peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/v1
/fields.py
import copy | |
import re | |
from collections import Counter as CollectionCounter, defaultdict, deque | |
from collections.abc import Callable, Hashable as CollectionsHashable, Iterable as CollectionsIterable | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
Counter, | |
DefaultDict, | |
Deque, | |
Dict, | |
ForwardRef, | |
FrozenSet, | |
Generator, | |
Iterable, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Pattern, | |
Sequence, | |
Set, | |
Tuple, | |
Type, | |
TypeVar, | |
Union, | |
) | |
from typing_extensions import Annotated, Final | |
from . import errors as errors_ | |
from .class_validators import Validator, make_generic_validator, prep_validators | |
from .error_wrappers import ErrorWrapper | |
from .errors import ConfigError, InvalidDiscriminator, MissingDiscriminator, NoneIsNotAllowedError | |
from .types import Json, JsonWrapper | |
from .typing import ( | |
NoArgAnyCallable, | |
convert_generics, | |
display_as_type, | |
get_args, | |
get_origin, | |
is_finalvar, | |
is_literal_type, | |
is_new_type, | |
is_none_type, | |
is_typeddict, | |
is_typeddict_special, | |
is_union, | |
new_type_supertype, | |
) | |
from .utils import ( | |
PyObjectStr, | |
Representation, | |
ValueItems, | |
get_discriminator_alias_and_values, | |
get_unique_discriminator_alias, | |
lenient_isinstance, | |
lenient_issubclass, | |
sequence_like, | |
smart_deepcopy, | |
) | |
from .validators import constant_validator, dict_validator, find_validators, validate_json | |
Required: Any = Ellipsis | |
T = TypeVar('T') | |
class UndefinedType: | |
def __repr__(self) -> str: | |
return 'PydanticUndefined' | |
def __copy__(self: T) -> T: | |
return self | |
def __reduce__(self) -> str: | |
return 'Undefined' | |
def __deepcopy__(self: T, _: Any) -> T: | |
return self | |
Undefined = UndefinedType() | |
if TYPE_CHECKING: | |
from .class_validators import ValidatorsList | |
from .config import BaseConfig | |
from .error_wrappers import ErrorList | |
from .types import ModelOrDc | |
from .typing import AbstractSetIntStr, MappingIntStrAny, ReprArgs | |
ValidateReturn = Tuple[Optional[Any], Optional[ErrorList]] | |
LocStr = Union[Tuple[Union[int, str], ...], str] | |
BoolUndefined = Union[bool, UndefinedType] | |
class FieldInfo(Representation): | |
""" | |
Captures extra information about a field. | |
""" | |
__slots__ = ( | |
'default', | |
'default_factory', | |
'alias', | |
'alias_priority', | |
'title', | |
'description', | |
'exclude', | |
'include', | |
'const', | |
'gt', | |
'ge', | |
'lt', | |
'le', | |
'multiple_of', | |
'allow_inf_nan', | |
'max_digits', | |
'decimal_places', | |
'min_items', | |
'max_items', | |
'unique_items', | |
'min_length', | |
'max_length', | |
'allow_mutation', | |
'repr', | |
'regex', | |
'discriminator', | |
'extra', | |
) | |
# field constraints with the default value, it's also used in update_from_config below | |
__field_constraints__ = { | |
'min_length': None, | |
'max_length': None, | |
'regex': None, | |
'gt': None, | |
'lt': None, | |
'ge': None, | |
'le': None, | |
'multiple_of': None, | |
'allow_inf_nan': None, | |
'max_digits': None, | |
'decimal_places': None, | |
'min_items': None, | |
'max_items': None, | |
'unique_items': None, | |
'allow_mutation': True, | |
} | |
def __init__(self, default: Any = Undefined, **kwargs: Any) -> None: | |
self.default = default | |
self.default_factory = kwargs.pop('default_factory', None) | |
self.alias = kwargs.pop('alias', None) | |
self.alias_priority = kwargs.pop('alias_priority', 2 if self.alias is not None else None) | |
self.title = kwargs.pop('title', None) | |
self.description = kwargs.pop('description', None) | |
self.exclude = kwargs.pop('exclude', None) | |
self.include = kwargs.pop('include', None) | |
self.const = kwargs.pop('const', None) | |
self.gt = kwargs.pop('gt', None) | |
self.ge = kwargs.pop('ge', None) | |
self.lt = kwargs.pop('lt', None) | |
self.le = kwargs.pop('le', None) | |
self.multiple_of = kwargs.pop('multiple_of', None) | |
self.allow_inf_nan = kwargs.pop('allow_inf_nan', None) | |
self.max_digits = kwargs.pop('max_digits', None) | |
self.decimal_places = kwargs.pop('decimal_places', None) | |
self.min_items = kwargs.pop('min_items', None) | |
self.max_items = kwargs.pop('max_items', None) | |
self.unique_items = kwargs.pop('unique_items', None) | |
self.min_length = kwargs.pop('min_length', None) | |
self.max_length = kwargs.pop('max_length', None) | |
self.allow_mutation = kwargs.pop('allow_mutation', True) | |
self.regex = kwargs.pop('regex', None) | |
self.discriminator = kwargs.pop('discriminator', None) | |
self.repr = kwargs.pop('repr', True) | |
self.extra = kwargs | |
def __repr_args__(self) -> 'ReprArgs': | |
field_defaults_to_hide: Dict[str, Any] = { | |
'repr': True, | |
**self.__field_constraints__, | |
} | |
attrs = ((s, getattr(self, s)) for s in self.__slots__) | |
return [(a, v) for a, v in attrs if v != field_defaults_to_hide.get(a, None)] | |
def get_constraints(self) -> Set[str]: | |
""" | |
Gets the constraints set on the field by comparing the constraint value with its default value | |
:return: the constraints set on field_info | |
""" | |
return {attr for attr, default in self.__field_constraints__.items() if getattr(self, attr) != default} | |
def update_from_config(self, from_config: Dict[str, Any]) -> None: | |
""" | |
