peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/f2py
/src
/fortranobject.c
extern "C" { | |
/* | |
This file implements: FortranObject, array_from_pyobj, copy_ND_array | |
Author: Pearu Peterson <[email protected]> | |
$Revision: 1.52 $ | |
$Date: 2005/07/11 07:44:20 $ | |
*/ | |
int | |
F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj) | |
{ | |
if (obj == NULL) { | |
fprintf(stderr, "Error loading %s\n", name); | |
if (PyErr_Occurred()) { | |
PyErr_Print(); | |
PyErr_Clear(); | |
} | |
return -1; | |
} | |
return PyDict_SetItemString(dict, name, obj); | |
} | |
/* | |
* Python-only fallback for thread-local callback pointers | |
*/ | |
void * | |
F2PySwapThreadLocalCallbackPtr(char *key, void *ptr) | |
{ | |
PyObject *local_dict, *value; | |
void *prev; | |
local_dict = PyThreadState_GetDict(); | |
if (local_dict == NULL) { | |
Py_FatalError( | |
"F2PySwapThreadLocalCallbackPtr: PyThreadState_GetDict " | |
"failed"); | |
} | |
value = PyDict_GetItemString(local_dict, key); | |
if (value != NULL) { | |
prev = PyLong_AsVoidPtr(value); | |
if (PyErr_Occurred()) { | |
Py_FatalError( | |
"F2PySwapThreadLocalCallbackPtr: PyLong_AsVoidPtr failed"); | |
} | |
} | |
else { | |
prev = NULL; | |
} | |
value = PyLong_FromVoidPtr((void *)ptr); | |
if (value == NULL) { | |
Py_FatalError( | |
"F2PySwapThreadLocalCallbackPtr: PyLong_FromVoidPtr failed"); | |
} | |
if (PyDict_SetItemString(local_dict, key, value) != 0) { | |
Py_FatalError( | |
"F2PySwapThreadLocalCallbackPtr: PyDict_SetItemString failed"); | |
} | |
Py_DECREF(value); | |
return prev; | |
} | |
void * | |
F2PyGetThreadLocalCallbackPtr(char *key) | |
{ | |
PyObject *local_dict, *value; | |
void *prev; | |
local_dict = PyThreadState_GetDict(); | |
if (local_dict == NULL) { | |
Py_FatalError( | |
"F2PyGetThreadLocalCallbackPtr: PyThreadState_GetDict failed"); | |
} | |
value = PyDict_GetItemString(local_dict, key); | |
if (value != NULL) { | |
prev = PyLong_AsVoidPtr(value); | |
if (PyErr_Occurred()) { | |
Py_FatalError( | |
"F2PyGetThreadLocalCallbackPtr: PyLong_AsVoidPtr failed"); | |
} | |
} | |
else { | |
prev = NULL; | |
} | |
return prev; | |
} | |
static PyArray_Descr * | |
get_descr_from_type_and_elsize(const int type_num, const int elsize) { | |
PyArray_Descr * descr = PyArray_DescrFromType(type_num); | |
if (type_num == NPY_STRING) { | |
// PyArray_DescrFromType returns descr with elsize = 0. | |
PyArray_DESCR_REPLACE(descr); | |
if (descr == NULL) { | |
return NULL; | |
} | |
descr->elsize = elsize; | |
} | |
return descr; | |
} | |
/************************* FortranObject *******************************/ | |
typedef PyObject *(*fortranfunc)(PyObject *, PyObject *, PyObject *, void *); | |
PyObject * | |
PyFortranObject_New(FortranDataDef *defs, f2py_void_func init) | |
{ | |
int i; | |
PyFortranObject *fp = NULL; | |
PyObject *v = NULL; | |
if (init != NULL) { /* Initialize F90 module objects */ | |
(*(init))(); | |
} | |
fp = PyObject_New(PyFortranObject, &PyFortran_Type); | |
if (fp == NULL) { | |
return NULL; | |
} | |
if ((fp->dict = PyDict_New()) == NULL) { | |
Py_DECREF(fp); | |
return NULL; | |
} | |
fp->len = 0; | |
while (defs[fp->len].name != NULL) { | |
fp->len++; | |
} | |
if (fp->len == 0) { | |
goto fail; | |
} | |
fp->defs = defs; | |
for (i = 0; i < fp->len; i++) { | |
if (fp->defs[i].rank == -1) { /* Is Fortran routine */ | |
v = PyFortranObject_NewAsAttr(&(fp->defs[i])); | |
if (v == NULL) { | |
goto fail; | |
} | |
PyDict_SetItemString(fp->dict, fp->defs[i].name, v); | |
Py_XDECREF(v); | |
} | |
else if ((fp->defs[i].data) != | |
NULL) { /* Is Fortran variable or array (not allocatable) */ | |
PyArray_Descr * | |
descr = get_descr_from_type_and_elsize(fp->defs[i].type, | |
fp->defs[i].elsize); | |
if (descr == NULL) { | |
goto fail; | |
} | |
v = PyArray_NewFromDescr(&PyArray_Type, descr, fp->defs[i].rank, | |
fp->defs[i].dims.d, NULL, fp->defs[i].data, | |
NPY_ARRAY_FARRAY, NULL); | |
if (v == NULL) { | |
Py_DECREF(descr); | |
goto fail; | |
} | |
PyDict_SetItemString(fp->dict, fp->defs[i].name, v); | |
Py_XDECREF(v); | |
} | |
} | |
return (PyObject *)fp; | |
fail: | |
Py_XDECREF(fp); | |
return NULL; | |
} | |
PyObject * | |
PyFortranObject_NewAsAttr(FortranDataDef *defs) | |
{ /* used for calling F90 module routines */ | |
PyFortranObject *fp = NULL; | |
fp = PyObject_New(PyFortranObject, &PyFortran_Type); | |
if (fp == NULL) | |
return NULL; | |
if ((fp->dict = PyDict_New()) == NULL) { | |
PyObject_Del(fp); | |
return NULL; | |
} | |
fp->len = 1; | |
fp->defs = defs; | |
if (defs->rank == -1) { | |
PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("function %s", defs->name)); | |
} else if (defs->rank == 0) { | |
PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("scalar %s", defs->name)); | |
} else { | |
PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("array %s", defs->name)); | |
} | |
