :math:`n`. | |
rng : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
For method-specific options, see | |
:func:`show_options('quadratic_assignment') <show_options>`. | |
Returns | |
------- | |
res : OptimizeResult | |
`OptimizeResult` containing the following fields. | |
col_ind : 1-D array | |
Column indices corresponding to the best permutation found of the | |
nodes of `B`. | |
fun : float | |
The objective value of the solution. | |
nit : int | |
The number of iterations performed during optimization. | |
Notes | |
----- | |
The default method :ref:`'faq' <optimize.qap-faq>` uses the Fast | |
Approximate QAP algorithm [1]_; it typically offers the best combination of | |
speed and accuracy. | |
Method :ref:`'2opt' <optimize.qap-2opt>` can be computationally expensive, | |
but may be a useful alternative, or it can be used to refine the solution | |
returned by another method. | |
References | |
---------- | |
.. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik, | |
S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and | |
C.E. Priebe, "Fast approximate quadratic programming for graph | |
matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015, | |
:doi:`10.1371/journal.pone.0121002` | |
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski, | |
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019): | |
203-215, :doi:`10.1016/j.patcog.2018.09.014` | |
.. [3] "2-opt," Wikipedia. | |
https://en.wikipedia.org/wiki/2-opt | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.optimize import quadratic_assignment | |
>>> A = np.array([[0, 80, 150, 170], [80, 0, 130, 100], | |
... [150, 130, 0, 120], [170, 100, 120, 0]]) | |
>>> B = np.array([[0, 5, 2, 7], [0, 0, 3, 8], | |
... [0, 0, 0, 3], [0, 0, 0, 0]]) | |
>>> res = quadratic_assignment(A, B) | |
>>> print(res) | |
fun: 3260 | |
col_ind: [0 3 2 1] | |
nit: 9 | |
The see the relationship between the returned ``col_ind`` and ``fun``, | |
use ``col_ind`` to form the best permutation matrix found, then evaluate | |
the objective function :math:`f(P) = trace(A^T P B P^T )`. | |
>>> perm = res['col_ind'] | |
>>> P = np.eye(len(A), dtype=int)[perm] | |
>>> fun = np.trace(A.T @ P @ B @ P.T) | |
>>> print(fun) | |
3260 | |
Alternatively, to avoid constructing the permutation matrix explicitly, | |
directly permute the rows and columns of the distance matrix. | |
>>> fun = np.trace(A.T @ B[perm][:, perm]) | |
>>> print(fun) | |
3260 | |
Although not guaranteed in general, ``quadratic_assignment`` happens to | |
have found the globally optimal solution. | |
>>> from itertools import permutations | |
>>> perm_opt, fun_opt = None, np.inf | |
>>> for perm in permutations([0, 1, 2, 3]): | |
... perm = np.array(perm) | |
... fun = np.trace(A.T @ B[perm][:, perm]) | |
... if fun < fun_opt: | |
... fun_opt, perm_opt = fun, perm | |
>>> print(np.array_equal(perm_opt, res['col_ind'])) | |
True | |
Here is an example for which the default method, | |
:ref:`'faq' <optimize.qap-faq>`, does not find the global optimum. | |
>>> A = np.array([[0, 5, 8, 6], [5, 0, 5, 1], | |
... [8, 5, 0, 2], [6, 1, 2, 0]]) | |
>>> B = np.array([[0, 1, 8, 4], [1, 0, 5, 2], | |
... [8, 5, 0, 5], [4, 2, 5, 0]]) | |
>>> res = quadratic_assignment(A, B) | |
>>> print(res) | |
fun: 178 | |
col_ind: [1 0 3 2] | |
nit: 13 | |
If accuracy is important, consider using :ref:`'2opt' <optimize.qap-2opt>` | |
to refine the solution. | |
>>> guess = np.array([np.arange(len(A)), res.col_ind]).T | |
>>> res = quadratic_assignment(A, B, method="2opt", | |
... options = {'partial_guess': guess}) | |
>>> print(res) | |
fun: 176 | |
col_ind: [1 2 3 0] | |
nit: 17 | |
""" | |
if options is None: | |
options = {} | |
method = method.lower() | |
methods = {"faq": _quadratic_assignment_faq, | |
"2opt": _quadratic_assignment_2opt} | |