Update this FieldInfo based on a dict from get_field_info, only fields which have not been set are dated. | |
""" | |
for attr_name, value in from_config.items(): | |
try: | |
current_value = getattr(self, attr_name) | |
except AttributeError: | |
# attr_name is not an attribute of FieldInfo, it should therefore be added to extra | |
# (except if extra already has this value!) | |
self.extra.setdefault(attr_name, value) | |
else: | |
if current_value is self.__field_constraints__.get(attr_name, None): | |
setattr(self, attr_name, value) | |
elif attr_name == 'exclude': | |
self.exclude = ValueItems.merge(value, current_value) | |
elif attr_name == 'include': | |
self.include = ValueItems.merge(value, current_value, intersect=True) | |
def _validate(self) -> None: | |
if self.default is not Undefined and self.default_factory is not None: | |
raise ValueError('cannot specify both default and default_factory') | |
def Field( | |
default: Any = Undefined, | |
*, | |
default_factory: Optional[NoArgAnyCallable] = None, | |
alias: Optional[str] = None, | |
title: Optional[str] = None, | |
description: Optional[str] = None, | |
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None, | |
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None, | |
const: Optional[bool] = None, | |
gt: Optional[float] = None, | |
ge: Optional[float] = None, | |
lt: Optional[float] = None, | |
le: Optional[float] = None, | |
multiple_of: Optional[float] = None, | |
allow_inf_nan: Optional[bool] = None, | |
max_digits: Optional[int] = None, | |
decimal_places: Optional[int] = None, | |
min_items: Optional[int] = None, | |
max_items: Optional[int] = None, | |
unique_items: Optional[bool] = None, | |
min_length: Optional[int] = None, | |
max_length: Optional[int] = None, | |
allow_mutation: bool = True, | |
regex: Optional[str] = None, | |
discriminator: Optional[str] = None, | |
repr: bool = True, | |
**extra: Any, | |
) -> Any: | |
""" | |
Used to provide extra information about a field, either for the model schema or complex validation. Some arguments | |
apply only to number fields (``int``, ``float``, ``Decimal``) and some apply only to ``str``. | |
:param default: since this is replacing the field’s default, its first argument is used | |
to set the default, use ellipsis (``...``) to indicate the field is required | |
:param default_factory: callable that will be called when a default value is needed for this field | |
If both `default` and `default_factory` are set, an error is raised. | |
:param alias: the public name of the field | |
:param title: can be any string, used in the schema | |
:param description: can be any string, used in the schema | |
:param exclude: exclude this field while dumping. | |
Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method. | |
:param include: include this field while dumping. | |
Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method. | |
:param const: this field is required and *must* take it's default value | |
:param gt: only applies to numbers, requires the field to be "greater than". The schema | |
will have an ``exclusiveMinimum`` validation keyword | |
:param ge: only applies to numbers, requires the field to be "greater than or equal to". The | |
schema will have a ``minimum`` validation keyword | |
:param lt: only applies to numbers, requires the field to be "less than". The schema | |
will have an ``exclusiveMaximum`` validation keyword | |
:param le: only applies to numbers, requires the field to be "less than or equal to". The | |
schema will have a ``maximum`` validation keyword | |
:param multiple_of: only applies to numbers, requires the field to be "a multiple of". The | |
schema will have a ``multipleOf`` validation keyword | |
:param allow_inf_nan: only applies to numbers, allows the field to be NaN or infinity (+inf or -inf), | |
which is a valid Python float. Default True, set to False for compatibility with JSON. | |
:param max_digits: only applies to Decimals, requires the field to have a maximum number | |
of digits within the decimal. It does not include a zero before the decimal point or trailing decimal zeroes. | |
:param decimal_places: only applies to Decimals, requires the field to have at most a number of decimal places | |
allowed. It does not include trailing decimal zeroes. | |
:param min_items: only applies to lists, requires the field to have a minimum number of | |
elements. The schema will have a ``minItems`` validation keyword | |
:param max_items: only applies to lists, requires the field to have a maximum number of | |
elements. The schema will have a ``maxItems`` validation keyword | |
:param unique_items: only applies to lists, requires the field not to have duplicated | |
elements. The schema will have a ``uniqueItems`` validation keyword | |
:param min_length: only applies to strings, requires the field to have a minimum length. The | |
schema will have a ``minLength`` validation keyword | |
:param max_length: only applies to strings, requires the field to have a maximum length. The | |
schema will have a ``maxLength`` validation keyword | |
:param allow_mutation: a boolean which defaults to True. When False, the field raises a TypeError if the field is | |
assigned on an instance. The BaseModel Config must set validate_assignment to True | |
:param regex: only applies to strings, requires the field match against a regular expression | |
pattern string. The schema will have a ``pattern`` validation keyword | |