return (PyObject *)fp; | |
} | |
/* Fortran methods */ | |
static void | |
fortran_dealloc(PyFortranObject *fp) | |
{ | |
Py_XDECREF(fp->dict); | |
PyObject_Del(fp); | |
} | |
/* Returns number of bytes consumed from buf, or -1 on error. */ | |
static Py_ssize_t | |
format_def(char *buf, Py_ssize_t size, FortranDataDef def) | |
{ | |
char *p = buf; | |
int i; | |
npy_intp n; | |
n = PyOS_snprintf(p, size, "array(%" NPY_INTP_FMT, def.dims.d[0]); | |
if (n < 0 || n >= size) { | |
return -1; | |
} | |
p += n; | |
size -= n; | |
for (i = 1; i < def.rank; i++) { | |
n = PyOS_snprintf(p, size, ",%" NPY_INTP_FMT, def.dims.d[i]); | |
if (n < 0 || n >= size) { | |
return -1; | |
} | |
p += n; | |
size -= n; | |
} | |
if (size <= 0) { | |
return -1; | |
} | |
*p++ = ')'; | |
size--; | |
if (def.data == NULL) { | |
static const char notalloc[] = ", not allocated"; | |
if ((size_t)size < sizeof(notalloc)) { | |
return -1; | |
} | |
memcpy(p, notalloc, sizeof(notalloc)); | |
p += sizeof(notalloc); | |
size -= sizeof(notalloc); | |
} | |
return p - buf; | |
} | |
static PyObject * | |
fortran_doc(FortranDataDef def) | |
{ | |
char *buf, *p; | |
PyObject *s = NULL; | |
Py_ssize_t n, origsize, size = 100; | |
if (def.doc != NULL) { | |
size += strlen(def.doc); | |
} | |
origsize = size; | |
buf = p = (char *)PyMem_Malloc(size); | |
if (buf == NULL) { | |
return PyErr_NoMemory(); | |
} | |
if (def.rank == -1) { | |
if (def.doc) { | |
n = strlen(def.doc); | |
if (n > size) { | |
goto fail; | |
} | |
memcpy(p, def.doc, n); | |
p += n; | |
size -= n; | |
} | |
else { | |
n = PyOS_snprintf(p, size, "%s - no docs available", def.name); | |
if (n < 0 || n >= size) { | |
goto fail; | |
} | |
p += n; | |
size -= n; | |
} | |
} | |
else { | |
PyArray_Descr *d = PyArray_DescrFromType(def.type); | |
n = PyOS_snprintf(p, size, "%s : '%c'-", def.name, d->type); | |
Py_DECREF(d); | |
if (n < 0 || n >= size) { | |
goto fail; | |
} | |
p += n; | |
size -= n; | |
if (def.data == NULL) { | |
n = format_def(p, size, def); | |
if (n < 0) { | |
goto fail; | |
} | |
p += n; | |
size -= n; | |
} | |
else if (def.rank > 0) { | |
n = format_def(p, size, def); | |
if (n < 0) { | |
goto fail; | |
} | |
p += n; | |
size -= n; | |
} | |
else { | |
n = strlen("scalar"); | |
if (size < n) { | |
goto fail; | |
} | |
memcpy(p, "scalar", n); | |
p += n; | |
size -= n; | |
} | |
} | |
if (size <= 1) { | |
goto fail; | |
} | |
*p++ = '\n'; | |
size--; | |
/* p now points one beyond the last character of the string in buf */ | |
s = PyUnicode_FromStringAndSize(buf, p - buf); | |
PyMem_Free(buf); | |
return s; | |
fail: | |
fprintf(stderr, | |
"fortranobject.c: fortran_doc: len(p)=%zd>%zd=size:" | |
" too long docstring required, increase size\n", | |
p - buf, origsize); | |
PyMem_Free(buf); | |
return NULL; | |
} | |
static FortranDataDef *save_def; /* save pointer of an allocatable array */ | |
static void | |
set_data(char *d, npy_intp *f) | |
{ /* callback from Fortran */ | |
if (*f) /* In fortran f=allocated(d) */ | |
save_def->data = d; | |
else | |
save_def->data = NULL; | |
/* printf("set_data: d=%p,f=%d\n",d,*f); */ | |
} | |
static PyObject * | |
fortran_getattr(PyFortranObject *fp, char *name) | |
{ | |
int i, j, k, flag; | |
if (fp->dict != NULL) { | |
PyObject *v = _PyDict_GetItemStringWithError(fp->dict, name); | |
if (v == NULL && PyErr_Occurred()) { | |
return NULL; | |
} | |
else if (v != NULL) { | |
Py_INCREF(v); | |
return v; | |
} | |
} | |
for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name)); | |
i++) | |
; | |
if (j == 0) | |
if (fp->defs[i].rank != -1) { /* F90 allocatable array */ | |
if (fp->defs[i].func == NULL) | |
return NULL; | |
for (k = 0; k < fp->defs[i].rank; ++k) fp->defs[i].dims.d[k] = -1; | |
save_def = &fp->defs[i]; | |
(*(fp->defs[i].func))(&fp->defs[i].rank, fp->defs[i].dims.d, | |
set_data, &flag); | |
if (flag == 2) | |
k = fp->defs[i].rank + 1; | |
else | |
k = fp->defs[i].rank; | |
if (fp->defs[i].data != NULL) { /* array is allocated */ | |
PyObject *v = PyArray_New( | |
&PyArray_Type, k, fp->defs[i].dims.d, fp->defs[i].type, | |
NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL); | |
if (v == NULL) | |
return NULL; | |
/* Py_INCREF(v); */ | |
return v; | |
} | |
else { /* array is not allocated */ | |
Py_RETURN_NONE; | |
} | |
} | |
if (strcmp(name, "__dict__") == 0) { | |
Py_INCREF(fp->dict); | |
return fp->dict; | |
} | |
if (strcmp(name, "__doc__") == 0) { | |
PyObject *s = PyUnicode_FromString(""), *s2, *s3; | |
for (i = 0; i < fp->len; i++) { | |
s2 = fortran_doc(fp->defs[i]); | |
s3 = PyUnicode_Concat(s, s2); | |
Py_DECREF(s2); | |
Py_DECREF(s); | |
s = s3; | |
} | |
if (PyDict_SetItemString(fp->dict, name, s)) | |
return NULL; | |
return s; | |
} | |
if ((strcmp(name, "_cpointer") == 0) && (fp->len == 1)) { | |
PyObject *cobj = | |
F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data), NULL); | |
