peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/integrate
/_quad_vec.py
import sys | |
import copy | |
import heapq | |
import collections | |
import functools | |
import numpy as np | |
from scipy._lib._util import MapWrapper, _FunctionWrapper | |
class LRUDict(collections.OrderedDict): | |
def __init__(self, max_size): | |
self.__max_size = max_size | |
def __setitem__(self, key, value): | |
existing_key = (key in self) | |
super().__setitem__(key, value) | |
if existing_key: | |
self.move_to_end(key) | |
elif len(self) > self.__max_size: | |
self.popitem(last=False) | |
def update(self, other): | |
# Not needed below | |
raise NotImplementedError() | |
class SemiInfiniteFunc: | |
""" | |
Argument transform from (start, +-oo) to (0, 1) | |
""" | |
def __init__(self, func, start, infty): | |
self._func = func | |
self._start = start | |
self._sgn = -1 if infty < 0 else 1 | |
# Overflow threshold for the 1/t**2 factor | |
self._tmin = sys.float_info.min**0.5 | |
def get_t(self, x): | |
z = self._sgn * (x - self._start) + 1 | |
if z == 0: | |
# Can happen only if point not in range | |
return np.inf | |
return 1 / z | |
def __call__(self, t): | |
if t < self._tmin: | |
return 0.0 | |
else: | |
x = self._start + self._sgn * (1 - t) / t | |
f = self._func(x) | |
return self._sgn * (f / t) / t | |
class DoubleInfiniteFunc: | |
""" | |
Argument transform from (-oo, oo) to (-1, 1) | |
""" | |
def __init__(self, func): | |
self._func = func | |
# Overflow threshold for the 1/t**2 factor | |
self._tmin = sys.float_info.min**0.5 | |
def get_t(self, x): | |
s = -1 if x < 0 else 1 | |
return s / (abs(x) + 1) | |
def __call__(self, t): | |
if abs(t) < self._tmin: | |
return 0.0 | |
else: | |
x = (1 - abs(t)) / t | |
f = self._func(x) | |
return (f / t) / t | |
def _max_norm(x): | |
return np.amax(abs(x)) | |
def _get_sizeof(obj): | |
try: | |
return sys.getsizeof(obj) | |
except TypeError: | |
# occurs on pypy | |
if hasattr(obj, '__sizeof__'): | |
return int(obj.__sizeof__()) | |
return 64 | |
class _Bunch: | |
def __init__(self, **kwargs): | |
self.__keys = kwargs.keys() | |
self.__dict__.update(**kwargs) | |
def __repr__(self): | |
return "_Bunch({})".format(", ".join(f"{k}={repr(self.__dict__[k])}" | |
for k in self.__keys)) | |
def quad_vec(f, a, b, epsabs=1e-200, epsrel=1e-8, norm='2', cache_size=100e6, | |
limit=10000, workers=1, points=None, quadrature=None, full_output=False, | |
*, args=()): | |
r"""Adaptive integration of a vector-valued function. | |
Parameters | |
---------- | |
f : callable | |
Vector-valued function f(x) to integrate. | |
a : float | |
Initial point. | |
b : float | |
Final point. | |
epsabs : float, optional | |
Absolute tolerance. | |
epsrel : float, optional | |
Relative tolerance. | |
norm : {'max', '2'}, optional | |
Vector norm to use for error estimation. | |
cache_size : int, optional | |
Number of bytes to use for memoization. | |
limit : float or int, optional | |
An upper bound on the number of subintervals used in the adaptive | |
algorithm. | |
workers : int or map-like callable, optional | |
If `workers` is an integer, part of the computation is done in | |
parallel subdivided to this many tasks (using | |
:class:`python:multiprocessing.pool.Pool`). | |
Supply `-1` to use all cores available to the Process. | |
Alternatively, supply a map-like callable, such as | |
:meth:`python:multiprocessing.pool.Pool.map` for evaluating the | |
population in parallel. | |
This evaluation is carried out as ``workers(func, iterable)``. | |