:param discriminator: only useful with a (discriminated a.k.a. tagged) `Union` of sub models with a common field. | |
The `discriminator` is the name of this common field to shorten validation and improve generated schema | |
:param repr: show this field in the representation | |
:param **extra: any additional keyword arguments will be added as is to the schema | |
""" | |
field_info = FieldInfo( | |
default, | |
default_factory=default_factory, | |
alias=alias, | |
title=title, | |
description=description, | |
exclude=exclude, | |
include=include, | |
const=const, | |
gt=gt, | |
ge=ge, | |
lt=lt, | |
le=le, | |
multiple_of=multiple_of, | |
allow_inf_nan=allow_inf_nan, | |
max_digits=max_digits, | |
decimal_places=decimal_places, | |
min_items=min_items, | |
max_items=max_items, | |
unique_items=unique_items, | |
min_length=min_length, | |
max_length=max_length, | |
allow_mutation=allow_mutation, | |
regex=regex, | |
discriminator=discriminator, | |
repr=repr, | |
**extra, | |
) | |
field_info._validate() | |
return field_info | |
# used to be an enum but changed to int's for small performance improvement as less access overhead | |
SHAPE_SINGLETON = 1 | |
SHAPE_LIST = 2 | |
SHAPE_SET = 3 | |
SHAPE_MAPPING = 4 | |
SHAPE_TUPLE = 5 | |
SHAPE_TUPLE_ELLIPSIS = 6 | |
SHAPE_SEQUENCE = 7 | |
SHAPE_FROZENSET = 8 | |
SHAPE_ITERABLE = 9 | |
SHAPE_GENERIC = 10 | |
SHAPE_DEQUE = 11 | |
SHAPE_DICT = 12 | |
SHAPE_DEFAULTDICT = 13 | |
SHAPE_COUNTER = 14 | |
SHAPE_NAME_LOOKUP = { | |
SHAPE_LIST: 'List[{}]', | |
SHAPE_SET: 'Set[{}]', | |
SHAPE_TUPLE_ELLIPSIS: 'Tuple[{}, ...]', | |
SHAPE_SEQUENCE: 'Sequence[{}]', | |
SHAPE_FROZENSET: 'FrozenSet[{}]', | |
SHAPE_ITERABLE: 'Iterable[{}]', | |
SHAPE_DEQUE: 'Deque[{}]', | |
SHAPE_DICT: 'Dict[{}]', | |
SHAPE_DEFAULTDICT: 'DefaultDict[{}]', | |
SHAPE_COUNTER: 'Counter[{}]', | |
} | |
MAPPING_LIKE_SHAPES: Set[int] = {SHAPE_DEFAULTDICT, SHAPE_DICT, SHAPE_MAPPING, SHAPE_COUNTER} | |
class ModelField(Representation): | |
__slots__ = ( | |
'type_', | |
'outer_type_', | |
'annotation', | |
'sub_fields', | |
'sub_fields_mapping', | |
'key_field', | |
'validators', | |
'pre_validators', | |
'post_validators', | |
'default', | |
'default_factory', | |
'required', | |
'final', | |
'model_config', | |
'name', | |
'alias', | |
'has_alias', | |
'field_info', | |
'discriminator_key', | |
'discriminator_alias', | |
'validate_always', | |
'allow_none', | |
'shape', | |
'class_validators', | |
'parse_json', | |
) | |
def __init__( | |
self, | |
*, | |
name: str, | |
type_: Type[Any], | |
class_validators: Optional[Dict[str, Validator]], | |
model_config: Type['BaseConfig'], | |
default: Any = None, | |
default_factory: Optional[NoArgAnyCallable] = None, | |
required: 'BoolUndefined' = Undefined, | |
final: bool = False, | |
alias: Optional[str] = None, | |
field_info: Optional[FieldInfo] = None, | |
) -> None: | |
self.name: str = name | |
self.has_alias: bool = alias is not None | |
self.alias: str = alias if alias is not None else name | |
self.annotation = type_ | |
self.type_: Any = convert_generics(type_) | |
self.outer_type_: Any = type_ | |
self.class_validators = class_validators or {} | |
self.default: Any = default | |
self.default_factory: Optional[NoArgAnyCallable] = default_factory | |
self.required: 'BoolUndefined' = required | |
self.final: bool = final | |
self.model_config = model_config | |
self.field_info: FieldInfo = field_info or FieldInfo(default) | |
self.discriminator_key: Optional[str] = self.field_info.discriminator | |
self.discriminator_alias: Optional[str] = self.discriminator_key | |
self.allow_none: bool = False | |
self.validate_always: bool = False | |
self.sub_fields: Optional[List[ModelField]] = None | |
self.sub_fields_mapping: Optional[Dict[str, 'ModelField']] = None # used for discriminated union | |
self.key_field: Optional[ModelField] = None | |
self.validators: 'ValidatorsList' = [] | |
self.pre_validators: Optional['ValidatorsList'] = None | |
self.post_validators: Optional['ValidatorsList'] = None | |
self.parse_json: bool = False | |
self.shape: int = SHAPE_SINGLETON | |
self.model_config.prepare_field(self) | |
self.prepare() | |
def get_default(self) -> Any: | |
return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory() | |
def _get_field_info( | |
field_name: str, annotation: Any, value: Any, config: Type['BaseConfig'] | |
) -> Tuple[FieldInfo, Any]: | |
""" | |
Get a FieldInfo from a root typing.Annotated annotation, value, or config default. | |
The FieldInfo may be set in typing.Annotated or the value, but not both. If neither contain | |
a FieldInfo, a new one will be created using the config. | |
:param field_name: name of the field for use in error messages | |
:param annotation: a type hint such as `str` or `Annotated[str, Field(..., min_length=5)]` | |
:param value: the field's assigned value | |
:param config: the model's config object | |
:return: the FieldInfo contained in the `annotation`, the value, or a new one from the config. | |
""" | |
field_info_from_config = config.get_field_info(field_name) | |
field_info = None | |
if get_origin(annotation) is Annotated: | |
field_infos = [arg for arg in get_args(annotation)[1:] if isinstance(arg, FieldInfo)] | |
if len(field_infos) > 1: | |
raise ValueError(f'cannot specify multiple `Annotated` `Field`s for {field_name!r}') | |
field_info = next(iter(field_infos), None) | |
if field_info is not None: | |
field_info = copy.copy(field_info) | |
field_info.update_from_config(field_info_from_config) | |
