peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/metadata_routing_common.py
from functools import partial | |
import numpy as np | |
from sklearn.base import ( | |
BaseEstimator, | |
ClassifierMixin, | |
MetaEstimatorMixin, | |
RegressorMixin, | |
TransformerMixin, | |
clone, | |
) | |
from sklearn.metrics._scorer import _Scorer, mean_squared_error | |
from sklearn.model_selection import BaseCrossValidator | |
from sklearn.model_selection._split import GroupsConsumerMixin | |
from sklearn.utils._metadata_requests import ( | |
SIMPLE_METHODS, | |
) | |
from sklearn.utils.metadata_routing import ( | |
MetadataRouter, | |
process_routing, | |
) | |
from sklearn.utils.multiclass import _check_partial_fit_first_call | |
def record_metadata(obj, method, record_default=True, **kwargs): | |
"""Utility function to store passed metadata to a method. | |
If record_default is False, kwargs whose values are "default" are skipped. | |
This is so that checks on keyword arguments whose default was not changed | |
are skipped. | |
""" | |
if not hasattr(obj, "_records"): | |
obj._records = {} | |
if not record_default: | |
kwargs = { | |
key: val | |
for key, val in kwargs.items() | |
if not isinstance(val, str) or (val != "default") | |
} | |
obj._records[method] = kwargs | |
def check_recorded_metadata(obj, method, split_params=tuple(), **kwargs): | |
"""Check whether the expected metadata is passed to the object's method. | |
Parameters | |
---------- | |
obj : estimator object | |
sub-estimator to check routed params for | |
method : str | |
sub-estimator's method where metadata is routed to | |
split_params : tuple, default=empty | |
specifies any parameters which are to be checked as being a subset | |
of the original values. | |
""" | |
records = getattr(obj, "_records", dict()).get(method, dict()) | |
assert set(kwargs.keys()) == set(records.keys()) | |
for key, value in kwargs.items(): | |
recorded_value = records[key] | |
# The following condition is used to check for any specified parameters | |
# being a subset of the original values | |
if key in split_params and recorded_value is not None: | |
assert np.isin(recorded_value, value).all() | |
else: | |
assert recorded_value is value | |
record_metadata_not_default = partial(record_metadata, record_default=False) | |
def assert_request_is_empty(metadata_request, exclude=None): | |
"""Check if a metadata request dict is empty. | |
One can exclude a method or a list of methods from the check using the | |
``exclude`` parameter. If metadata_request is a MetadataRouter, then | |
``exclude`` can be of the form ``{"object" : [method, ...]}``. | |
""" | |
if isinstance(metadata_request, MetadataRouter): | |
for name, route_mapping in metadata_request: | |
if exclude is not None and name in exclude: | |
_exclude = exclude[name] | |
else: | |
_exclude = None | |
assert_request_is_empty(route_mapping.router, exclude=_exclude) | |
return | |
exclude = [] if exclude is None else exclude | |
for method in SIMPLE_METHODS: | |
if method in exclude: | |
continue | |
mmr = getattr(metadata_request, method) | |
props = [ | |
prop | |
for prop, alias in mmr.requests.items() | |
if isinstance(alias, str) or alias is not None | |
] | |
assert not props | |
def assert_request_equal(request, dictionary): | |
for method, requests in dictionary.items(): | |
mmr = getattr(request, method) | |
assert mmr.requests == requests | |
empty_methods = [method for method in SIMPLE_METHODS if method not in dictionary] | |
for method in empty_methods: | |
assert not len(getattr(request, method).requests) | |
class _Registry(list): | |
# This list is used to get a reference to the sub-estimators, which are not | |
# necessarily stored on the metaestimator. We need to override __deepcopy__ | |
# because the sub-estimators are probably cloned, which would result in a | |
# new copy of the list, but we need copy and deep copy both to return the | |
# same instance. | |
def __deepcopy__(self, memo): | |
return self | |
def __copy__(self): | |
return self | |
class ConsumingRegressor(RegressorMixin, BaseEstimator): | |
"""A regressor consuming metadata. | |
Parameters | |
---------- | |
registry : list, default=None | |
If a list, the estimator will append itself to the list in order to have | |
a reference to the estimator later on. Since that reference is not | |
required in all tests, registration can be skipped by leaving this value | |
as None. | |
""" | |
def __init__(self, registry=None): | |
self.registry = registry | |
def partial_fit(self, X, y, sample_weight="default", metadata="default"): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata_not_default( | |
self, "partial_fit", sample_weight=sample_weight, metadata=metadata | |
) | |
return self | |