points : list, optional | |
List of additional breakpoints. | |
quadrature : {'gk21', 'gk15', 'trapezoid'}, optional | |
Quadrature rule to use on subintervals. | |
Options: 'gk21' (Gauss-Kronrod 21-point rule), | |
'gk15' (Gauss-Kronrod 15-point rule), | |
'trapezoid' (composite trapezoid rule). | |
Default: 'gk21' for finite intervals and 'gk15' for (semi-)infinite | |
full_output : bool, optional | |
Return an additional ``info`` dictionary. | |
args : tuple, optional | |
Extra arguments to pass to function, if any. | |
.. versionadded:: 1.8.0 | |
Returns | |
------- | |
res : {float, array-like} | |
Estimate for the result | |
err : float | |
Error estimate for the result in the given norm | |
info : dict | |
Returned only when ``full_output=True``. | |
Info dictionary. Is an object with the attributes: | |
success : bool | |
Whether integration reached target precision. | |
status : int | |
Indicator for convergence, success (0), | |
failure (1), and failure due to rounding error (2). | |
neval : int | |
Number of function evaluations. | |
intervals : ndarray, shape (num_intervals, 2) | |
Start and end points of subdivision intervals. | |
integrals : ndarray, shape (num_intervals, ...) | |
Integral for each interval. | |
Note that at most ``cache_size`` values are recorded, | |
and the array may contains *nan* for missing items. | |
errors : ndarray, shape (num_intervals,) | |
Estimated integration error for each interval. | |
Notes | |
----- | |
The algorithm mainly follows the implementation of QUADPACK's | |
DQAG* algorithms, implementing global error control and adaptive | |
subdivision. | |
The algorithm here has some differences to the QUADPACK approach: | |
Instead of subdividing one interval at a time, the algorithm | |
subdivides N intervals with largest errors at once. This enables | |
(partial) parallelization of the integration. | |
The logic of subdividing "next largest" intervals first is then | |
not implemented, and we rely on the above extension to avoid | |
concentrating on "small" intervals only. | |
The Wynn epsilon table extrapolation is not used (QUADPACK uses it | |
for infinite intervals). This is because the algorithm here is | |
supposed to work on vector-valued functions, in an user-specified | |
norm, and the extension of the epsilon algorithm to this case does | |
not appear to be widely agreed. For max-norm, using elementwise | |
Wynn epsilon could be possible, but we do not do this here with | |
the hope that the epsilon extrapolation is mainly useful in | |
special cases. | |
References | |
---------- | |
[1] R. Piessens, E. de Doncker, QUADPACK (1983). | |
Examples | |
-------- | |
We can compute integrations of a vector-valued function: | |
>>> from scipy.integrate import quad_vec | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> alpha = np.linspace(0.0, 2.0, num=30) | |
>>> f = lambda x: x**alpha | |
>>> x0, x1 = 0, 2 | |
>>> y, err = quad_vec(f, x0, x1) | |
>>> plt.plot(alpha, y) | |
>>> plt.xlabel(r"$\alpha$") | |
>>> plt.ylabel(r"$\int_{0}^{2} x^\alpha dx$") | |
>>> plt.show() | |
""" | |
a = float(a) | |
b = float(b) | |
if args: | |
if not isinstance(args, tuple): | |
args = (args,) | |
# create a wrapped function to allow the use of map and Pool.map | |
f = _FunctionWrapper(f, args) | |
# Use simple transformations to deal with integrals over infinite | |
# intervals. | |
kwargs = dict(epsabs=epsabs, | |
epsrel=epsrel, | |
norm=norm, | |
cache_size=cache_size, | |
limit=limit, | |
workers=workers, | |
points=points, | |