if field_info.default not in (Undefined, Required): | |
raise ValueError(f'`Field` default cannot be set in `Annotated` for {field_name!r}') | |
if value is not Undefined and value is not Required: | |
# check also `Required` because of `validate_arguments` that sets `...` as default value | |
field_info.default = value | |
if isinstance(value, FieldInfo): | |
if field_info is not None: | |
raise ValueError(f'cannot specify `Annotated` and value `Field`s together for {field_name!r}') | |
field_info = value | |
field_info.update_from_config(field_info_from_config) | |
elif field_info is None: | |
field_info = FieldInfo(value, **field_info_from_config) | |
value = None if field_info.default_factory is not None else field_info.default | |
field_info._validate() | |
return field_info, value | |
def infer( | |
cls, | |
*, | |
name: str, | |
value: Any, | |
annotation: Any, | |
class_validators: Optional[Dict[str, Validator]], | |
config: Type['BaseConfig'], | |
) -> 'ModelField': | |
from .schema import get_annotation_from_field_info | |
field_info, value = cls._get_field_info(name, annotation, value, config) | |
required: 'BoolUndefined' = Undefined | |
if value is Required: | |
required = True | |
value = None | |
elif value is not Undefined: | |
required = False | |
annotation = get_annotation_from_field_info(annotation, field_info, name, config.validate_assignment) | |
return cls( | |
name=name, | |
type_=annotation, | |
alias=field_info.alias, | |
class_validators=class_validators, | |
default=value, | |
default_factory=field_info.default_factory, | |
required=required, | |
model_config=config, | |
field_info=field_info, | |
) | |
def set_config(self, config: Type['BaseConfig']) -> None: | |
self.model_config = config | |
info_from_config = config.get_field_info(self.name) | |
config.prepare_field(self) | |
new_alias = info_from_config.get('alias') | |
new_alias_priority = info_from_config.get('alias_priority') or 0 | |
if new_alias and new_alias_priority >= (self.field_info.alias_priority or 0): | |
self.field_info.alias = new_alias | |
self.field_info.alias_priority = new_alias_priority | |
self.alias = new_alias | |
new_exclude = info_from_config.get('exclude') | |
if new_exclude is not None: | |
self.field_info.exclude = ValueItems.merge(self.field_info.exclude, new_exclude) | |
new_include = info_from_config.get('include') | |
if new_include is not None: | |
self.field_info.include = ValueItems.merge(self.field_info.include, new_include, intersect=True) | |
def alt_alias(self) -> bool: | |
return self.name != self.alias | |
def prepare(self) -> None: | |
""" | |
Prepare the field but inspecting self.default, self.type_ etc. | |
Note: this method is **not** idempotent (because _type_analysis is not idempotent), | |
e.g. calling it it multiple times may modify the field and configure it incorrectly. | |
""" | |
self._set_default_and_type() | |
if self.type_.__class__ is ForwardRef or self.type_.__class__ is DeferredType: | |
# self.type_ is currently a ForwardRef and there's nothing we can do now, | |
# user will need to call model.update_forward_refs() | |
return | |
self._type_analysis() | |
if self.required is Undefined: | |
self.required = True | |
if self.default is Undefined and self.default_factory is None: | |
self.default = None | |
self.populate_validators() | |
def _set_default_and_type(self) -> None: | |
""" | |
Set the default value, infer the type if needed and check if `None` value is valid. | |
""" | |
if self.default_factory is not None: | |
if self.type_ is Undefined: | |
raise errors_.ConfigError( | |
f'you need to set the type of field {self.name!r} when using `default_factory`' | |
) | |
return | |
default_value = self.get_default() | |
if default_value is not None and self.type_ is Undefined: | |
self.type_ = default_value.__class__ | |
self.outer_type_ = self.type_ | |
self.annotation = self.type_ | |
if self.type_ is Undefined: | |
raise errors_.ConfigError(f'unable to infer type for attribute "{self.name}"') | |
if self.required is False and default_value is None: | |
self.allow_none = True | |
def _type_analysis(self) -> None: # noqa: C901 (ignore complexity) | |
# typing interface is horrible, we have to do some ugly checks | |
if lenient_issubclass(self.type_, JsonWrapper): | |
self.type_ = self.type_.inner_type | |
self.parse_json = True | |
elif lenient_issubclass(self.type_, Json): | |
self.type_ = Any | |
self.parse_json = True | |
elif isinstance(self.type_, TypeVar): | |
if self.type_.__bound__: | |
self.type_ = self.type_.__bound__ | |
elif self.type_.__constraints__: | |
self.type_ = Union[self.type_.__constraints__] | |
else: | |
self.type_ = Any | |
elif is_new_type(self.type_): | |
self.type_ = new_type_supertype(self.type_) | |
if self.type_ is Any or self.type_ is object: | |
if self.required is Undefined: | |
self.required = False | |
self.allow_none = True | |
return | |
elif self.type_ is Pattern or self.type_ is re.Pattern: | |
# python 3.7 only, Pattern is a typing object but without sub fields | |
return | |
elif is_literal_type(self.type_): | |
return | |
elif is_typeddict(self.type_): | |
return | |
if is_finalvar(self.type_): | |
self.final = True | |
if self.type_ is Final: | |
self.type_ = Any | |
else: | |
self.type_ = get_args(self.type_)[0] | |
self._type_analysis() | |
return | |
origin = get_origin(self.type_) | |
if origin is Annotated or is_typeddict_special(origin): | |
self.type_ = get_args(self.type_)[0] | |
