peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_root_scalar.py
""" | |
Unified interfaces to root finding algorithms for real or complex | |
scalar functions. | |
Functions | |
--------- | |
- root : find a root of a scalar function. | |
""" | |
import numpy as np | |
from . import _zeros_py as optzeros | |
from ._numdiff import approx_derivative | |
__all__ = ['root_scalar'] | |
ROOT_SCALAR_METHODS = ['bisect', 'brentq', 'brenth', 'ridder', 'toms748', | |
'newton', 'secant', 'halley'] | |
class MemoizeDer: | |
"""Decorator that caches the value and derivative(s) of function each | |
time it is called. | |
This is a simplistic memoizer that calls and caches a single value | |
of `f(x, *args)`. | |
It assumes that `args` does not change between invocations. | |
It supports the use case of a root-finder where `args` is fixed, | |
`x` changes, and only rarely, if at all, does x assume the same value | |
more than once.""" | |
def __init__(self, fun): | |
self.fun = fun | |
self.vals = None | |
self.x = None | |
self.n_calls = 0 | |
def __call__(self, x, *args): | |
r"""Calculate f or use cached value if available""" | |
# Derivative may be requested before the function itself, always check | |
if self.vals is None or x != self.x: | |
fg = self.fun(x, *args) | |
self.x = x | |
self.n_calls += 1 | |
self.vals = fg[:] | |
return self.vals[0] | |
def fprime(self, x, *args): | |
r"""Calculate f' or use a cached value if available""" | |
if self.vals is None or x != self.x: | |
self(x, *args) | |
return self.vals[1] | |
def fprime2(self, x, *args): | |
r"""Calculate f'' or use a cached value if available""" | |
if self.vals is None or x != self.x: | |
self(x, *args) | |
return self.vals[2] | |
def ncalls(self): | |
return self.n_calls | |
def root_scalar(f, args=(), method=None, bracket=None, | |
fprime=None, fprime2=None, | |
x0=None, x1=None, | |
xtol=None, rtol=None, maxiter=None, | |
options=None): | |
""" | |
Find a root of a scalar function. | |
Parameters | |
---------- | |
f : callable | |
A function to find a root of. | |
args : tuple, optional | |
Extra arguments passed to the objective function and its derivative(s). | |
method : str, optional | |
Type of solver. Should be one of | |
- 'bisect' :ref:`(see here) <optimize.root_scalar-bisect>` | |
- 'brentq' :ref:`(see here) <optimize.root_scalar-brentq>` | |
- 'brenth' :ref:`(see here) <optimize.root_scalar-brenth>` | |
- 'ridder' :ref:`(see here) <optimize.root_scalar-ridder>` | |
- 'toms748' :ref:`(see here) <optimize.root_scalar-toms748>` | |
- 'newton' :ref:`(see here) <optimize.root_scalar-newton>` | |
- 'secant' :ref:`(see here) <optimize.root_scalar-secant>` | |
- 'halley' :ref:`(see here) <optimize.root_scalar-halley>` | |
bracket: A sequence of 2 floats, optional | |
An interval bracketing a root. `f(x, *args)` must have different | |
signs at the two endpoints. | |
x0 : float, optional | |
Initial guess. | |
x1 : float, optional | |
A second guess. | |
fprime : bool or callable, optional | |
If `fprime` is a boolean and is True, `f` is assumed to return the | |
value of the objective function and of the derivative. | |
`fprime` can also be a callable returning the derivative of `f`. In | |
this case, it must accept the same arguments as `f`. | |
fprime2 : bool or callable, optional | |
If `fprime2` is a boolean and is True, `f` is assumed to return the | |
value of the objective function and of the | |
first and second derivatives. | |
`fprime2` can also be a callable returning the second derivative of `f`. | |
In this case, it must accept the same arguments as `f`. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
options : dict, optional | |
A dictionary of solver options. E.g., ``k``, see | |
:obj:`show_options()` for details. | |
Returns | |
------- | |
sol : RootResults | |
The solution represented as a ``RootResults`` object. | |
Important attributes are: ``root`` the solution , ``converged`` a | |
boolean flag indicating if the algorithm exited successfully and | |
``flag`` which describes the cause of the termination. See | |
`RootResults` for a description of other attributes. | |
See also | |
-------- | |
show_options : Additional options accepted by the solvers | |
root : Find a root of a vector function. | |
Notes | |
----- | |
This section describes the available solvers that can be selected by the | |
'method' parameter. | |
The default is to use the best method available for the situation | |
presented. | |
If a bracket is provided, it may use one of the bracketing methods. | |
If a derivative and an initial value are specified, it may | |
select one of the derivative-based methods. | |
If no method is judged applicable, it will raise an Exception. | |
Arguments for each method are as follows (x=required, o=optional). | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| method | f | args | bracket | x0 | x1 | fprime | fprime2 | xtol | rtol | maxiter | options | | |
+===============================================+===+======+=========+====+====+========+=========+======+======+=========+=========+ | |