if (PyDict_SetItemString(fp->dict, name, cobj)) | |
return NULL; | |
return cobj; | |
} | |
PyObject *str, *ret; | |
str = PyUnicode_FromString(name); | |
ret = PyObject_GenericGetAttr((PyObject *)fp, str); | |
Py_DECREF(str); | |
return ret; | |
} | |
static int | |
fortran_setattr(PyFortranObject *fp, char *name, PyObject *v) | |
{ | |
int i, j, flag; | |
PyArrayObject *arr = NULL; | |
for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name)); | |
i++) | |
; | |
if (j == 0) { | |
if (fp->defs[i].rank == -1) { | |
PyErr_SetString(PyExc_AttributeError, | |
"over-writing fortran routine"); | |
return -1; | |
} | |
if (fp->defs[i].func != NULL) { /* is allocatable array */ | |
npy_intp dims[F2PY_MAX_DIMS]; | |
int k; | |
save_def = &fp->defs[i]; | |
if (v != Py_None) { /* set new value (reallocate if needed -- | |
see f2py generated code for more | |
details ) */ | |
for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1; | |
if ((arr = array_from_pyobj(fp->defs[i].type, dims, | |
fp->defs[i].rank, F2PY_INTENT_IN, | |
v)) == NULL) | |
return -1; | |
(*(fp->defs[i].func))(&fp->defs[i].rank, PyArray_DIMS(arr), | |
set_data, &flag); | |
} | |
else { /* deallocate */ | |
for (k = 0; k < fp->defs[i].rank; k++) dims[k] = 0; | |
(*(fp->defs[i].func))(&fp->defs[i].rank, dims, set_data, | |
&flag); | |
for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1; | |
} | |
memcpy(fp->defs[i].dims.d, dims, | |
fp->defs[i].rank * sizeof(npy_intp)); | |
} | |
else { /* not allocatable array */ | |
if ((arr = array_from_pyobj(fp->defs[i].type, fp->defs[i].dims.d, | |
fp->defs[i].rank, F2PY_INTENT_IN, | |
v)) == NULL) | |
return -1; | |
} | |
if (fp->defs[i].data != | |
NULL) { /* copy Python object to Fortran array */ | |
npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d, | |
PyArray_NDIM(arr)); | |
if (s == -1) | |
s = PyArray_MultiplyList(PyArray_DIMS(arr), PyArray_NDIM(arr)); | |
if (s < 0 || (memcpy(fp->defs[i].data, PyArray_DATA(arr), | |
s * PyArray_ITEMSIZE(arr))) == NULL) { | |
if ((PyObject *)arr != v) { | |
Py_DECREF(arr); | |
} | |
return -1; | |
} | |
if ((PyObject *)arr != v) { | |
Py_DECREF(arr); | |
} | |
} | |
else | |
return (fp->defs[i].func == NULL ? -1 : 0); | |
return 0; /* successful */ | |
} | |
if (fp->dict == NULL) { | |
fp->dict = PyDict_New(); | |
if (fp->dict == NULL) | |
return -1; | |
} | |
if (v == NULL) { | |
int rv = PyDict_DelItemString(fp->dict, name); | |
if (rv < 0) | |
PyErr_SetString(PyExc_AttributeError, | |
"delete non-existing fortran attribute"); | |
return rv; | |
} | |
else | |
return PyDict_SetItemString(fp->dict, name, v); | |
} | |
static PyObject * | |
fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw) | |
{ | |
int i = 0; | |
/* printf("fortran call | |
name=%s,func=%p,data=%p,%p\n",fp->defs[i].name, | |
fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */ | |
if (fp->defs[i].rank == -1) { /* is Fortran routine */ | |
if (fp->defs[i].func == NULL) { | |
PyErr_Format(PyExc_RuntimeError, "no function to call"); | |
return NULL; | |
} | |
else if (fp->defs[i].data == NULL) | |
/* dummy routine */ | |
return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp, arg, | |
kw, NULL); | |
else | |
return (*((fortranfunc)(fp->defs[i].func)))( | |
(PyObject *)fp, arg, kw, (void *)fp->defs[i].data); | |
} | |
PyErr_Format(PyExc_TypeError, "this fortran object is not callable"); | |
return NULL; | |
} | |
static PyObject * | |
fortran_repr(PyFortranObject *fp) | |
{ | |
PyObject *name = NULL, *repr = NULL; | |
name = PyObject_GetAttrString((PyObject *)fp, "__name__"); | |
PyErr_Clear(); | |
if (name != NULL && PyUnicode_Check(name)) { | |
repr = PyUnicode_FromFormat("<fortran %U>", name); | |
} | |
else { | |
repr = PyUnicode_FromString("<fortran object>"); | |
} | |
Py_XDECREF(name); | |
return repr; | |
} | |
PyTypeObject PyFortran_Type = { | |
PyVarObject_HEAD_INIT(NULL, 0).tp_name = "fortran", | |
.tp_basicsize = sizeof(PyFortranObject), | |
.tp_dealloc = (destructor)fortran_dealloc, | |
.tp_getattr = (getattrfunc)fortran_getattr, | |
.tp_setattr = (setattrfunc)fortran_setattr, | |
.tp_repr = (reprfunc)fortran_repr, | |
.tp_call = (ternaryfunc)fortran_call, | |
}; | |
/************************* f2py_report_atexit *******************************/ | |
static int passed_time = 0; | |
static int passed_counter = 0; | |
static int passed_call_time = 0; | |
static struct timeb start_time; | |
static struct timeb stop_time; | |
static struct timeb start_call_time; | |
static struct timeb stop_call_time; | |
static int cb_passed_time = 0; | |
static int cb_passed_counter = 0; | |
static int cb_passed_call_time = 0; | |
static struct timeb cb_start_time; | |
static struct timeb cb_stop_time; | |
static struct timeb cb_start_call_time; | |
static struct timeb cb_stop_call_time; | |
extern void | |
f2py_start_clock(void) | |
{ | |
ftime(&start_time); | |