self._type_analysis() | |
return | |
if self.discriminator_key is not None and not is_union(origin): | |
raise TypeError('`discriminator` can only be used with `Union` type with more than one variant') | |
# add extra check for `collections.abc.Hashable` for python 3.10+ where origin is not `None` | |
if origin is None or origin is CollectionsHashable: | |
# field is not "typing" object eg. Union, Dict, List etc. | |
# allow None for virtual superclasses of NoneType, e.g. Hashable | |
if isinstance(self.type_, type) and isinstance(None, self.type_): | |
self.allow_none = True | |
return | |
elif origin is Callable: | |
return | |
elif is_union(origin): | |
types_ = [] | |
for type_ in get_args(self.type_): | |
if is_none_type(type_) or type_ is Any or type_ is object: | |
if self.required is Undefined: | |
self.required = False | |
self.allow_none = True | |
if is_none_type(type_): | |
continue | |
types_.append(type_) | |
if len(types_) == 1: | |
# Optional[] | |
self.type_ = types_[0] | |
# this is the one case where the "outer type" isn't just the original type | |
self.outer_type_ = self.type_ | |
# re-run to correctly interpret the new self.type_ | |
self._type_analysis() | |
else: | |
self.sub_fields = [self._create_sub_type(t, f'{self.name}_{display_as_type(t)}') for t in types_] | |
if self.discriminator_key is not None: | |
self.prepare_discriminated_union_sub_fields() | |
return | |
elif issubclass(origin, Tuple): # type: ignore | |
# origin == Tuple without item type | |
args = get_args(self.type_) | |
if not args: # plain tuple | |
self.type_ = Any | |
self.shape = SHAPE_TUPLE_ELLIPSIS | |
elif len(args) == 2 and args[1] is Ellipsis: # e.g. Tuple[int, ...] | |
self.type_ = args[0] | |
self.shape = SHAPE_TUPLE_ELLIPSIS | |
self.sub_fields = [self._create_sub_type(args[0], f'{self.name}_0')] | |
elif args == ((),): # Tuple[()] means empty tuple | |
self.shape = SHAPE_TUPLE | |
self.type_ = Any | |
self.sub_fields = [] | |
else: | |
self.shape = SHAPE_TUPLE | |
self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(args)] | |
return | |
elif issubclass(origin, List): | |
# Create self validators | |
get_validators = getattr(self.type_, '__get_validators__', None) | |
if get_validators: | |
self.class_validators.update( | |
{f'list_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())} | |
) | |
self.type_ = get_args(self.type_)[0] | |
self.shape = SHAPE_LIST | |
elif issubclass(origin, Set): | |
# Create self validators | |
get_validators = getattr(self.type_, '__get_validators__', None) | |
if get_validators: | |
self.class_validators.update( | |
{f'set_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())} | |
) | |
self.type_ = get_args(self.type_)[0] | |
self.shape = SHAPE_SET | |
elif issubclass(origin, FrozenSet): | |
# Create self validators | |
get_validators = getattr(self.type_, '__get_validators__', None) | |
if get_validators: | |
self.class_validators.update( | |
{f'frozenset_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())} | |
) | |
self.type_ = get_args(self.type_)[0] | |
self.shape = SHAPE_FROZENSET | |
elif issubclass(origin, Deque): | |
self.type_ = get_args(self.type_)[0] | |
self.shape = SHAPE_DEQUE | |
elif issubclass(origin, Sequence): | |
self.type_ = get_args(self.type_)[0] | |
self.shape = SHAPE_SEQUENCE | |
# priority to most common mapping: dict | |
elif origin is dict or origin is Dict: | |
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) | |
self.type_ = get_args(self.type_)[1] | |
self.shape = SHAPE_DICT | |
elif issubclass(origin, DefaultDict): | |
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) | |
self.type_ = get_args(self.type_)[1] | |
self.shape = SHAPE_DEFAULTDICT | |
elif issubclass(origin, Counter): | |
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) | |
self.type_ = int | |
self.shape = SHAPE_COUNTER | |
elif issubclass(origin, Mapping): | |
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) | |
self.type_ = get_args(self.type_)[1] | |
self.shape = SHAPE_MAPPING | |
# Equality check as almost everything inherits form Iterable, including str | |
# check for Iterable and CollectionsIterable, as it could receive one even when declared with the other | |
elif origin in {Iterable, CollectionsIterable}: | |
self.type_ = get_args(self.type_)[0] | |
self.shape = SHAPE_ITERABLE | |
self.sub_fields = [self._create_sub_type(self.type_, f'{self.name}_type')] | |
elif issubclass(origin, Type): # type: ignore | |
return | |
elif hasattr(origin, '__get_validators__') or self.model_config.arbitrary_types_allowed: | |
# Is a Pydantic-compatible generic that handles itself | |
# or we have arbitrary_types_allowed = True | |
self.shape = SHAPE_GENERIC | |
self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(get_args(self.type_))] | |
self.type_ = origin | |
return | |
else: | |
raise TypeError(f'Fields of type "{origin}" are not supported.') | |
# type_ has been refined eg. as the type of a List and sub_fields needs to be populated | |
self.sub_fields = [self._create_sub_type(self.type_, '_' + self.name)] | |
def prepare_discriminated_union_sub_fields(self) -> None: | |
""" | |
Prepare the mapping <discriminator key> -> <ModelField> and update `sub_fields` | |
Note that this process can be aborted if a `ForwardRef` is encountered | |
""" | |
assert self.discriminator_key is not None | |
if self.type_.__class__ is DeferredType: | |
return | |
assert self.sub_fields is not None | |