if method not in methods: | |
raise ValueError(f"method {method} must be in {methods}.") | |
res = methods[method](A, B, **options) | |
return res | |
def _calc_score(A, B, perm): | |
# equivalent to objective function but avoids matmul | |
return np.sum(A * B[perm][:, perm]) | |
def _common_input_validation(A, B, partial_match): | |
A = np.atleast_2d(A) | |
B = np.atleast_2d(B) | |
if partial_match is None: | |
partial_match = np.array([[], []]).T | |
partial_match = np.atleast_2d(partial_match).astype(int) | |
msg = None | |
if A.shape[0] != A.shape[1]: | |
msg = "`A` must be square" | |
elif B.shape[0] != B.shape[1]: | |
msg = "`B` must be square" | |
elif A.ndim != 2 or B.ndim != 2: | |
msg = "`A` and `B` must have exactly two dimensions" | |
elif A.shape != B.shape: | |
msg = "`A` and `B` matrices must be of equal size" | |
elif partial_match.shape[0] > A.shape[0]: | |
msg = "`partial_match` can have only as many seeds as there are nodes" | |
elif partial_match.shape[1] != 2: | |
msg = "`partial_match` must have two columns" | |
elif partial_match.ndim != 2: | |
msg = "`partial_match` must have exactly two dimensions" | |
elif (partial_match < 0).any(): | |
msg = "`partial_match` must contain only positive indices" | |
elif (partial_match >= len(A)).any(): | |
msg = "`partial_match` entries must be less than number of nodes" | |
elif (not len(set(partial_match[:, 0])) == len(partial_match[:, 0]) or | |
not len(set(partial_match[:, 1])) == len(partial_match[:, 1])): | |
msg = "`partial_match` column entries must be unique" | |
if msg is not None: | |
raise ValueError(msg) | |
return A, B, partial_match | |
def _quadratic_assignment_faq(A, B, | |
maximize=False, partial_match=None, rng=None, | |
P0="barycenter", shuffle_input=False, maxiter=30, | |
tol=0.03, **unknown_options): | |
r"""Solve the quadratic assignment problem (approximately). | |
This function solves the Quadratic Assignment Problem (QAP) and the | |
Graph Matching Problem (GMP) using the Fast Approximate QAP Algorithm | |
(FAQ) [1]_. | |
Quadratic assignment solves problems of the following form: | |
.. math:: | |
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\ | |
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\ | |
where :math:`\mathcal{P}` is the set of all permutation matrices, | |
and :math:`A` and :math:`B` are square matrices. | |
Graph matching tries to *maximize* the same objective function. | |
This algorithm can be thought of as finding the alignment of the | |
nodes of two graphs that minimizes the number of induced edge | |
disagreements, or, in the case of weighted graphs, the sum of squared | |
edge weight differences. | |
Note that the quadratic assignment problem is NP-hard. The results given | |
here are approximations and are not guaranteed to be optimal. | |
Parameters | |
---------- | |
A : 2-D array, square | |
The square matrix :math:`A` in the objective function above. | |
B : 2-D array, square | |
The square matrix :math:`B` in the objective function above. | |
method : str in {'faq', '2opt'} (default: 'faq') | |
The algorithm used to solve the problem. This is the method-specific | |
documentation for 'faq'. | |
:ref:`'2opt' <optimize.qap-2opt>` is also available. | |
Options | |
------- | |
maximize : bool (default: False) | |
Maximizes the objective function if ``True``. | |
partial_match : 2-D array of integers, optional (default: None) | |
Fixes part of the matching. Also known as a "seed" [2]_. | |
Each row of `partial_match` specifies a pair of matched nodes: | |
node ``partial_match[i, 0]`` of `A` is matched to node | |
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``, where | |
``m`` is not greater than the number of nodes, :math:`n`. | |
rng : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
P0 : 2-D array, "barycenter", or "randomized" (default: "barycenter") | |