def fit(self, X, y, sample_weight="default", metadata="default"): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata_not_default( | |
self, "fit", sample_weight=sample_weight, metadata=metadata | |
) | |
return self | |
def predict(self, X, sample_weight="default", metadata="default"): | |
pass # pragma: no cover | |
# when needed, uncomment the implementation | |
# record_metadata_not_default( | |
# self, "predict", sample_weight=sample_weight, metadata=metadata | |
# ) | |
# return np.zeros(shape=(len(X),)) | |
class NonConsumingClassifier(ClassifierMixin, BaseEstimator): | |
"""A classifier which accepts no metadata on any method.""" | |
def __init__(self, alpha=0.0): | |
self.alpha = alpha | |
def fit(self, X, y): | |
self.classes_ = np.unique(y) | |
return self | |
def partial_fit(self, X, y, classes=None): | |
return self | |
def decision_function(self, X): | |
return self.predict(X) | |
def predict(self, X): | |
return np.ones(len(X)) | |
class NonConsumingRegressor(RegressorMixin, BaseEstimator): | |
"""A classifier which accepts no metadata on any method.""" | |
def fit(self, X, y): | |
return self | |
def partial_fit(self, X, y): | |
return self | |
def predict(self, X): | |
return np.ones(len(X)) # pragma: no cover | |
class ConsumingClassifier(ClassifierMixin, BaseEstimator): | |
"""A classifier consuming metadata. | |
Parameters | |
---------- | |
registry : list, default=None | |
If a list, the estimator will append itself to the list in order to have | |
a reference to the estimator later on. Since that reference is not | |
required in all tests, registration can be skipped by leaving this value | |
as None. | |
alpha : float, default=0 | |
This parameter is only used to test the ``*SearchCV`` objects, and | |
doesn't do anything. | |
""" | |
def __init__(self, registry=None, alpha=0.0): | |
self.alpha = alpha | |
self.registry = registry | |
def partial_fit( | |
self, X, y, classes=None, sample_weight="default", metadata="default" | |
): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata_not_default( | |
self, "partial_fit", sample_weight=sample_weight, metadata=metadata | |
) | |
_check_partial_fit_first_call(self, classes) | |
return self | |
def fit(self, X, y, sample_weight="default", metadata="default"): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata_not_default( | |
self, "fit", sample_weight=sample_weight, metadata=metadata | |
) | |
self.classes_ = np.unique(y) | |
return self | |
def predict(self, X, sample_weight="default", metadata="default"): | |
record_metadata_not_default( | |
self, "predict", sample_weight=sample_weight, metadata=metadata | |
) | |
return np.zeros(shape=(len(X),)) | |
def predict_proba(self, X, sample_weight="default", metadata="default"): | |
pass # pragma: no cover | |
# uncomment when needed | |
# record_metadata_not_default( | |
# self, "predict_proba", sample_weight=sample_weight, metadata=metadata | |
# ) | |
# return np.asarray([[0.0, 1.0]] * len(X)) | |
def predict_log_proba(self, X, sample_weight="default", metadata="default"): | |
pass # pragma: no cover | |
# uncomment when needed | |
# record_metadata_not_default( | |
# self, "predict_log_proba", sample_weight=sample_weight, metadata=metadata | |
# ) | |
# return np.zeros(shape=(len(X), 2)) | |
def decision_function(self, X, sample_weight="default", metadata="default"): | |
record_metadata_not_default( | |
self, "predict_proba", sample_weight=sample_weight, metadata=metadata | |
) | |
return np.zeros(shape=(len(X),)) | |
class ConsumingTransformer(TransformerMixin, BaseEstimator): | |
"""A transformer which accepts metadata on fit and transform. | |
Parameters | |
---------- | |
registry : list, default=None | |
If a list, the estimator will append itself to the list in order to have | |
a reference to the estimator later on. Since that reference is not | |
required in all tests, registration can be skipped by leaving this value | |
as None. | |
""" | |
def __init__(self, registry=None): | |
self.registry = registry | |
def fit(self, X, y=None, sample_weight=None, metadata=None): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata_not_default( | |
self, "fit", sample_weight=sample_weight, metadata=metadata | |
) | |
return self | |
def transform(self, X, sample_weight=None, metadata=None): | |
record_metadata( | |
self, "transform", sample_weight=sample_weight, metadata=metadata | |
) | |
return X | |
def fit_transform(self, X, y, sample_weight=None, metadata=None): | |
# implementing ``fit_transform`` is necessary since | |
# ``TransformerMixin.fit_transform`` doesn't route any metadata to | |
# ``transform``, while here we want ``transform`` to receive | |
# ``sample_weight`` and ``metadata``. | |
record_metadata( | |
self, "fit_transform", sample_weight=sample_weight, metadata=metadata | |