sub_fields_mapping: Dict[str, 'ModelField'] = {} | |
all_aliases: Set[str] = set() | |
for sub_field in self.sub_fields: | |
t = sub_field.type_ | |
if t.__class__ is ForwardRef: | |
# Stopping everything...will need to call `update_forward_refs` | |
return | |
alias, discriminator_values = get_discriminator_alias_and_values(t, self.discriminator_key) | |
all_aliases.add(alias) | |
for discriminator_value in discriminator_values: | |
sub_fields_mapping[discriminator_value] = sub_field | |
self.sub_fields_mapping = sub_fields_mapping | |
self.discriminator_alias = get_unique_discriminator_alias(all_aliases, self.discriminator_key) | |
def _create_sub_type(self, type_: Type[Any], name: str, *, for_keys: bool = False) -> 'ModelField': | |
if for_keys: | |
class_validators = None | |
else: | |
# validators for sub items should not have `each_item` as we want to check only the first sublevel | |
class_validators = { | |
k: Validator( | |
func=v.func, | |
pre=v.pre, | |
each_item=False, | |
always=v.always, | |
check_fields=v.check_fields, | |
skip_on_failure=v.skip_on_failure, | |
) | |
for k, v in self.class_validators.items() | |
if v.each_item | |
} | |
field_info, _ = self._get_field_info(name, type_, None, self.model_config) | |
return self.__class__( | |
type_=type_, | |
name=name, | |
class_validators=class_validators, | |
model_config=self.model_config, | |
field_info=field_info, | |
) | |
def populate_validators(self) -> None: | |
""" | |
Prepare self.pre_validators, self.validators, and self.post_validators based on self.type_'s __get_validators__ | |
and class validators. This method should be idempotent, e.g. it should be safe to call multiple times | |
without mis-configuring the field. | |
""" | |
self.validate_always = getattr(self.type_, 'validate_always', False) or any( | |
v.always for v in self.class_validators.values() | |
) | |
class_validators_ = self.class_validators.values() | |
if not self.sub_fields or self.shape == SHAPE_GENERIC: | |
get_validators = getattr(self.type_, '__get_validators__', None) | |
v_funcs = ( | |
*[v.func for v in class_validators_ if v.each_item and v.pre], | |
*(get_validators() if get_validators else list(find_validators(self.type_, self.model_config))), | |
*[v.func for v in class_validators_ if v.each_item and not v.pre], | |
) | |
self.validators = prep_validators(v_funcs) | |
self.pre_validators = [] | |
self.post_validators = [] | |
if self.field_info and self.field_info.const: | |
self.post_validators.append(make_generic_validator(constant_validator)) | |
if class_validators_: | |
self.pre_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and v.pre) | |
self.post_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and not v.pre) | |
if self.parse_json: | |
self.pre_validators.append(make_generic_validator(validate_json)) | |
self.pre_validators = self.pre_validators or None | |
self.post_validators = self.post_validators or None | |
def validate( | |
self, v: Any, values: Dict[str, Any], *, loc: 'LocStr', cls: Optional['ModelOrDc'] = None | |
) -> 'ValidateReturn': | |
assert self.type_.__class__ is not DeferredType | |
if self.type_.__class__ is ForwardRef: | |
assert cls is not None | |
raise ConfigError( | |
f'field "{self.name}" not yet prepared so type is still a ForwardRef, ' | |
f'you might need to call {cls.__name__}.update_forward_refs().' | |
) | |
errors: Optional['ErrorList'] | |
if self.pre_validators: | |
v, errors = self._apply_validators(v, values, loc, cls, self.pre_validators) | |
if errors: | |
return v, errors | |
if v is None: | |
if is_none_type(self.type_): | |
# keep validating | |
pass | |
elif self.allow_none: | |
if self.post_validators: | |
return self._apply_validators(v, values, loc, cls, self.post_validators) | |
else: | |
return None, None | |
else: | |
return v, ErrorWrapper(NoneIsNotAllowedError(), loc) | |
if self.shape == SHAPE_SINGLETON: | |
v, errors = self._validate_singleton(v, values, loc, cls) | |
elif self.shape in MAPPING_LIKE_SHAPES: | |
v, errors = self._validate_mapping_like(v, values, loc, cls) | |
elif self.shape == SHAPE_TUPLE: | |
v, errors = self._validate_tuple(v, values, loc, cls) | |
elif self.shape == SHAPE_ITERABLE: | |
v, errors = self._validate_iterable(v, values, loc, cls) | |
elif self.shape == SHAPE_GENERIC: | |
v, errors = self._apply_validators(v, values, loc, cls, self.validators) | |
else: | |
# sequence, list, set, generator, tuple with ellipsis, frozen set | |
v, errors = self._validate_sequence_like(v, values, loc, cls) | |
if not errors and self.post_validators: | |
v, errors = self._apply_validators(v, values, loc, cls, self.post_validators) | |
return v, errors | |
def _validate_sequence_like( # noqa: C901 (ignore complexity) | |
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] | |
) -> 'ValidateReturn': | |
""" | |
Validate sequence-like containers: lists, tuples, sets and generators | |
Note that large if-else blocks are necessary to enable Cython | |
optimization, which is why we disable the complexity check above. | |
""" | |
if not sequence_like(v): | |
e: errors_.PydanticTypeError | |
if self.shape == SHAPE_LIST: | |
e = errors_.ListError() | |
elif self.shape in (SHAPE_TUPLE, SHAPE_TUPLE_ELLIPSIS): | |
e = errors_.TupleError() | |
elif self.shape == SHAPE_SET: | |
e = errors_.SetError() | |
elif self.shape == SHAPE_FROZENSET: | |
e = errors_.FrozenSetError() | |
else: | |
e = errors_.SequenceError() | |
return v, ErrorWrapper(e, loc) | |