| :ref:`bisect <optimize.root_scalar-bisect>` | x | o | x | | | | | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| :ref:`brentq <optimize.root_scalar-brentq>` | x | o | x | | | | | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| :ref:`brenth <optimize.root_scalar-brenth>` | x | o | x | | | | | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| :ref:`ridder <optimize.root_scalar-ridder>` | x | o | x | | | | | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| :ref:`toms748 <optimize.root_scalar-toms748>` | x | o | x | | | | | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| :ref:`secant <optimize.root_scalar-secant>` | x | o | | x | o | | | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| :ref:`newton <optimize.root_scalar-newton>` | x | o | | x | | o | | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
| :ref:`halley <optimize.root_scalar-halley>` | x | o | | x | | x | x | o | o | o | o | | |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+ | |
Examples | |
-------- | |
Find the root of a simple cubic | |
>>> from scipy import optimize | |
>>> def f(x): | |
... return (x**3 - 1) # only one real root at x = 1 | |
>>> def fprime(x): | |
... return 3*x**2 | |
The `brentq` method takes as input a bracket | |
>>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq') | |
>>> sol.root, sol.iterations, sol.function_calls | |
(1.0, 10, 11) | |
The `newton` method takes as input a single point and uses the | |
derivative(s). | |
>>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton') | |
>>> sol.root, sol.iterations, sol.function_calls | |
(1.0, 11, 22) | |
The function can provide the value and derivative(s) in a single call. | |
>>> def f_p_pp(x): | |
... return (x**3 - 1), 3*x**2, 6*x | |
>>> sol = optimize.root_scalar( | |
... f_p_pp, x0=0.2, fprime=True, method='newton' | |
... ) | |
>>> sol.root, sol.iterations, sol.function_calls | |
(1.0, 11, 11) | |
>>> sol = optimize.root_scalar( | |
... f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley' | |
... ) | |
>>> sol.root, sol.iterations, sol.function_calls | |
(1.0, 7, 8) | |
""" # noqa: E501 | |
if not isinstance(args, tuple): | |
args = (args,) | |
if options is None: | |
options = {} | |
# fun also returns the derivative(s) | |
is_memoized = False | |
if fprime2 is not None and not callable(fprime2): | |
if bool(fprime2): | |
f = MemoizeDer(f) | |
is_memoized = True | |
fprime2 = f.fprime2 | |
fprime = f.fprime | |
else: | |
fprime2 = None | |
if fprime is not None and not callable(fprime): | |
if bool(fprime): | |
f = MemoizeDer(f) | |
is_memoized = True | |
fprime = f.fprime | |
else: | |
fprime = None | |
# respect solver-specific default tolerances - only pass in if actually set | |
kwargs = {} | |
for k in ['xtol', 'rtol', 'maxiter']: | |
v = locals().get(k) | |
if v is not None: | |
kwargs[k] = v | |
# Set any solver-specific options | |
if options: | |
kwargs.update(options) | |
# Always request full_output from the underlying method as _root_scalar | |
# always returns a RootResults object | |
kwargs.update(full_output=True, disp=False) | |
# Pick a method if not specified. | |
# Use the "best" method available for the situation. | |
if not method: | |
if bracket: | |
method = 'brentq' | |
elif x0 is not None: | |
if fprime: | |
if fprime2: | |
method = 'halley' | |
else: | |
method = 'newton' | |
elif x1 is not None: | |
method = 'secant' | |
else: | |
method = 'newton' | |
if not method: | |
raise ValueError('Unable to select a solver as neither bracket ' | |
'nor starting point provided.') | |
meth = method.lower() | |
map2underlying = {'halley': 'newton', 'secant': 'newton'} | |
try: | |
methodc = getattr(optzeros, map2underlying.get(meth, meth)) | |
except AttributeError as e: | |
raise ValueError('Unknown solver %s' % meth) from e | |
if meth in ['bisect', 'ridder', 'brentq', 'brenth', 'toms748']: | |
if not isinstance(bracket, (list, tuple, np.ndarray)): | |
raise ValueError('Bracket needed for %s' % method) | |
a, b = bracket[:2] | |
try: | |
r, sol = methodc(f, a, b, args=args, **kwargs) | |
except ValueError as e: | |
# gh-17622 fixed some bugs in low-level solvers by raising an error | |
# (rather than returning incorrect results) when the callable | |
# returns a NaN. It did so by wrapping the callable rather than | |
# modifying compiled code, so the iteration count is not available. | |
if hasattr(e, "_x"): | |
sol = optzeros.RootResults(root=e._x, | |
iterations=np.nan, | |
function_calls=e._function_calls, | |
flag=str(e), method=method) | |
else: | |
raise | |
elif meth in ['secant']: | |
if x0 is None: | |
raise ValueError('x0 must not be None for %s' % method) | |
if 'xtol' in kwargs: | |
kwargs['tol'] = kwargs.pop('xtol') | |
r, sol = methodc(f, x0, args=args, fprime=None, fprime2=None, | |
x1=x1, **kwargs) | |
elif meth in ['newton']: | |
if x0 is None: | |
raise ValueError('x0 must not be None for %s' % method) | |
if not fprime: | |
# approximate fprime with finite differences | |
def fprime(x, *args): | |