} | |
extern void | |
f2py_start_call_clock(void) | |
{ | |
f2py_stop_clock(); | |
ftime(&start_call_time); | |
} | |
extern void | |
f2py_stop_clock(void) | |
{ | |
ftime(&stop_time); | |
passed_time += 1000 * (stop_time.time - start_time.time); | |
passed_time += stop_time.millitm - start_time.millitm; | |
} | |
extern void | |
f2py_stop_call_clock(void) | |
{ | |
ftime(&stop_call_time); | |
passed_call_time += 1000 * (stop_call_time.time - start_call_time.time); | |
passed_call_time += stop_call_time.millitm - start_call_time.millitm; | |
passed_counter += 1; | |
f2py_start_clock(); | |
} | |
extern void | |
f2py_cb_start_clock(void) | |
{ | |
ftime(&cb_start_time); | |
} | |
extern void | |
f2py_cb_start_call_clock(void) | |
{ | |
f2py_cb_stop_clock(); | |
ftime(&cb_start_call_time); | |
} | |
extern void | |
f2py_cb_stop_clock(void) | |
{ | |
ftime(&cb_stop_time); | |
cb_passed_time += 1000 * (cb_stop_time.time - cb_start_time.time); | |
cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm; | |
} | |
extern void | |
f2py_cb_stop_call_clock(void) | |
{ | |
ftime(&cb_stop_call_time); | |
cb_passed_call_time += | |
1000 * (cb_stop_call_time.time - cb_start_call_time.time); | |
cb_passed_call_time += | |
cb_stop_call_time.millitm - cb_start_call_time.millitm; | |
cb_passed_counter += 1; | |
f2py_cb_start_clock(); | |
} | |
static int f2py_report_on_exit_been_here = 0; | |
extern void | |
f2py_report_on_exit(int exit_flag, void *name) | |
{ | |
if (f2py_report_on_exit_been_here) { | |
fprintf(stderr, " %s\n", (char *)name); | |
return; | |
} | |
f2py_report_on_exit_been_here = 1; | |
fprintf(stderr, " /-----------------------\\\n"); | |
fprintf(stderr, " < F2PY performance report >\n"); | |
fprintf(stderr, " \\-----------------------/\n"); | |
fprintf(stderr, "Overall time spent in ...\n"); | |
fprintf(stderr, "(a) wrapped (Fortran/C) functions : %8d msec\n", | |
passed_call_time); | |
fprintf(stderr, "(b) f2py interface, %6d calls : %8d msec\n", | |
passed_counter, passed_time); | |
fprintf(stderr, "(c) call-back (Python) functions : %8d msec\n", | |
cb_passed_call_time); | |
fprintf(stderr, "(d) f2py call-back interface, %6d calls : %8d msec\n", | |
cb_passed_counter, cb_passed_time); | |
fprintf(stderr, | |
"(e) wrapped (Fortran/C) functions (actual) : %8d msec\n\n", | |
passed_call_time - cb_passed_call_time - cb_passed_time); | |
fprintf(stderr, | |
"Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n"); | |
fprintf(stderr, "Exit status: %d\n", exit_flag); | |
fprintf(stderr, "Modules : %s\n", (char *)name); | |
} | |
/********************** report on array copy ****************************/ | |
static void | |
f2py_report_on_array_copy(PyArrayObject *arr) | |
{ | |
const npy_intp arr_size = PyArray_Size((PyObject *)arr); | |
if (arr_size > F2PY_REPORT_ON_ARRAY_COPY) { | |
fprintf(stderr, | |
"copied an array: size=%ld, elsize=%" NPY_INTP_FMT "\n", | |
arr_size, (npy_intp)PyArray_ITEMSIZE(arr)); | |
} | |
} | |
static void | |
f2py_report_on_array_copy_fromany(void) | |
{ | |
fprintf(stderr, "created an array from object\n"); | |
} | |
/************************* array_from_obj *******************************/ | |
/* | |
* File: array_from_pyobj.c | |
* | |
* Description: | |
* ------------ | |
* Provides array_from_pyobj function that returns a contiguous array | |
* object with the given dimensions and required storage order, either | |
* in row-major (C) or column-major (Fortran) order. The function | |
* array_from_pyobj is very flexible about its Python object argument | |
* that can be any number, list, tuple, or array. | |
* | |
* array_from_pyobj is used in f2py generated Python extension | |
* modules. | |
* | |
* Author: Pearu Peterson <[email protected]> | |
* Created: 13-16 January 2002 | |
* $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $ | |
*/ | |
static int check_and_fix_dimensions(const PyArrayObject* arr, | |
const int rank, | |
npy_intp *dims, | |
const char *errmess); | |
static int | |
find_first_negative_dimension(const int rank, const npy_intp *dims) | |
{ | |
int i; | |
for (i = 0; i < rank; ++i) { | |
if (dims[i] < 0) { | |
return i; | |
} | |
} | |
return -1; | |
} | |
void | |
dump_dims(int rank, npy_intp const *dims) | |
{ | |
int i; | |
printf("["); | |
for (i = 0; i < rank; ++i) { | |
printf("%3" NPY_INTP_FMT, dims[i]); | |
} | |
printf("]\n"); | |
} | |
void | |
dump_attrs(const PyArrayObject *obj) | |
{ | |
const PyArrayObject_fields *arr = (const PyArrayObject_fields *)obj; | |
int rank = PyArray_NDIM(arr); | |
npy_intp size = PyArray_Size((PyObject *)arr); | |
printf("\trank = %d, flags = %d, size = %" NPY_INTP_FMT "\n", rank, | |
arr->flags, size); | |
printf("\tstrides = "); | |
dump_dims(rank, arr->strides); | |
printf("\tdimensions = "); | |
dump_dims(rank, arr->dimensions); | |
} | |
static int | |
swap_arrays(PyArrayObject *obj1, PyArrayObject *obj2) | |