loc = loc if isinstance(loc, tuple) else (loc,) | |
result = [] | |
errors: List[ErrorList] = [] | |
for i, v_ in enumerate(v): | |
v_loc = *loc, i | |
r, ee = self._validate_singleton(v_, values, v_loc, cls) | |
if ee: | |
errors.append(ee) | |
else: | |
result.append(r) | |
if errors: | |
return v, errors | |
converted: Union[List[Any], Set[Any], FrozenSet[Any], Tuple[Any, ...], Iterator[Any], Deque[Any]] = result | |
if self.shape == SHAPE_SET: | |
converted = set(result) | |
elif self.shape == SHAPE_FROZENSET: | |
converted = frozenset(result) | |
elif self.shape == SHAPE_TUPLE_ELLIPSIS: | |
converted = tuple(result) | |
elif self.shape == SHAPE_DEQUE: | |
converted = deque(result, maxlen=getattr(v, 'maxlen', None)) | |
elif self.shape == SHAPE_SEQUENCE: | |
if isinstance(v, tuple): | |
converted = tuple(result) | |
elif isinstance(v, set): | |
converted = set(result) | |
elif isinstance(v, Generator): | |
converted = iter(result) | |
elif isinstance(v, deque): | |
converted = deque(result, maxlen=getattr(v, 'maxlen', None)) | |
return converted, None | |
def _validate_iterable( | |
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] | |
) -> 'ValidateReturn': | |
""" | |
Validate Iterables. | |
This intentionally doesn't validate values to allow infinite generators. | |
""" | |
try: | |
iterable = iter(v) | |
except TypeError: | |
return v, ErrorWrapper(errors_.IterableError(), loc) | |
return iterable, None | |
def _validate_tuple( | |
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] | |
) -> 'ValidateReturn': | |
e: Optional[Exception] = None | |
if not sequence_like(v): | |
e = errors_.TupleError() | |
else: | |
actual_length, expected_length = len(v), len(self.sub_fields) # type: ignore | |
if actual_length != expected_length: | |
e = errors_.TupleLengthError(actual_length=actual_length, expected_length=expected_length) | |
if e: | |
return v, ErrorWrapper(e, loc) | |
loc = loc if isinstance(loc, tuple) else (loc,) | |
result = [] | |
errors: List[ErrorList] = [] | |
for i, (v_, field) in enumerate(zip(v, self.sub_fields)): # type: ignore | |
v_loc = *loc, i | |
r, ee = field.validate(v_, values, loc=v_loc, cls=cls) | |
if ee: | |
errors.append(ee) | |
else: | |
result.append(r) | |
if errors: | |
return v, errors | |
else: | |
return tuple(result), None | |
def _validate_mapping_like( | |
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] | |
) -> 'ValidateReturn': | |
try: | |
v_iter = dict_validator(v) | |
except TypeError as exc: | |
return v, ErrorWrapper(exc, loc) | |
loc = loc if isinstance(loc, tuple) else (loc,) | |
result, errors = {}, [] | |
for k, v_ in v_iter.items(): | |
v_loc = *loc, '__key__' | |
key_result, key_errors = self.key_field.validate(k, values, loc=v_loc, cls=cls) # type: ignore | |
if key_errors: | |
errors.append(key_errors) | |
continue | |
v_loc = *loc, k | |
value_result, value_errors = self._validate_singleton(v_, values, v_loc, cls) | |
if value_errors: | |
errors.append(value_errors) | |
continue | |
result[key_result] = value_result | |
if errors: | |
return v, errors | |
elif self.shape == SHAPE_DICT: | |
return result, None | |
elif self.shape == SHAPE_DEFAULTDICT: | |
return defaultdict(self.type_, result), None | |
elif self.shape == SHAPE_COUNTER: | |
return CollectionCounter(result), None | |
else: | |
return self._get_mapping_value(v, result), None | |
def _get_mapping_value(self, original: T, converted: Dict[Any, Any]) -> Union[T, Dict[Any, Any]]: | |
""" | |
When type is `Mapping[KT, KV]` (or another unsupported mapping), we try to avoid | |
coercing to `dict` unwillingly. | |
""" | |
original_cls = original.__class__ | |
if original_cls == dict or original_cls == Dict: | |
return converted | |
elif original_cls in {defaultdict, DefaultDict}: | |
return defaultdict(self.type_, converted) | |
else: | |
try: | |
# Counter, OrderedDict, UserDict, ... | |
return original_cls(converted) # type: ignore | |
except TypeError: | |
raise RuntimeError(f'Could not convert dictionary to {original_cls.__name__!r}') from None | |
def _validate_singleton( | |
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] | |
) -> 'ValidateReturn': | |
if self.sub_fields: | |
if self.discriminator_key is not None: | |
return self._validate_discriminated_union(v, values, loc, cls) | |
errors = [] | |
if self.model_config.smart_union and is_union(get_origin(self.type_)): | |
# 1st pass: check if the value is an exact instance of one of the Union types | |
# (e.g. to avoid coercing a bool into an int) | |
for field in self.sub_fields: | |
if v.__class__ is field.outer_type_: | |
return v, None | |
# 2nd pass: check if the value is an instance of any subclass of the Union types | |
for field in self.sub_fields: | |
# This whole logic will be improved later on to support more complex `isinstance` checks | |
# It will probably be done once a strict mode is added and be something like: | |
# ``` | |
# value, error = field.validate(v, values, strict=True) | |
# if error is None: | |
# return value, None | |
# ``` | |
try: | |
if isinstance(v, field.outer_type_): | |
return v, None | |
except TypeError: | |
# compound type | |
if lenient_isinstance(v, get_origin(field.outer_type_)): | |
value, error = field.validate(v, values, loc=loc, cls=cls) | |
if not error: | |
return value, None | |
# 1st pass by default or 3rd pass with `smart_union` enabled: | |
# check if the value can be coerced into one of the Union types | |
for field in self.sub_fields: | |
