peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/sentencepiece_unigram.py
import json | |
import os | |
from typing import Iterator, List, Optional, Union, Tuple | |
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers | |
from tokenizers.models import Unigram | |
from .base_tokenizer import BaseTokenizer | |
class SentencePieceUnigramTokenizer(BaseTokenizer): | |
"""SentencePiece Unigram Tokenizer | |
Represents the Unigram algorithm, with the pretokenization used by SentencePiece | |
""" | |
def __init__( | |
self, | |
vocab: Optional[List[Tuple[str, float]]] = None, | |
replacement: str = "▁", | |
add_prefix_space: bool = True, | |
): | |
if vocab is not None: | |
# Let Unigram(..) fail if only one of them is None | |
tokenizer = Tokenizer(Unigram(vocab)) | |
else: | |
tokenizer = Tokenizer(Unigram()) | |
tokenizer.normalizer = normalizers.Sequence( | |
[normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")] | |
) | |
prepend_scheme = "always" if add_prefix_space else "never" | |
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
parameters = { | |
"model": "SentencePieceUnigram", | |
"replacement": replacement, | |
"add_prefix_space": add_prefix_space, | |
} | |
super().__init__(tokenizer, parameters) | |
def train( | |
self, | |
files: Union[str, List[str]], | |
vocab_size: int = 8000, | |
show_progress: bool = True, | |
special_tokens: Optional[List[Union[str, AddedToken]]] = None, | |
initial_alphabet: Optional[List[str]] = None, | |
unk_token: Optional[str] = None, | |
): | |
""" | |
Train the model using the given files | |
Args: | |
files (:obj:`List[str]`): | |
A list of path to the files that we should use for training | |
vocab_size (:obj:`int`): | |
The size of the final vocabulary, including all tokens and alphabet. | |
show_progress (:obj:`bool`): | |
Whether to show progress bars while training. | |
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): | |
A list of special tokens the model should know of. | |
initial_alphabet (:obj:`List[str]`, `optional`): | |
A list of characters to include in the initial alphabet, even | |
if not seen in the training dataset. | |
If the strings contain more than one character, only the first one | |
is kept. | |
unk_token (:obj:`str`, `optional`): | |
The unknown token to be used by the model. | |
""" | |
if special_tokens is None: | |
special_tokens = [] | |
if initial_alphabet is None: | |
initial_alphabet = [] | |
trainer = trainers.UnigramTrainer( | |
vocab_size=vocab_size, | |
special_tokens=special_tokens, | |
show_progress=show_progress, | |
initial_alphabet=initial_alphabet, | |
unk_token=unk_token, | |
) | |
if isinstance(files, str): | |
files = [files] | |
self._tokenizer.train(files, trainer=trainer) | |
def train_from_iterator( | |
self, | |
iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
vocab_size: int = 8000, | |
show_progress: bool = True, | |
special_tokens: Optional[List[Union[str, AddedToken]]] = None, | |
initial_alphabet: Optional[List[str]] = None, | |
unk_token: Optional[str] = None, | |
length: Optional[int] = None, | |
): | |
""" | |
Train the model using the given iterator | |
Args: | |
iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`): | |
Any iterator over strings or list of strings | |
vocab_size (:obj:`int`): | |
The size of the final vocabulary, including all tokens and alphabet. | |
show_progress (:obj:`bool`): | |
Whether to show progress bars while training. | |
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): | |
A list of special tokens the model should know of. | |
initial_alphabet (:obj:`List[str]`, `optional`): | |
A list of characters to include in the initial alphabet, even | |
if not seen in the training dataset. | |
If the strings contain more than one character, only the first one | |
is kept. | |
unk_token (:obj:`str`, `optional`): | |
The unknown token to be used by the model. | |
length (:obj:`int`, `optional`): | |
The total number of sequences in the iterator. This is used to | |
provide meaningful progress tracking | |
""" | |
if special_tokens is None: | |
special_tokens = [] | |
if initial_alphabet is None: | |
initial_alphabet = [] | |
trainer = trainers.UnigramTrainer( | |
vocab_size=vocab_size, | |
special_tokens=special_tokens, | |
show_progress=show_progress, | |
initial_alphabet=initial_alphabet, | |
unk_token=unk_token, | |
) | |
self._tokenizer.train_from_iterator( | |
iterator, | |
trainer=trainer, | |
length=length, | |
) | |
def from_spm(filename: str): | |
try: | |
import sys | |
sys.path.append(".") | |
import sentencepiece_model_pb2 as model | |
except Exception: | |
raise Exception( | |
"You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required." | |
) | |
m = model.ModelProto() | |
m.ParseFromString(open(filename, "rb").read()) | |
precompiled_charsmap = m.normalizer_spec.precompiled_charsmap | |
vocab = [(piece.piece, piece.score) for piece in m.pieces] | |
unk_id = m.trainer_spec.unk_id | |
model_type = m.trainer_spec.model_type | |
byte_fallback = m.trainer_spec.byte_fallback | |
if model_type != 1: | |
raise Exception( | |
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm" | |
) | |
replacement = "▁" | |
add_prefix_space = True | |
tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback)) | |
if precompiled_charsmap: | |
tokenizer.normalizer = normalizers.Sequence( | |
[ | |
normalizers.Precompiled(precompiled_charsmap), | |
normalizers.Replace(Regex(" {2,}"), " "), | |
] | |
) | |
else: | |
tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")]) | |
prepend_scheme = "always" if add_prefix_space else "never" | |
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
parameters = { | |
"model": "SentencePieceUnigram", | |
} | |
obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters) | |
BaseTokenizer.__init__(obj, tokenizer, parameters) | |
return obj | |