{ | |
PyArrayObject_fields *arr1 = (PyArrayObject_fields *)obj1, | |
*arr2 = (PyArrayObject_fields *)obj2; | |
SWAPTYPE(arr1->data, arr2->data, char *); | |
SWAPTYPE(arr1->nd, arr2->nd, int); | |
SWAPTYPE(arr1->dimensions, arr2->dimensions, npy_intp *); | |
SWAPTYPE(arr1->strides, arr2->strides, npy_intp *); | |
SWAPTYPE(arr1->base, arr2->base, PyObject *); | |
SWAPTYPE(arr1->descr, arr2->descr, PyArray_Descr *); | |
SWAPTYPE(arr1->flags, arr2->flags, int); | |
/* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */ | |
return 0; | |
} | |
static int | |
get_elsize(PyObject *obj) { | |
/* | |
get_elsize determines array itemsize from a Python object. Returns | |
elsize if successful, -1 otherwise. | |
Supported types of the input are: numpy.ndarray, bytes, str, tuple, | |
list. | |
*/ | |
if (PyArray_Check(obj)) { | |
return PyArray_DESCR((PyArrayObject *)obj)->elsize; | |
} else if (PyBytes_Check(obj)) { | |
return PyBytes_GET_SIZE(obj); | |
} else if (PyUnicode_Check(obj)) { | |
return PyUnicode_GET_LENGTH(obj); | |
} else if (PySequence_Check(obj)) { | |
PyObject* fast = PySequence_Fast(obj, "f2py:fortranobject.c:get_elsize"); | |
if (fast != NULL) { | |
Py_ssize_t i, n = PySequence_Fast_GET_SIZE(fast); | |
int sz, elsize = 0; | |
for (i=0; i<n; i++) { | |
sz = get_elsize(PySequence_Fast_GET_ITEM(fast, i) /* borrowed */); | |
if (sz > elsize) { | |
elsize = sz; | |
} | |
} | |
Py_DECREF(fast); | |
return elsize; | |
} | |
} | |
return -1; | |
} | |
extern PyArrayObject * | |
ndarray_from_pyobj(const int type_num, | |
const int elsize_, | |
npy_intp *dims, | |
const int rank, | |
const int intent, | |
PyObject *obj, | |
const char *errmess) { | |
/* | |
* Return an array with given element type and shape from a Python | |
* object while taking into account the usage intent of the array. | |
* | |
* - element type is defined by type_num and elsize | |
* - shape is defined by dims and rank | |
* | |
* ndarray_from_pyobj is used to convert Python object arguments | |
* to numpy ndarrays with given type and shape that data is passed | |
* to interfaced Fortran or C functions. | |
* | |
* errmess (if not NULL), contains a prefix of an error message | |
* for an exception to be triggered within this function. | |
* | |
* Negative elsize value means that elsize is to be determined | |
* from the Python object in runtime. | |
* | |
* Note on strings | |
* --------------- | |
* | |
* String type (type_num == NPY_STRING) does not have fixed | |
* element size and, by default, the type object sets it to | |
* 0. Therefore, for string types, one has to use elsize | |
* argument. For other types, elsize value is ignored. | |
* | |
* NumPy defines the type of a fixed-width string as | |
* dtype('S<width>'). In addition, there is also dtype('c'), that | |
* appears as dtype('S1') (these have the same type_num value), | |
* but is actually different (.char attribute is either 'S' or | |
* 'c', respecitely). | |
* | |
* In Fortran, character arrays and strings are different | |
* concepts. The relation between Fortran types, NumPy dtypes, | |
* and type_num-elsize pairs, is defined as follows: | |
* | |
* character*5 foo | dtype('S5') | elsize=5, shape=() | |
* character(5) foo | dtype('S1') | elsize=1, shape=(5) | |
* character*5 foo(n) | dtype('S5') | elsize=5, shape=(n,) | |
* character(5) foo(n) | dtype('S1') | elsize=1, shape=(5, n) | |
* character*(*) foo | dtype('S') | elsize=-1, shape=() | |
* | |
* Note about reference counting | |
* ----------------------------- | |
* | |
* If the caller returns the array to Python, it must be done with | |
* Py_BuildValue("N",arr). Otherwise, if obj!=arr then the caller | |
* must call Py_DECREF(arr). | |
* | |
* Note on intent(cache,out,..) | |
* ---------------------------- | |
* Don't expect correct data when returning intent(cache) array. | |
* | |
*/ | |
char mess[F2PY_MESSAGE_BUFFER_SIZE]; | |
PyArrayObject *arr = NULL; | |
int elsize = (elsize_ < 0 ? get_elsize(obj) : elsize_); | |
if (elsize < 0) { | |
if (errmess != NULL) { | |
strcpy(mess, errmess); | |
} | |
sprintf(mess + strlen(mess), | |
" -- failed to determine element size from %s", | |
Py_TYPE(obj)->tp_name); | |
PyErr_SetString(PyExc_SystemError, mess); | |
return NULL; | |
} | |
PyArray_Descr * descr = get_descr_from_type_and_elsize(type_num, elsize); // new reference | |
if (descr == NULL) { | |
return NULL; | |
} | |
elsize = descr->elsize; | |
if ((intent & F2PY_INTENT_HIDE) | |
|| ((intent & F2PY_INTENT_CACHE) && (obj == Py_None)) | |
|| ((intent & F2PY_OPTIONAL) && (obj == Py_None)) | |
) { | |
/* intent(cache), optional, intent(hide) */ | |
int ineg = find_first_negative_dimension(rank, dims); | |
if (ineg >= 0) { | |
int i; | |
strcpy(mess, "failed to create intent(cache|hide)|optional array" | |
"-- must have defined dimensions but got ("); | |
for(i = 0; i < rank; ++i) | |