quadrature='gk15' if quadrature is None else quadrature, | |
full_output=full_output) | |
if np.isfinite(a) and np.isinf(b): | |
f2 = SemiInfiniteFunc(f, start=a, infty=b) | |
if points is not None: | |
kwargs['points'] = tuple(f2.get_t(xp) for xp in points) | |
return quad_vec(f2, 0, 1, **kwargs) | |
elif np.isfinite(b) and np.isinf(a): | |
f2 = SemiInfiniteFunc(f, start=b, infty=a) | |
if points is not None: | |
kwargs['points'] = tuple(f2.get_t(xp) for xp in points) | |
res = quad_vec(f2, 0, 1, **kwargs) | |
return (-res[0],) + res[1:] | |
elif np.isinf(a) and np.isinf(b): | |
sgn = -1 if b < a else 1 | |
# NB. explicitly split integral at t=0, which separates | |
# the positive and negative sides | |
f2 = DoubleInfiniteFunc(f) | |
if points is not None: | |
kwargs['points'] = (0,) + tuple(f2.get_t(xp) for xp in points) | |
else: | |
kwargs['points'] = (0,) | |
if a != b: | |
res = quad_vec(f2, -1, 1, **kwargs) | |
else: | |
res = quad_vec(f2, 1, 1, **kwargs) | |
return (res[0]*sgn,) + res[1:] | |
elif not (np.isfinite(a) and np.isfinite(b)): | |
raise ValueError(f"invalid integration bounds a={a}, b={b}") | |
norm_funcs = { | |
None: _max_norm, | |
'max': _max_norm, | |
'2': np.linalg.norm | |
} | |
if callable(norm): | |
norm_func = norm | |
else: | |
norm_func = norm_funcs[norm] | |
parallel_count = 128 | |
min_intervals = 2 | |
try: | |
_quadrature = {None: _quadrature_gk21, | |
'gk21': _quadrature_gk21, | |
'gk15': _quadrature_gk15, | |
'trapz': _quadrature_trapezoid, # alias for backcompat | |
'trapezoid': _quadrature_trapezoid}[quadrature] | |
except KeyError as e: | |
raise ValueError(f"unknown quadrature {quadrature!r}") from e | |
# Initial interval set | |
if points is None: | |
initial_intervals = [(a, b)] | |
else: | |
prev = a | |
initial_intervals = [] | |
for p in sorted(points): | |
p = float(p) | |
if not (a < p < b) or p == prev: | |
continue | |
initial_intervals.append((prev, p)) | |
prev = p | |
initial_intervals.append((prev, b)) | |
global_integral = None | |
global_error = None | |
rounding_error = None | |
interval_cache = None | |
intervals = [] | |
neval = 0 | |
for x1, x2 in initial_intervals: | |
ig, err, rnd = _quadrature(x1, x2, f, norm_func) | |
neval += _quadrature.num_eval | |
if global_integral is None: | |
if isinstance(ig, (float, complex)): | |
# Specialize for scalars | |
if norm_func in (_max_norm, np.linalg.norm): | |
norm_func = abs | |
global_integral = ig | |
global_error = float(err) | |
rounding_error = float(rnd) | |
cache_count = cache_size // _get_sizeof(ig) | |
interval_cache = LRUDict(cache_count) | |
else: | |
global_integral += ig | |
global_error += err | |
rounding_error += rnd | |
interval_cache[(x1, x2)] = copy.copy(ig) | |
intervals.append((-err, x1, x2)) | |
heapq.heapify(intervals) | |
CONVERGED = 0 | |
NOT_CONVERGED = 1 | |
ROUNDING_ERROR = 2 | |
NOT_A_NUMBER = 3 | |
status_msg = { | |
CONVERGED: "Target precision reached.", | |
NOT_CONVERGED: "Target precision not reached.", | |
ROUNDING_ERROR: "Target precision could not be reached due to rounding error.", | |
NOT_A_NUMBER: "Non-finite values encountered." | |
} | |
# Process intervals | |
with MapWrapper(workers) as mapwrapper: | |
ier = NOT_CONVERGED | |
while intervals and len(intervals) < limit: | |
# Select intervals with largest errors for subdivision | |
tol = max(epsabs, epsrel*norm_func(global_integral)) | |
to_process = [] | |
err_sum = 0 | |
for j in range(parallel_count): | |
if not intervals: | |
break | |
if j > 0 and err_sum > global_error - tol/8: | |