Initial position. Must be a doubly-stochastic matrix [3]_. | |
If the initial position is an array, it must be a doubly stochastic | |
matrix of size :math:`m' \times m'` where :math:`m' = n - m`. | |
If ``"barycenter"`` (default), the initial position is the barycenter | |
of the Birkhoff polytope (the space of doubly stochastic matrices). | |
This is a :math:`m' \times m'` matrix with all entries equal to | |
:math:`1 / m'`. | |
If ``"randomized"`` the initial search position is | |
:math:`P_0 = (J + K) / 2`, where :math:`J` is the barycenter and | |
:math:`K` is a random doubly stochastic matrix. | |
shuffle_input : bool (default: False) | |
Set to `True` to resolve degenerate gradients randomly. For | |
non-degenerate gradients this option has no effect. | |
maxiter : int, positive (default: 30) | |
Integer specifying the max number of Frank-Wolfe iterations performed. | |
tol : float (default: 0.03) | |
Tolerance for termination. Frank-Wolfe iteration terminates when | |
:math:`\frac{||P_{i}-P_{i+1}||_F}{\sqrt{m')}} \leq tol`, | |
where :math:`i` is the iteration number. | |
Returns | |
------- | |
res : OptimizeResult | |
`OptimizeResult` containing the following fields. | |
col_ind : 1-D array | |
Column indices corresponding to the best permutation found of the | |
nodes of `B`. | |
fun : float | |
The objective value of the solution. | |
nit : int | |
The number of Frank-Wolfe iterations performed. | |
Notes | |
----- | |
The algorithm may be sensitive to the initial permutation matrix (or | |
search "position") due to the possibility of several local minima | |
within the feasible region. A barycenter initialization is more likely to | |
result in a better solution than a single random initialization. However, | |
calling ``quadratic_assignment`` several times with different random | |
initializations may result in a better optimum at the cost of longer | |
total execution time. | |
Examples | |
-------- | |
As mentioned above, a barycenter initialization often results in a better | |
solution than a single random initialization. | |
>>> from numpy.random import default_rng | |
>>> rng = default_rng() | |
>>> n = 15 | |
>>> A = rng.random((n, n)) | |
>>> B = rng.random((n, n)) | |
>>> res = quadratic_assignment(A, B) # FAQ is default method | |
>>> print(res.fun) | |
46.871483385480545 # may vary | |
>>> options = {"P0": "randomized"} # use randomized initialization | |
>>> res = quadratic_assignment(A, B, options=options) | |
>>> print(res.fun) | |
47.224831071310625 # may vary | |
However, consider running from several randomized initializations and | |
keeping the best result. | |
>>> res = min([quadratic_assignment(A, B, options=options) | |
... for i in range(30)], key=lambda x: x.fun) | |
>>> print(res.fun) | |
46.671852533681516 # may vary | |
The '2-opt' method can be used to further refine the results. | |
>>> options = {"partial_guess": np.array([np.arange(n), res.col_ind]).T} | |
>>> res = quadratic_assignment(A, B, method="2opt", options=options) | |
>>> print(res.fun) | |
46.47160735721583 # may vary | |
References | |
---------- | |
.. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik, | |
S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and | |
C.E. Priebe, "Fast approximate quadratic programming for graph | |
matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015, | |
:doi:`10.1371/journal.pone.0121002` | |
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski, | |
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019): | |
203-215, :doi:`10.1016/j.patcog.2018.09.014` | |
.. [3] "Doubly stochastic Matrix," Wikipedia. | |
https://en.wikipedia.org/wiki/Doubly_stochastic_matrix | |
""" | |
_check_unknown_options(unknown_options) | |
maxiter = operator.index(maxiter) | |