sprintf(mess + strlen(mess), "%" NPY_INTP_FMT ",", dims[i]); | |
strcat(mess, ")"); | |
PyErr_SetString(PyExc_ValueError, mess); | |
Py_DECREF(descr); | |
return NULL; | |
} | |
arr = (PyArrayObject *) \ | |
PyArray_NewFromDescr(&PyArray_Type, descr, rank, dims, | |
NULL, NULL, !(intent & F2PY_INTENT_C), NULL); | |
if (arr == NULL) { | |
Py_DECREF(descr); | |
return NULL; | |
} | |
if (PyArray_ITEMSIZE(arr) != elsize) { | |
strcpy(mess, "failed to create intent(cache|hide)|optional array"); | |
sprintf(mess+strlen(mess)," -- expected elsize=%d got %" NPY_INTP_FMT, elsize, (npy_intp)PyArray_ITEMSIZE(arr)); | |
PyErr_SetString(PyExc_ValueError,mess); | |
Py_DECREF(arr); | |
return NULL; | |
} | |
if (!(intent & F2PY_INTENT_CACHE)) { | |
PyArray_FILLWBYTE(arr, 0); | |
} | |
return arr; | |
} | |
if (PyArray_Check(obj)) { | |
arr = (PyArrayObject *)obj; | |
if (intent & F2PY_INTENT_CACHE) { | |
/* intent(cache) */ | |
if (PyArray_ISONESEGMENT(arr) | |
&& PyArray_ITEMSIZE(arr) >= elsize) { | |
if (check_and_fix_dimensions(arr, rank, dims, errmess)) { | |
Py_DECREF(descr); | |
return NULL; | |
} | |
if (intent & F2PY_INTENT_OUT) | |
Py_INCREF(arr); | |
Py_DECREF(descr); | |
return arr; | |
} | |
strcpy(mess, "failed to initialize intent(cache) array"); | |
if (!PyArray_ISONESEGMENT(arr)) | |
strcat(mess, " -- input must be in one segment"); | |
if (PyArray_ITEMSIZE(arr) < elsize) | |
sprintf(mess + strlen(mess), | |
" -- expected at least elsize=%d but got " | |
"%" NPY_INTP_FMT, | |
elsize, (npy_intp)PyArray_ITEMSIZE(arr)); | |
PyErr_SetString(PyExc_ValueError, mess); | |
Py_DECREF(descr); | |
return NULL; | |
} | |
/* here we have always intent(in) or intent(inout) or intent(inplace) | |
*/ | |
if (check_and_fix_dimensions(arr, rank, dims, errmess)) { | |
Py_DECREF(descr); | |
return NULL; | |
} | |
/* | |
printf("intent alignment=%d\n", F2PY_GET_ALIGNMENT(intent)); | |
printf("alignment check=%d\n", F2PY_CHECK_ALIGNMENT(arr, intent)); | |
int i; | |
for (i=1;i<=16;i++) | |
printf("i=%d isaligned=%d\n", i, ARRAY_ISALIGNED(arr, i)); | |
*/ | |
if ((! (intent & F2PY_INTENT_COPY)) && | |
PyArray_ITEMSIZE(arr) == elsize && | |
ARRAY_ISCOMPATIBLE(arr,type_num) && | |
F2PY_CHECK_ALIGNMENT(arr, intent)) { | |
if ((intent & F2PY_INTENT_INOUT || intent & F2PY_INTENT_INPLACE) | |
? ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY(arr) : PyArray_ISFARRAY(arr)) | |
: ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY_RO(arr) : PyArray_ISFARRAY_RO(arr))) { | |
if ((intent & F2PY_INTENT_OUT)) { | |
Py_INCREF(arr); | |
} | |
/* Returning input array */ | |
Py_DECREF(descr); | |
return arr; | |
} | |
} | |
if (intent & F2PY_INTENT_INOUT) { | |
strcpy(mess, "failed to initialize intent(inout) array"); | |
/* Must use PyArray_IS*ARRAY because intent(inout) requires | |
* writable input */ | |
if ((intent & F2PY_INTENT_C) && !PyArray_ISCARRAY(arr)) | |
strcat(mess, " -- input not contiguous"); | |
if (!(intent & F2PY_INTENT_C) && !PyArray_ISFARRAY(arr)) | |
strcat(mess, " -- input not fortran contiguous"); | |
if (PyArray_ITEMSIZE(arr) != elsize) | |
sprintf(mess + strlen(mess), | |
" -- expected elsize=%d but got %" NPY_INTP_FMT, | |
elsize, | |
(npy_intp)PyArray_ITEMSIZE(arr) | |
); | |
if (!(ARRAY_ISCOMPATIBLE(arr, type_num))) { | |
sprintf(mess + strlen(mess), | |
" -- input '%c' not compatible to '%c'", | |
PyArray_DESCR(arr)->type, descr->type); | |
} | |
if (!(F2PY_CHECK_ALIGNMENT(arr, intent))) | |
sprintf(mess + strlen(mess), " -- input not %d-aligned", | |
F2PY_GET_ALIGNMENT(intent)); | |
PyErr_SetString(PyExc_ValueError, mess); | |
Py_DECREF(descr); | |
return NULL; | |
} | |
/* here we have always intent(in) or intent(inplace) */ | |
{ | |
PyArrayObject * retarr = (PyArrayObject *) \ | |
PyArray_NewFromDescr(&PyArray_Type, descr, PyArray_NDIM(arr), PyArray_DIMS(arr), | |
NULL, NULL, !(intent & F2PY_INTENT_C), NULL); | |
if (retarr==NULL) { | |
Py_DECREF(descr); | |
return NULL; | |
} | |
F2PY_REPORT_ON_ARRAY_COPY_FROMARR; | |
if (PyArray_CopyInto(retarr, arr)) { | |
Py_DECREF(retarr); | |
return NULL; | |
} | |
if (intent & F2PY_INTENT_INPLACE) { | |
if (swap_arrays(arr,retarr)) { | |
Py_DECREF(retarr); | |
return NULL; /* XXX: set exception */ | |
} | |
Py_XDECREF(retarr); | |
if (intent & F2PY_INTENT_OUT) | |
Py_INCREF(arr); | |
} else { | |
arr = retarr; | |
} | |
} | |
return arr; | |
} | |
if ((intent & F2PY_INTENT_INOUT) || (intent & F2PY_INTENT_INPLACE) || | |
(intent & F2PY_INTENT_CACHE)) { | |
PyErr_Format(PyExc_TypeError, | |
"failed to initialize intent(inout|inplace|cache) " | |
"array, input '%s' object is not an array", | |
Py_TYPE(obj)->tp_name); | |
Py_DECREF(descr); | |
return NULL; | |
} | |
{ | |
F2PY_REPORT_ON_ARRAY_COPY_FROMANY; | |
arr = (PyArrayObject *)PyArray_FromAny( | |
obj, descr, 0, 0, | |
((intent & F2PY_INTENT_C) ? NPY_ARRAY_CARRAY | |
: NPY_ARRAY_FARRAY) | | |