# avoid unnecessary parallel splitting | |
break | |
interval = heapq.heappop(intervals) | |
neg_old_err, a, b = interval | |
old_int = interval_cache.pop((a, b), None) | |
to_process.append( | |
((-neg_old_err, a, b, old_int), f, norm_func, _quadrature) | |
) | |
err_sum += -neg_old_err | |
# Subdivide intervals | |
for parts in mapwrapper(_subdivide_interval, to_process): | |
dint, derr, dround_err, subint, dneval = parts | |
neval += dneval | |
global_integral += dint | |
global_error += derr | |
rounding_error += dround_err | |
for x in subint: | |
x1, x2, ig, err = x | |
interval_cache[(x1, x2)] = ig | |
heapq.heappush(intervals, (-err, x1, x2)) | |
# Termination check | |
if len(intervals) >= min_intervals: | |
tol = max(epsabs, epsrel*norm_func(global_integral)) | |
if global_error < tol/8: | |
ier = CONVERGED | |
break | |
if global_error < rounding_error: | |
ier = ROUNDING_ERROR | |
break | |
if not (np.isfinite(global_error) and np.isfinite(rounding_error)): | |
ier = NOT_A_NUMBER | |
break | |
res = global_integral | |
err = global_error + rounding_error | |
if full_output: | |
res_arr = np.asarray(res) | |
dummy = np.full(res_arr.shape, np.nan, dtype=res_arr.dtype) | |
integrals = np.array([interval_cache.get((z[1], z[2]), dummy) | |
for z in intervals], dtype=res_arr.dtype) | |
errors = np.array([-z[0] for z in intervals]) | |
intervals = np.array([[z[1], z[2]] for z in intervals]) | |
info = _Bunch(neval=neval, | |
success=(ier == CONVERGED), | |
status=ier, | |
message=status_msg[ier], | |
intervals=intervals, | |
integrals=integrals, | |
errors=errors) | |
return (res, err, info) | |
else: | |
return (res, err) | |
def _subdivide_interval(args): | |
interval, f, norm_func, _quadrature = args | |
old_err, a, b, old_int = interval | |
c = 0.5 * (a + b) | |
# Left-hand side | |
if getattr(_quadrature, 'cache_size', 0) > 0: | |
f = functools.lru_cache(_quadrature.cache_size)(f) | |
s1, err1, round1 = _quadrature(a, c, f, norm_func) | |
dneval = _quadrature.num_eval | |
s2, err2, round2 = _quadrature(c, b, f, norm_func) | |
dneval += _quadrature.num_eval | |
if old_int is None: | |
old_int, _, _ = _quadrature(a, b, f, norm_func) | |
dneval += _quadrature.num_eval | |
if getattr(_quadrature, 'cache_size', 0) > 0: | |
dneval = f.cache_info().misses | |
dint = s1 + s2 - old_int | |
derr = err1 + err2 - old_err | |
dround_err = round1 + round2 | |
subintervals = ((a, c, s1, err1), (c, b, s2, err2)) | |
return dint, derr, dround_err, subintervals, dneval | |
def _quadrature_trapezoid(x1, x2, f, norm_func): | |
""" | |
Composite trapezoid quadrature | |
""" | |
x3 = 0.5*(x1 + x2) | |
f1 = f(x1) | |
f2 = f(x2) | |
f3 = f(x3) | |
s2 = 0.25 * (x2 - x1) * (f1 + 2*f3 + f2) | |
round_err = 0.25 * abs(x2 - x1) * (float(norm_func(f1)) | |
+ 2*float(norm_func(f3)) | |
+ float(norm_func(f2))) * 2e-16 | |
s1 = 0.5 * (x2 - x1) * (f1 + f2) | |
err = 1/3 * float(norm_func(s1 - s2)) | |
return s2, err, round_err | |
_quadrature_trapezoid.cache_size = 3 * 3 | |
_quadrature_trapezoid.num_eval = 3 | |
def _quadrature_gk(a, b, f, norm_func, x, w, v): | |
""" | |
Generic Gauss-Kronrod quadrature | |
""" | |
fv = [0.0]*len(x) | |
c = 0.5 * (a + b) | |
h = 0.5 * (b - a) | |
# Gauss-Kronrod | |
s_k = 0.0 | |
s_k_abs = 0.0 | |
for i in range(len(x)): | |
ff = f(c + h*x[i]) | |
fv[i] = ff | |
vv = v[i] | |
# \int f(x) | |
s_k += vv * ff | |
# \int |f(x)| | |
s_k_abs += vv * abs(ff) | |
# Gauss | |
s_g = 0.0 | |
for i in range(len(w)): | |
s_g += w[i] * fv[2*i + 1] | |