) | |
return self.fit(X, y, sample_weight=sample_weight, metadata=metadata).transform( | |
X, sample_weight=sample_weight, metadata=metadata | |
) | |
def inverse_transform(self, X, sample_weight=None, metadata=None): | |
record_metadata( | |
self, "inverse_transform", sample_weight=sample_weight, metadata=metadata | |
) | |
return X | |
class ConsumingScorer(_Scorer): | |
def __init__(self, registry=None): | |
super().__init__( | |
score_func=mean_squared_error, sign=1, kwargs={}, response_method="predict" | |
) | |
self.registry = registry | |
def _score(self, method_caller, clf, X, y, **kwargs): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata_not_default(self, "score", **kwargs) | |
sample_weight = kwargs.get("sample_weight", None) | |
return super()._score(method_caller, clf, X, y, sample_weight=sample_weight) | |
class ConsumingSplitter(BaseCrossValidator, GroupsConsumerMixin): | |
def __init__(self, registry=None): | |
self.registry = registry | |
def split(self, X, y=None, groups="default", metadata="default"): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata_not_default(self, "split", groups=groups, metadata=metadata) | |
split_index = len(X) // 2 | |
train_indices = list(range(0, split_index)) | |
test_indices = list(range(split_index, len(X))) | |
yield test_indices, train_indices | |
yield train_indices, test_indices | |
def get_n_splits(self, X=None, y=None, groups=None, metadata=None): | |
return 2 | |
def _iter_test_indices(self, X=None, y=None, groups=None): | |
split_index = len(X) // 2 | |
train_indices = list(range(0, split_index)) | |
test_indices = list(range(split_index, len(X))) | |
yield test_indices | |
yield train_indices | |
class MetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator): | |
"""A meta-regressor which is only a router.""" | |
def __init__(self, estimator): | |
self.estimator = estimator | |
def fit(self, X, y, **fit_params): | |
params = process_routing(self, "fit", **fit_params) | |
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit) | |
def get_metadata_routing(self): | |
router = MetadataRouter(owner=self.__class__.__name__).add( | |
estimator=self.estimator, method_mapping="one-to-one" | |
) | |
return router | |
class WeightedMetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator): | |
"""A meta-regressor which is also a consumer.""" | |
def __init__(self, estimator, registry=None): | |
self.estimator = estimator | |
self.registry = registry | |
def fit(self, X, y, sample_weight=None, **fit_params): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata(self, "fit", sample_weight=sample_weight) | |
params = process_routing(self, "fit", sample_weight=sample_weight, **fit_params) | |
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit) | |
return self | |
def predict(self, X, **predict_params): | |
params = process_routing(self, "predict", **predict_params) | |
return self.estimator_.predict(X, **params.estimator.predict) | |
def get_metadata_routing(self): | |
router = ( | |
MetadataRouter(owner=self.__class__.__name__) | |
.add_self_request(self) | |
.add(estimator=self.estimator, method_mapping="one-to-one") | |
) | |
return router | |
class WeightedMetaClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator): | |
"""A meta-estimator which also consumes sample_weight itself in ``fit``.""" | |
def __init__(self, estimator, registry=None): | |
self.estimator = estimator | |
self.registry = registry | |
def fit(self, X, y, sample_weight=None, **kwargs): | |
if self.registry is not None: | |
self.registry.append(self) | |
record_metadata(self, "fit", sample_weight=sample_weight) | |
params = process_routing(self, "fit", sample_weight=sample_weight, **kwargs) | |
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit) | |
return self | |
def get_metadata_routing(self): | |
router = ( | |
MetadataRouter(owner=self.__class__.__name__) | |
.add_self_request(self) | |
.add(estimator=self.estimator, method_mapping="fit") | |
) | |
return router | |
class MetaTransformer(MetaEstimatorMixin, TransformerMixin, BaseEstimator): | |
"""A simple meta-transformer.""" | |
def __init__(self, transformer): | |
self.transformer = transformer | |
def fit(self, X, y=None, **fit_params): | |
params = process_routing(self, "fit", **fit_params) | |
self.transformer_ = clone(self.transformer).fit(X, y, **params.transformer.fit) | |
return self | |
def transform(self, X, y=None, **transform_params): | |
params = process_routing(self, "transform", **transform_params) | |
return self.transformer_.transform(X, **params.transformer.transform) | |
def get_metadata_routing(self): | |
return MetadataRouter(owner=self.__class__.__name__).add( | |
transformer=self.transformer, method_mapping="one-to-one" | |
) | |