# `root_scalar` doesn't actually seem to support vectorized | |
# use of `newton`. In that case, `approx_derivative` will | |
# always get scalar input. Nonetheless, it always returns an | |
# array, so we extract the element to produce scalar output. | |
return approx_derivative(f, x, method='2-point', args=args)[0] | |
if 'xtol' in kwargs: | |
kwargs['tol'] = kwargs.pop('xtol') | |
r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=None, | |
**kwargs) | |
elif meth in ['halley']: | |
if x0 is None: | |
raise ValueError('x0 must not be None for %s' % method) | |
if not fprime: | |
raise ValueError('fprime must be specified for %s' % method) | |
if not fprime2: | |
raise ValueError('fprime2 must be specified for %s' % method) | |
if 'xtol' in kwargs: | |
kwargs['tol'] = kwargs.pop('xtol') | |
r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=fprime2, **kwargs) | |
else: | |
raise ValueError('Unknown solver %s' % method) | |
if is_memoized: | |
# Replace the function_calls count with the memoized count. | |
# Avoids double and triple-counting. | |
n_calls = f.n_calls | |
sol.function_calls = n_calls | |
return sol | |
def _root_scalar_brentq_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function. | |
bracket: A sequence of 2 floats, optional | |
An interval bracketing a root. `f(x, *args)` must have different | |
signs at the two endpoints. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
options: dict, optional | |
Specifies any method-specific options not covered above | |
""" | |
pass | |
def _root_scalar_brenth_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function. | |
bracket: A sequence of 2 floats, optional | |
An interval bracketing a root. `f(x, *args)` must have different | |
signs at the two endpoints. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
options: dict, optional | |
Specifies any method-specific options not covered above. | |
""" | |
pass | |
def _root_scalar_toms748_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function. | |
bracket: A sequence of 2 floats, optional | |
An interval bracketing a root. `f(x, *args)` must have different | |
signs at the two endpoints. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
options: dict, optional | |
Specifies any method-specific options not covered above. | |
""" | |
pass | |
def _root_scalar_secant_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
x0 : float, required | |
Initial guess. | |
x1 : float, required | |
A second guess. | |
options: dict, optional | |
Specifies any method-specific options not covered above. | |
""" | |
pass | |
def _root_scalar_newton_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function and its derivative. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
x0 : float, required | |
Initial guess. | |
fprime : bool or callable, optional | |
If `fprime` is a boolean and is True, `f` is assumed to return the | |
value of derivative along with the objective function. | |
`fprime` can also be a callable returning the derivative of `f`. In | |
this case, it must accept the same arguments as `f`. | |
options: dict, optional | |
Specifies any method-specific options not covered above. | |
""" | |
pass | |
def _root_scalar_halley_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function and its derivatives. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
x0 : float, required | |
Initial guess. | |
fprime : bool or callable, required | |
If `fprime` is a boolean and is True, `f` is assumed to return the | |
value of derivative along with the objective function. | |
`fprime` can also be a callable returning the derivative of `f`. In | |
this case, it must accept the same arguments as `f`. | |
fprime2 : bool or callable, required | |
If `fprime2` is a boolean and is True, `f` is assumed to return the | |
value of 1st and 2nd derivatives along with the objective function. | |
`fprime2` can also be a callable returning the 2nd derivative of `f`. | |
In this case, it must accept the same arguments as `f`. | |
options: dict, optional | |
Specifies any method-specific options not covered above. | |
""" | |
pass | |
def _root_scalar_ridder_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function. | |
bracket: A sequence of 2 floats, optional | |
An interval bracketing a root. `f(x, *args)` must have different | |
signs at the two endpoints. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
options: dict, optional | |
Specifies any method-specific options not covered above. | |
""" | |
pass | |
def _root_scalar_bisect_doc(): | |
r""" | |
Options | |
------- | |
args : tuple, optional | |
Extra arguments passed to the objective function. | |
bracket: A sequence of 2 floats, optional | |
An interval bracketing a root. `f(x, *args)` must have different | |
signs at the two endpoints. | |
xtol : float, optional | |
Tolerance (absolute) for termination. | |
rtol : float, optional | |
Tolerance (relative) for termination. | |
maxiter : int, optional | |
Maximum number of iterations. | |
options: dict, optional | |
Specifies any method-specific options not covered above. | |
""" | |
pass | |