NPY_ARRAY_FORCECAST, | |
NULL); | |
// Warning: in the case of NPY_STRING, PyArray_FromAny may | |
// reset descr->elsize, e.g. dtype('S0') becomes dtype('S1'). | |
if (arr == NULL) { | |
Py_DECREF(descr); | |
return NULL; | |
} | |
if (type_num != NPY_STRING && PyArray_ITEMSIZE(arr) != elsize) { | |
// This is internal sanity tests: elsize has been set to | |
// descr->elsize in the beginning of this function. | |
strcpy(mess, "failed to initialize intent(in) array"); | |
sprintf(mess + strlen(mess), | |
" -- expected elsize=%d got %" NPY_INTP_FMT, elsize, | |
(npy_intp)PyArray_ITEMSIZE(arr)); | |
PyErr_SetString(PyExc_ValueError, mess); | |
Py_DECREF(arr); | |
return NULL; | |
} | |
if (check_and_fix_dimensions(arr, rank, dims, errmess)) { | |
Py_DECREF(arr); | |
return NULL; | |
} | |
return arr; | |
} | |
} | |
extern PyArrayObject * | |
array_from_pyobj(const int type_num, | |
npy_intp *dims, | |
const int rank, | |
const int intent, | |
PyObject *obj) { | |
/* | |
Same as ndarray_from_pyobj but with elsize determined from type, | |
if possible. Provided for backward compatibility. | |
*/ | |
PyArray_Descr* descr = PyArray_DescrFromType(type_num); | |
int elsize = descr->elsize; | |
Py_DECREF(descr); | |
return ndarray_from_pyobj(type_num, elsize, dims, rank, intent, obj, NULL); | |
} | |
/*****************************************/ | |
/* Helper functions for array_from_pyobj */ | |
/*****************************************/ | |
static int | |
check_and_fix_dimensions(const PyArrayObject* arr, const int rank, | |
npy_intp *dims, const char *errmess) | |
{ | |
/* | |
* This function fills in blanks (that are -1's) in dims list using | |
* the dimensions from arr. It also checks that non-blank dims will | |
* match with the corresponding values in arr dimensions. | |
* | |
* Returns 0 if the function is successful. | |
* | |
* If an error condition is detected, an exception is set and 1 is | |
* returned. | |
*/ | |
char mess[F2PY_MESSAGE_BUFFER_SIZE]; | |
const npy_intp arr_size = | |
(PyArray_NDIM(arr)) ? PyArray_Size((PyObject *)arr) : 1; | |
dump_attrs(arr); | |
printf("check_and_fix_dimensions:init: dims="); | |
dump_dims(rank, dims); | |
if (rank > PyArray_NDIM(arr)) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */ | |
npy_intp new_size = 1; | |
int free_axe = -1; | |
int i; | |
npy_intp d; | |
/* Fill dims where -1 or 0; check dimensions; calc new_size; */ | |
for (i = 0; i < PyArray_NDIM(arr); ++i) { | |
d = PyArray_DIM(arr, i); | |
if (dims[i] >= 0) { | |
if (d > 1 && dims[i] != d) { | |
PyErr_Format( | |
PyExc_ValueError, | |
"%d-th dimension must be fixed to %" NPY_INTP_FMT | |
" but got %" NPY_INTP_FMT "\n", | |
i, dims[i], d); | |
return 1; | |
} | |
if (!dims[i]) | |
dims[i] = 1; | |
} | |
else { | |
dims[i] = d ? d : 1; | |
} | |
new_size *= dims[i]; | |
} | |
for (i = PyArray_NDIM(arr); i < rank; ++i) | |
if (dims[i] > 1) { | |
PyErr_Format(PyExc_ValueError, | |
"%d-th dimension must be %" NPY_INTP_FMT | |
" but got 0 (not defined).\n", | |
i, dims[i]); | |
return 1; | |
} | |
else if (free_axe < 0) | |
free_axe = i; | |
else | |
dims[i] = 1; | |
if (free_axe >= 0) { | |
dims[free_axe] = arr_size / new_size; | |
new_size *= dims[free_axe]; | |
} | |
if (new_size != arr_size) { | |
PyErr_Format(PyExc_ValueError, | |
"unexpected array size: new_size=%" NPY_INTP_FMT | |
", got array with arr_size=%" NPY_INTP_FMT | |
" (maybe too many free indices)\n", | |
new_size, arr_size); | |
return 1; | |
} | |
} | |
else if (rank == PyArray_NDIM(arr)) { | |
npy_intp new_size = 1; | |
int i; | |
npy_intp d; | |
for (i = 0; i < rank; ++i) { | |
d = PyArray_DIM(arr, i); | |
if (dims[i] >= 0) { | |
if (d > 1 && d != dims[i]) { | |
if (errmess != NULL) { | |
strcpy(mess, errmess); | |
} | |
sprintf(mess + strlen(mess), | |
" -- %d-th dimension must be fixed to %" | |
NPY_INTP_FMT " but got %" NPY_INTP_FMT, | |
i, dims[i], d); | |
PyErr_SetString(PyExc_ValueError, mess); | |
return 1; | |
} | |
if (!dims[i]) | |
dims[i] = 1; | |
} | |
else | |
dims[i] = d; | |
new_size *= dims[i]; | |
} | |
if (new_size != arr_size) { | |
PyErr_Format(PyExc_ValueError, | |
"unexpected array size: new_size=%" NPY_INTP_FMT | |
", got array with arr_size=%" NPY_INTP_FMT "\n", | |
new_size, arr_size); | |
return 1; | |
} | |
} | |
else { /* [[1,2]] -> [[1],[2]] */ | |
int i, j; | |
npy_intp d; | |
int effrank; | |
npy_intp size; | |
for (i = 0, effrank = 0; i < PyArray_NDIM(arr); ++i) | |
if (PyArray_DIM(arr, i) > 1) | |
++effrank; | |
if (dims[rank - 1] >= 0) | |
if (effrank > rank) { | |
PyErr_Format(PyExc_ValueError, | |
"too many axes: %d (effrank=%d), " | |
"expected rank=%d\n", | |
PyArray_NDIM(arr), effrank, rank); | |
return 1; | |
} | |
for (i = 0, j = 0; i < rank; ++i) { | |
while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j; | |
if (j >= PyArray_NDIM(arr)) | |
d = 1; | |
else | |
d = PyArray_DIM(arr, j++); | |
