peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/cluster
/tests
/test_bicluster.py
"""Testing for Spectral Biclustering methods""" | |
import numpy as np | |
import pytest | |
from scipy.sparse import issparse | |
from sklearn.base import BaseEstimator, BiclusterMixin | |
from sklearn.cluster import SpectralBiclustering, SpectralCoclustering | |
from sklearn.cluster._bicluster import ( | |
_bistochastic_normalize, | |
_log_normalize, | |
_scale_normalize, | |
) | |
from sklearn.datasets import make_biclusters, make_checkerboard | |
from sklearn.metrics import consensus_score, v_measure_score | |
from sklearn.model_selection import ParameterGrid | |
from sklearn.utils._testing import ( | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
from sklearn.utils.fixes import CSR_CONTAINERS | |
class MockBiclustering(BiclusterMixin, BaseEstimator): | |
# Mock object for testing get_submatrix. | |
def __init__(self): | |
pass | |
def get_indices(self, i): | |
# Overridden to reproduce old get_submatrix test. | |
return ( | |
np.where([True, True, False, False, True])[0], | |
np.where([False, False, True, True])[0], | |
) | |
def test_get_submatrix(csr_container): | |
data = np.arange(20).reshape(5, 4) | |
model = MockBiclustering() | |
for X in (data, csr_container(data), data.tolist()): | |
submatrix = model.get_submatrix(0, X) | |
if issparse(submatrix): | |
submatrix = submatrix.toarray() | |
assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) | |
submatrix[:] = -1 | |
if issparse(X): | |
X = X.toarray() | |
assert np.all(X != -1) | |
def _test_shape_indices(model): | |
# Test get_shape and get_indices on fitted model. | |
for i in range(model.n_clusters): | |
m, n = model.get_shape(i) | |
i_ind, j_ind = model.get_indices(i) | |
assert len(i_ind) == m | |
assert len(j_ind) == n | |
def test_spectral_coclustering(global_random_seed, csr_container): | |
# Test Dhillon's Spectral CoClustering on a simple problem. | |
param_grid = { | |
"svd_method": ["randomized", "arpack"], | |
"n_svd_vecs": [None, 20], | |
"mini_batch": [False, True], | |
"init": ["k-means++"], | |
"n_init": [10], | |
} | |
S, rows, cols = make_biclusters( | |
(30, 30), 3, noise=0.1, random_state=global_random_seed | |
) | |
S -= S.min() # needs to be nonnegative before making it sparse | |
S = np.where(S < 1, 0, S) # threshold some values | |
for mat in (S, csr_container(S)): | |
for kwargs in ParameterGrid(param_grid): | |
model = SpectralCoclustering( | |
n_clusters=3, random_state=global_random_seed, **kwargs | |
) | |
model.fit(mat) | |
assert model.rows_.shape == (3, 30) | |
assert_array_equal(model.rows_.sum(axis=0), np.ones(30)) | |
assert_array_equal(model.columns_.sum(axis=0), np.ones(30)) | |
assert consensus_score(model.biclusters_, (rows, cols)) == 1 | |
_test_shape_indices(model) | |
def test_spectral_biclustering(global_random_seed, csr_container): | |
# Test Kluger methods on a checkerboard dataset. | |
S, rows, cols = make_checkerboard( | |
(30, 30), 3, noise=0.5, random_state=global_random_seed | |
) | |
non_default_params = { | |
"method": ["scale", "log"], | |
"svd_method": ["arpack"], | |
"n_svd_vecs": [20], | |
"mini_batch": [True], | |
} | |
for mat in (S, csr_container(S)): | |
for param_name, param_values in non_default_params.items(): | |
for param_value in param_values: | |
model = SpectralBiclustering( | |
n_clusters=3, | |
n_init=3, | |
init="k-means++", | |
random_state=global_random_seed, | |
) | |
model.set_params(**dict([(param_name, param_value)])) | |
if issparse(mat) and model.get_params().get("method") == "log": | |
# cannot take log of sparse matrix | |
with pytest.raises(ValueError): | |
model.fit(mat) | |
continue | |
else: | |
model.fit(mat) | |
assert model.rows_.shape == (9, 30) | |
assert model.columns_.shape == (9, 30) | |