# ValueError check | |
A, B, partial_match = _common_input_validation(A, B, partial_match) | |
msg = None | |
if isinstance(P0, str) and P0 not in {'barycenter', 'randomized'}: | |
msg = "Invalid 'P0' parameter string" | |
elif maxiter <= 0: | |
msg = "'maxiter' must be a positive integer" | |
elif tol <= 0: | |
msg = "'tol' must be a positive float" | |
if msg is not None: | |
raise ValueError(msg) | |
rng = check_random_state(rng) | |
n = len(A) # number of vertices in graphs | |
n_seeds = len(partial_match) # number of seeds | |
n_unseed = n - n_seeds | |
# [1] Algorithm 1 Line 1 - choose initialization | |
if not isinstance(P0, str): | |
P0 = np.atleast_2d(P0) | |
if P0.shape != (n_unseed, n_unseed): | |
msg = "`P0` matrix must have shape m' x m', where m'=n-m" | |
elif ((P0 < 0).any() or not np.allclose(np.sum(P0, axis=0), 1) | |
or not np.allclose(np.sum(P0, axis=1), 1)): | |
msg = "`P0` matrix must be doubly stochastic" | |
if msg is not None: | |
raise ValueError(msg) | |
elif P0 == 'barycenter': | |
P0 = np.ones((n_unseed, n_unseed)) / n_unseed | |
elif P0 == 'randomized': | |
J = np.ones((n_unseed, n_unseed)) / n_unseed | |
# generate a nxn matrix where each entry is a random number [0, 1] | |
# would use rand, but Generators don't have it | |
# would use random, but old mtrand.RandomStates don't have it | |
K = _doubly_stochastic(rng.uniform(size=(n_unseed, n_unseed))) | |
P0 = (J + K) / 2 | |
# check trivial cases | |
if n == 0 or n_seeds == n: | |
score = _calc_score(A, B, partial_match[:, 1]) | |
res = {"col_ind": partial_match[:, 1], "fun": score, "nit": 0} | |
return OptimizeResult(res) | |
obj_func_scalar = 1 | |
if maximize: | |
obj_func_scalar = -1 | |
nonseed_B = np.setdiff1d(range(n), partial_match[:, 1]) | |
if shuffle_input: | |
nonseed_B = rng.permutation(nonseed_B) | |
nonseed_A = np.setdiff1d(range(n), partial_match[:, 0]) | |
perm_A = np.concatenate([partial_match[:, 0], nonseed_A]) | |
perm_B = np.concatenate([partial_match[:, 1], nonseed_B]) | |
# definitions according to Seeded Graph Matching [2]. | |
A11, A12, A21, A22 = _split_matrix(A[perm_A][:, perm_A], n_seeds) | |
B11, B12, B21, B22 = _split_matrix(B[perm_B][:, perm_B], n_seeds) | |
const_sum = A21 @ B21.T + A12.T @ B12 | |
P = P0 | |
# [1] Algorithm 1 Line 2 - loop while stopping criteria not met | |
for n_iter in range(1, maxiter+1): | |
# [1] Algorithm 1 Line 3 - compute the gradient of f(P) = -tr(APB^tP^t) | |
grad_fp = (const_sum + A22 @ P @ B22.T + A22.T @ P @ B22) | |
# [1] Algorithm 1 Line 4 - get direction Q by solving Eq. 8 | |
_, cols = linear_sum_assignment(grad_fp, maximize=maximize) | |
Q = np.eye(n_unseed)[cols] | |
# [1] Algorithm 1 Line 5 - compute the step size | |
# Noting that e.g. trace(Ax) = trace(A)*x, expand and re-collect | |
# terms as ax**2 + bx + c. c does not affect location of minimum | |
# and can be ignored. Also, note that trace(A@B) = (A.T*B).sum(); | |
# apply where possible for efficiency. | |
R = P - Q | |
b21 = ((R.T @ A21) * B21).sum() | |
b12 = ((R.T @ A12.T) * B12.T).sum() | |
AR22 = A22.T @ R | |
BR22 = B22 @ R.T | |
b22a = (AR22 * B22.T[cols]).sum() | |
b22b = (A22 * BR22[cols]).sum() | |
a = (AR22.T * BR22).sum() | |
b = b21 + b12 + b22a + b22b | |
# critical point of ax^2 + bx + c is at x = -d/(2*e) | |
# if a * obj_func_scalar > 0, it is a minimum | |
# if minimum is not in [0, 1], only endpoints need to be considered | |
if a*obj_func_scalar > 0 and 0 <= -b/(2*a) <= 1: | |
alpha = -b/(2*a) | |
else: | |
alpha = np.argmin([0, (b + a)*obj_func_scalar]) | |
# [1] Algorithm 1 Line 6 - Update P | |
P_i1 = alpha * P + (1 - alpha) * Q | |
if np.linalg.norm(P - P_i1) / np.sqrt(n_unseed) < tol: | |
P = P_i1 | |
break | |
P = P_i1 | |
# [1] Algorithm 1 Line 7 - end main loop | |
# [1] Algorithm 1 Line 8 - project onto the set of permutation matrices | |
_, col = linear_sum_assignment(P, maximize=True) | |