value, error = field.validate(v, values, loc=loc, cls=cls) | |
if error: | |
errors.append(error) | |
else: | |
return value, None | |
return v, errors | |
else: | |
return self._apply_validators(v, values, loc, cls, self.validators) | |
def _validate_discriminated_union( | |
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] | |
) -> 'ValidateReturn': | |
assert self.discriminator_key is not None | |
assert self.discriminator_alias is not None | |
try: | |
try: | |
discriminator_value = v[self.discriminator_alias] | |
except KeyError: | |
if self.model_config.allow_population_by_field_name: | |
discriminator_value = v[self.discriminator_key] | |
else: | |
raise | |
except KeyError: | |
return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc) | |
except TypeError: | |
try: | |
# BaseModel or dataclass | |
discriminator_value = getattr(v, self.discriminator_key) | |
except (AttributeError, TypeError): | |
return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc) | |
if self.sub_fields_mapping is None: | |
assert cls is not None | |
raise ConfigError( | |
f'field "{self.name}" not yet prepared so type is still a ForwardRef, ' | |
f'you might need to call {cls.__name__}.update_forward_refs().' | |
) | |
try: | |
sub_field = self.sub_fields_mapping[discriminator_value] | |
except (KeyError, TypeError): | |
# KeyError: `discriminator_value` is not in the dictionary. | |
# TypeError: `discriminator_value` is unhashable. | |
assert self.sub_fields_mapping is not None | |
return v, ErrorWrapper( | |
InvalidDiscriminator( | |
discriminator_key=self.discriminator_key, | |
discriminator_value=discriminator_value, | |
allowed_values=list(self.sub_fields_mapping), | |
), | |
loc, | |
) | |
else: | |
if not isinstance(loc, tuple): | |
loc = (loc,) | |
return sub_field.validate(v, values, loc=(*loc, display_as_type(sub_field.type_)), cls=cls) | |
def _apply_validators( | |
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'], validators: 'ValidatorsList' | |
) -> 'ValidateReturn': | |
for validator in validators: | |
try: | |
v = validator(cls, v, values, self, self.model_config) | |
except (ValueError, TypeError, AssertionError) as exc: | |
return v, ErrorWrapper(exc, loc) | |
return v, None | |
def is_complex(self) -> bool: | |
""" | |
Whether the field is "complex" eg. env variables should be parsed as JSON. | |
""" | |
from .main import BaseModel | |
return ( | |
self.shape != SHAPE_SINGLETON | |
or hasattr(self.type_, '__pydantic_model__') | |
or lenient_issubclass(self.type_, (BaseModel, list, set, frozenset, dict)) | |
) | |
def _type_display(self) -> PyObjectStr: | |
t = display_as_type(self.type_) | |
if self.shape in MAPPING_LIKE_SHAPES: | |
t = f'Mapping[{display_as_type(self.key_field.type_)}, {t}]' # type: ignore | |
elif self.shape == SHAPE_TUPLE: | |
t = 'Tuple[{}]'.format(', '.join(display_as_type(f.type_) for f in self.sub_fields)) # type: ignore | |
elif self.shape == SHAPE_GENERIC: | |
assert self.sub_fields | |
t = '{}[{}]'.format( | |
display_as_type(self.type_), ', '.join(display_as_type(f.type_) for f in self.sub_fields) | |
) | |
elif self.shape != SHAPE_SINGLETON: | |
t = SHAPE_NAME_LOOKUP[self.shape].format(t) | |
if self.allow_none and (self.shape != SHAPE_SINGLETON or not self.sub_fields): | |
t = f'Optional[{t}]' | |
return PyObjectStr(t) | |
def __repr_args__(self) -> 'ReprArgs': | |
args = [('name', self.name), ('type', self._type_display()), ('required', self.required)] | |
if not self.required: | |
if self.default_factory is not None: | |
args.append(('default_factory', f'<function {self.default_factory.__name__}>')) | |
else: | |
args.append(('default', self.default)) | |
if self.alt_alias: | |
args.append(('alias', self.alias)) | |
return args | |
class ModelPrivateAttr(Representation): | |
__slots__ = ('default', 'default_factory') | |
def __init__(self, default: Any = Undefined, *, default_factory: Optional[NoArgAnyCallable] = None) -> None: | |
self.default = default | |
self.default_factory = default_factory | |
def get_default(self) -> Any: | |
return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory() | |
def __eq__(self, other: Any) -> bool: | |
return isinstance(other, self.__class__) and (self.default, self.default_factory) == ( | |
other.default, | |
other.default_factory, | |
) | |
def PrivateAttr( | |
default: Any = Undefined, | |
*, | |
default_factory: Optional[NoArgAnyCallable] = None, | |
) -> Any: | |
""" | |
Indicates that attribute is only used internally and never mixed with regular fields. | |
Types or values of private attrs are not checked by pydantic and it's up to you to keep them relevant. | |
Private attrs are stored in model __slots__. | |
:param default: the attribute’s default value | |
:param default_factory: callable that will be called when a default value is needed for this attribute | |
If both `default` and `default_factory` are set, an error is raised. | |
""" | |
if default is not Undefined and default_factory is not None: | |
raise ValueError('cannot specify both default and default_factory') | |
return ModelPrivateAttr( | |
default, | |
default_factory=default_factory, | |
) | |
class DeferredType: | |
""" | |
Used to postpone field preparation, while creating recursive generic models. | |
""" | |
def is_finalvar_with_default_val(type_: Type[Any], val: Any) -> bool: | |
return is_finalvar(type_) and val is not Undefined and not isinstance(val, FieldInfo) | |