assert_array_equal(model.rows_.sum(axis=0), np.repeat(3, 30)) | |
assert_array_equal(model.columns_.sum(axis=0), np.repeat(3, 30)) | |
assert consensus_score(model.biclusters_, (rows, cols)) == 1 | |
_test_shape_indices(model) | |
def _do_scale_test(scaled): | |
"""Check that rows sum to one constant, and columns to another.""" | |
row_sum = scaled.sum(axis=1) | |
col_sum = scaled.sum(axis=0) | |
if issparse(scaled): | |
row_sum = np.asarray(row_sum).squeeze() | |
col_sum = np.asarray(col_sum).squeeze() | |
assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100), decimal=1) | |
assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100), decimal=1) | |
def _do_bistochastic_test(scaled): | |
"""Check that rows and columns sum to the same constant.""" | |
_do_scale_test(scaled) | |
assert_almost_equal(scaled.sum(axis=0).mean(), scaled.sum(axis=1).mean(), decimal=1) | |
def test_scale_normalize(global_random_seed, csr_container): | |
generator = np.random.RandomState(global_random_seed) | |
X = generator.rand(100, 100) | |
for mat in (X, csr_container(X)): | |
scaled, _, _ = _scale_normalize(mat) | |
_do_scale_test(scaled) | |
if issparse(mat): | |
assert issparse(scaled) | |
def test_bistochastic_normalize(global_random_seed, csr_container): | |
generator = np.random.RandomState(global_random_seed) | |
X = generator.rand(100, 100) | |
for mat in (X, csr_container(X)): | |
scaled = _bistochastic_normalize(mat) | |
_do_bistochastic_test(scaled) | |
if issparse(mat): | |
assert issparse(scaled) | |
def test_log_normalize(global_random_seed): | |
# adding any constant to a log-scaled matrix should make it | |
# bistochastic | |
generator = np.random.RandomState(global_random_seed) | |
mat = generator.rand(100, 100) | |
scaled = _log_normalize(mat) + 1 | |
_do_bistochastic_test(scaled) | |
def test_fit_best_piecewise(global_random_seed): | |
model = SpectralBiclustering(random_state=global_random_seed) | |
vectors = np.array([[0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [0, 1, 2, 3, 4, 5]]) | |
best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2) | |
assert_array_equal(best, vectors[:2]) | |
def test_project_and_cluster(global_random_seed, csr_container): | |
model = SpectralBiclustering(random_state=global_random_seed) | |
data = np.array([[1, 1, 1], [1, 1, 1], [3, 6, 3], [3, 6, 3]]) | |
vectors = np.array([[1, 0], [0, 1], [0, 0]]) | |
for mat in (data, csr_container(data)): | |
labels = model._project_and_cluster(mat, vectors, n_clusters=2) | |
assert_almost_equal(v_measure_score(labels, [0, 0, 1, 1]), 1.0) | |
def test_perfect_checkerboard(global_random_seed): | |
# XXX Previously failed on build bot (not reproducible) | |
model = SpectralBiclustering( | |
3, svd_method="arpack", random_state=global_random_seed | |
) | |
S, rows, cols = make_checkerboard( | |
(30, 30), 3, noise=0, random_state=global_random_seed | |
) | |
model.fit(S) | |
assert consensus_score(model.biclusters_, (rows, cols)) == 1 | |
S, rows, cols = make_checkerboard( | |
(40, 30), 3, noise=0, random_state=global_random_seed | |
) | |
model.fit(S) | |
assert consensus_score(model.biclusters_, (rows, cols)) == 1 | |
S, rows, cols = make_checkerboard( | |
(30, 40), 3, noise=0, random_state=global_random_seed | |
) | |
model.fit(S) | |
assert consensus_score(model.biclusters_, (rows, cols)) == 1 | |
def test_spectralbiclustering_parameter_validation(params, type_err, err_msg): | |
"""Check parameters validation in `SpectralBiClustering`""" | |
data = np.arange(25).reshape((5, 5)) | |
model = SpectralBiclustering(**params) | |
with pytest.raises(type_err, match=err_msg): | |
model.fit(data) | |
def test_n_features_in_(est): | |
X, _, _ = make_biclusters((3, 3), 3, random_state=0) | |
assert not hasattr(est, "n_features_in_") | |
est.fit(X) | |
assert est.n_features_in_ == 3 | |