perm = np.concatenate((np.arange(n_seeds), col + n_seeds)) | |
unshuffled_perm = np.zeros(n, dtype=int) | |
unshuffled_perm[perm_A] = perm_B[perm] | |
score = _calc_score(A, B, unshuffled_perm) | |
res = {"col_ind": unshuffled_perm, "fun": score, "nit": n_iter} | |
return OptimizeResult(res) | |
def _split_matrix(X, n): | |
# definitions according to Seeded Graph Matching [2]. | |
upper, lower = X[:n], X[n:] | |
return upper[:, :n], upper[:, n:], lower[:, :n], lower[:, n:] | |
def _doubly_stochastic(P, tol=1e-3): | |
# Adapted from @btaba implementation | |
# https://github.com/btaba/sinkhorn_knopp | |
# of Sinkhorn-Knopp algorithm | |
# https://projecteuclid.org/euclid.pjm/1102992505 | |
max_iter = 1000 | |
c = 1 / P.sum(axis=0) | |
r = 1 / (P @ c) | |
P_eps = P | |
for it in range(max_iter): | |
if ((np.abs(P_eps.sum(axis=1) - 1) < tol).all() and | |
(np.abs(P_eps.sum(axis=0) - 1) < tol).all()): | |
# All column/row sums ~= 1 within threshold | |
break | |
c = 1 / (r @ P) | |
r = 1 / (P @ c) | |
P_eps = r[:, None] * P * c | |
return P_eps | |
def _quadratic_assignment_2opt(A, B, maximize=False, rng=None, | |
partial_match=None, | |
partial_guess=None, | |
**unknown_options): | |
r"""Solve the quadratic assignment problem (approximately). | |
This function solves the Quadratic Assignment Problem (QAP) and the | |
Graph Matching Problem (GMP) using the 2-opt algorithm [1]_. | |
Quadratic assignment solves problems of the following form: | |
.. math:: | |
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\ | |
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\ | |
where :math:`\mathcal{P}` is the set of all permutation matrices, | |
and :math:`A` and :math:`B` are square matrices. | |
Graph matching tries to *maximize* the same objective function. | |
This algorithm can be thought of as finding the alignment of the | |
nodes of two graphs that minimizes the number of induced edge | |
disagreements, or, in the case of weighted graphs, the sum of squared | |
edge weight differences. | |
Note that the quadratic assignment problem is NP-hard. The results given | |
here are approximations and are not guaranteed to be optimal. | |
Parameters | |
---------- | |
A : 2-D array, square | |
The square matrix :math:`A` in the objective function above. | |
B : 2-D array, square | |
The square matrix :math:`B` in the objective function above. | |
method : str in {'faq', '2opt'} (default: 'faq') | |
The algorithm used to solve the problem. This is the method-specific | |
documentation for '2opt'. | |
:ref:`'faq' <optimize.qap-faq>` is also available. | |
Options | |
------- | |
maximize : bool (default: False) | |
Maximizes the objective function if ``True``. | |
rng : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
partial_match : 2-D array of integers, optional (default: None) | |
Fixes part of the matching. Also known as a "seed" [2]_. | |
Each row of `partial_match` specifies a pair of matched nodes: node | |
``partial_match[i, 0]`` of `A` is matched to node | |
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``, | |
where ``m`` is not greater than the number of nodes, :math:`n`. | |
.. note:: | |
`partial_match` must be sorted by the first column. | |
partial_guess : 2-D array of integers, optional (default: None) | |
A guess for the matching between the two matrices. Unlike | |
`partial_match`, `partial_guess` does not fix the indices; they are | |
still free to be optimized. | |
Each row of `partial_guess` specifies a pair of matched nodes: node | |
``partial_guess[i, 0]`` of `A` is matched to node | |
``partial_guess[i, 1]`` of `B`. The array has shape ``(m, 2)``, | |
where ``m`` is not greater than the number of nodes, :math:`n`. | |
.. note:: | |