if (dims[i] >= 0) { | |
if (d > 1 && d != dims[i]) { | |
if (errmess != NULL) { | |
strcpy(mess, errmess); | |
} | |
sprintf(mess + strlen(mess), | |
" -- %d-th dimension must be fixed to %" | |
NPY_INTP_FMT " but got %" NPY_INTP_FMT | |
" (real index=%d)\n", | |
i, dims[i], d, j-1); | |
PyErr_SetString(PyExc_ValueError, mess); | |
return 1; | |
} | |
if (!dims[i]) | |
dims[i] = 1; | |
} | |
else | |
dims[i] = d; | |
} | |
for (i = rank; i < PyArray_NDIM(arr); | |
++i) { /* [[1,2],[3,4]] -> [1,2,3,4] */ | |
while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j; | |
if (j >= PyArray_NDIM(arr)) | |
d = 1; | |
else | |
d = PyArray_DIM(arr, j++); | |
dims[rank - 1] *= d; | |
} | |
for (i = 0, size = 1; i < rank; ++i) size *= dims[i]; | |
if (size != arr_size) { | |
char msg[200]; | |
int len; | |
snprintf(msg, sizeof(msg), | |
"unexpected array size: size=%" NPY_INTP_FMT | |
", arr_size=%" NPY_INTP_FMT | |
", rank=%d, effrank=%d, arr.nd=%d, dims=[", | |
size, arr_size, rank, effrank, PyArray_NDIM(arr)); | |
for (i = 0; i < rank; ++i) { | |
len = strlen(msg); | |
snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT, | |
dims[i]); | |
} | |
len = strlen(msg); | |
snprintf(msg + len, sizeof(msg) - len, " ], arr.dims=["); | |
for (i = 0; i < PyArray_NDIM(arr); ++i) { | |
len = strlen(msg); | |
snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT, | |
PyArray_DIM(arr, i)); | |
} | |
len = strlen(msg); | |
snprintf(msg + len, sizeof(msg) - len, " ]\n"); | |
PyErr_SetString(PyExc_ValueError, msg); | |
return 1; | |
} | |
} | |
printf("check_and_fix_dimensions:end: dims="); | |
dump_dims(rank, dims); | |
return 0; | |
} | |
/* End of file: array_from_pyobj.c */ | |
/************************* copy_ND_array *******************************/ | |
extern int | |
copy_ND_array(const PyArrayObject *arr, PyArrayObject *out) | |
{ | |
F2PY_REPORT_ON_ARRAY_COPY_FROMARR; | |
return PyArray_CopyInto(out, (PyArrayObject *)arr); | |
} | |
/********************* Various utility functions ***********************/ | |
extern int | |
f2py_describe(PyObject *obj, char *buf) { | |
/* | |
Write the description of a Python object to buf. The caller must | |
provide buffer with size sufficient to write the description. | |
Return 1 on success. | |
*/ | |
char localbuf[F2PY_MESSAGE_BUFFER_SIZE]; | |
if (PyBytes_Check(obj)) { | |
sprintf(localbuf, "%d-%s", (npy_int)PyBytes_GET_SIZE(obj), Py_TYPE(obj)->tp_name); | |
} else if (PyUnicode_Check(obj)) { | |
sprintf(localbuf, "%d-%s", (npy_int)PyUnicode_GET_LENGTH(obj), Py_TYPE(obj)->tp_name); | |
} else if (PyArray_CheckScalar(obj)) { | |
PyArrayObject* arr = (PyArrayObject*)obj; | |
sprintf(localbuf, "%c%" NPY_INTP_FMT "-%s-scalar", PyArray_DESCR(arr)->kind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name); | |
} else if (PyArray_Check(obj)) { | |
int i; | |
PyArrayObject* arr = (PyArrayObject*)obj; | |
strcpy(localbuf, "("); | |
for (i=0; i<PyArray_NDIM(arr); i++) { | |
if (i) { | |
strcat(localbuf, " "); | |
} | |
sprintf(localbuf + strlen(localbuf), "%" NPY_INTP_FMT ",", PyArray_DIM(arr, i)); | |
} | |
sprintf(localbuf + strlen(localbuf), ")-%c%" NPY_INTP_FMT "-%s", PyArray_DESCR(arr)->kind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name); | |
} else if (PySequence_Check(obj)) { | |
sprintf(localbuf, "%d-%s", (npy_int)PySequence_Length(obj), Py_TYPE(obj)->tp_name); | |
} else { | |
sprintf(localbuf, "%s instance", Py_TYPE(obj)->tp_name); | |
} | |
// TODO: detect the size of buf and make sure that size(buf) >= size(localbuf). | |
strcpy(buf, localbuf); | |
return 1; | |
} | |
extern npy_intp | |
f2py_size_impl(PyArrayObject* var, ...) | |
{ | |
npy_intp sz = 0; | |
npy_intp dim; | |
npy_intp rank; | |
va_list argp; | |
va_start(argp, var); | |
dim = va_arg(argp, npy_int); | |
if (dim==-1) | |
{ | |
sz = PyArray_SIZE(var); | |
} | |
else | |
{ | |
rank = PyArray_NDIM(var); | |
if (dim>=1 && dim<=rank) | |
sz = PyArray_DIM(var, dim-1); | |
else | |
fprintf(stderr, "f2py_size: 2nd argument value=%" NPY_INTP_FMT | |
" fails to satisfy 1<=value<=%" NPY_INTP_FMT | |
". Result will be 0.\n", dim, rank); | |
} | |
va_end(argp); | |
return sz; | |
} | |
/*********************************************/ | |
/* Compatibility functions for Python >= 3.0 */ | |
/*********************************************/ | |
PyObject * | |
F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *)) | |
{ | |
PyObject *ret = PyCapsule_New(ptr, NULL, dtor); | |
if (ret == NULL) { | |
PyErr_Clear(); | |
} | |
return ret; | |
} | |
void * | |
F2PyCapsule_AsVoidPtr(PyObject *obj) | |
{ | |
void *ret = PyCapsule_GetPointer(obj, NULL); | |
if (ret == NULL) { | |
PyErr_Clear(); | |
} | |
return ret; | |
} | |
int | |
F2PyCapsule_Check(PyObject *ptr) | |
{ | |
return PyCapsule_CheckExact(ptr); | |
} | |
} | |
/************************* EOF fortranobject.c *******************************/ | |