`partial_guess` must be sorted by the first column. | |
Returns | |
------- | |
res : OptimizeResult | |
`OptimizeResult` containing the following fields. | |
col_ind : 1-D array | |
Column indices corresponding to the best permutation found of the | |
nodes of `B`. | |
fun : float | |
The objective value of the solution. | |
nit : int | |
The number of iterations performed during optimization. | |
Notes | |
----- | |
This is a greedy algorithm that works similarly to bubble sort: beginning | |
with an initial permutation, it iteratively swaps pairs of indices to | |
improve the objective function until no such improvements are possible. | |
References | |
---------- | |
.. [1] "2-opt," Wikipedia. | |
https://en.wikipedia.org/wiki/2-opt | |
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski, | |
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019): | |
203-215, https://doi.org/10.1016/j.patcog.2018.09.014 | |
""" | |
_check_unknown_options(unknown_options) | |
rng = check_random_state(rng) | |
A, B, partial_match = _common_input_validation(A, B, partial_match) | |
N = len(A) | |
# check trivial cases | |
if N == 0 or partial_match.shape[0] == N: | |
score = _calc_score(A, B, partial_match[:, 1]) | |
res = {"col_ind": partial_match[:, 1], "fun": score, "nit": 0} | |
return OptimizeResult(res) | |
if partial_guess is None: | |
partial_guess = np.array([[], []]).T | |
partial_guess = np.atleast_2d(partial_guess).astype(int) | |
msg = None | |
if partial_guess.shape[0] > A.shape[0]: | |
msg = ("`partial_guess` can have only as " | |
"many entries as there are nodes") | |
elif partial_guess.shape[1] != 2: | |
msg = "`partial_guess` must have two columns" | |
elif partial_guess.ndim != 2: | |
msg = "`partial_guess` must have exactly two dimensions" | |
elif (partial_guess < 0).any(): | |
msg = "`partial_guess` must contain only positive indices" | |
elif (partial_guess >= len(A)).any(): | |
msg = "`partial_guess` entries must be less than number of nodes" | |
elif (not len(set(partial_guess[:, 0])) == len(partial_guess[:, 0]) or | |
not len(set(partial_guess[:, 1])) == len(partial_guess[:, 1])): | |
msg = "`partial_guess` column entries must be unique" | |
if msg is not None: | |
raise ValueError(msg) | |
fixed_rows = None | |
if partial_match.size or partial_guess.size: | |
# use partial_match and partial_guess for initial permutation, | |
# but randomly permute the rest. | |
guess_rows = np.zeros(N, dtype=bool) | |
guess_cols = np.zeros(N, dtype=bool) | |
fixed_rows = np.zeros(N, dtype=bool) | |
fixed_cols = np.zeros(N, dtype=bool) | |
perm = np.zeros(N, dtype=int) | |
rg, cg = partial_guess.T | |
guess_rows[rg] = True | |
guess_cols[cg] = True | |
perm[guess_rows] = cg | |
# match overrides guess | |
rf, cf = partial_match.T | |
fixed_rows[rf] = True | |
fixed_cols[cf] = True | |
perm[fixed_rows] = cf | |
random_rows = ~fixed_rows & ~guess_rows | |
random_cols = ~fixed_cols & ~guess_cols | |
perm[random_rows] = rng.permutation(np.arange(N)[random_cols]) | |
else: | |
perm = rng.permutation(np.arange(N)) | |
best_score = _calc_score(A, B, perm) | |
i_free = np.arange(N) | |
if fixed_rows is not None: | |
i_free = i_free[~fixed_rows] | |
better = operator.gt if maximize else operator.lt | |
n_iter = 0 | |
done = False | |
while not done: | |
# equivalent to nested for loops i in range(N), j in range(i, N) | |
for i, j in itertools.combinations_with_replacement(i_free, 2): | |
n_iter += 1 | |
perm[i], perm[j] = perm[j], perm[i] | |
score = _calc_score(A, B, perm) | |
if better(score, best_score): | |
best_score = score | |
break | |
# faster to swap back than to create a new list every time | |
perm[i], perm[j] = perm[j], perm[i] | |
else: # no swaps made | |
done = True | |
res = {"col_ind": perm, "fun": best_score, "nit": n_iter} | |
return OptimizeResult(res) | |