# Quadrature of abs-deviation from average | |
s_k_dabs = 0.0 | |
y0 = s_k / 2.0 | |
for i in range(len(x)): | |
# \int |f(x) - y0| | |
s_k_dabs += v[i] * abs(fv[i] - y0) | |
# Use similar error estimation as quadpack | |
err = float(norm_func((s_k - s_g) * h)) | |
dabs = float(norm_func(s_k_dabs * h)) | |
if dabs != 0 and err != 0: | |
err = dabs * min(1.0, (200 * err / dabs)**1.5) | |
eps = sys.float_info.epsilon | |
round_err = float(norm_func(50 * eps * h * s_k_abs)) | |
if round_err > sys.float_info.min: | |
err = max(err, round_err) | |
return h * s_k, err, round_err | |
def _quadrature_gk21(a, b, f, norm_func): | |
""" | |
Gauss-Kronrod 21 quadrature with error estimate | |
""" | |
# Gauss-Kronrod points | |
x = (0.995657163025808080735527280689003, | |
0.973906528517171720077964012084452, | |
0.930157491355708226001207180059508, | |
0.865063366688984510732096688423493, | |
0.780817726586416897063717578345042, | |
0.679409568299024406234327365114874, | |
0.562757134668604683339000099272694, | |
0.433395394129247190799265943165784, | |
0.294392862701460198131126603103866, | |
0.148874338981631210884826001129720, | |
0, | |
-0.148874338981631210884826001129720, | |
-0.294392862701460198131126603103866, | |
-0.433395394129247190799265943165784, | |
-0.562757134668604683339000099272694, | |
-0.679409568299024406234327365114874, | |
-0.780817726586416897063717578345042, | |
-0.865063366688984510732096688423493, | |
-0.930157491355708226001207180059508, | |
-0.973906528517171720077964012084452, | |
-0.995657163025808080735527280689003) | |
# 10-point weights | |
w = (0.066671344308688137593568809893332, | |
0.149451349150580593145776339657697, | |
0.219086362515982043995534934228163, | |
0.269266719309996355091226921569469, | |
0.295524224714752870173892994651338, | |
0.295524224714752870173892994651338, | |
0.269266719309996355091226921569469, | |
0.219086362515982043995534934228163, | |
0.149451349150580593145776339657697, | |
0.066671344308688137593568809893332) | |
# 21-point weights | |
v = (0.011694638867371874278064396062192, | |
0.032558162307964727478818972459390, | |
0.054755896574351996031381300244580, | |
0.075039674810919952767043140916190, | |
0.093125454583697605535065465083366, | |
0.109387158802297641899210590325805, | |
0.123491976262065851077958109831074, | |
0.134709217311473325928054001771707, | |
0.142775938577060080797094273138717, | |
0.147739104901338491374841515972068, | |
0.149445554002916905664936468389821, | |
0.147739104901338491374841515972068, | |
0.142775938577060080797094273138717, | |
0.134709217311473325928054001771707, | |
0.123491976262065851077958109831074, | |
0.109387158802297641899210590325805, | |
0.093125454583697605535065465083366, | |
0.075039674810919952767043140916190, | |
0.054755896574351996031381300244580, | |
0.032558162307964727478818972459390, | |
0.011694638867371874278064396062192) | |
return _quadrature_gk(a, b, f, norm_func, x, w, v) | |
_quadrature_gk21.num_eval = 21 | |
def _quadrature_gk15(a, b, f, norm_func): | |
""" | |
Gauss-Kronrod 15 quadrature with error estimate | |
""" | |
# Gauss-Kronrod points | |
x = (0.991455371120812639206854697526329, | |
0.949107912342758524526189684047851, | |
0.864864423359769072789712788640926, | |
0.741531185599394439863864773280788, | |
0.586087235467691130294144838258730, | |
0.405845151377397166906606412076961, | |
0.207784955007898467600689403773245, | |
0.000000000000000000000000000000000, | |
-0.207784955007898467600689403773245, | |
-0.405845151377397166906606412076961, | |
-0.586087235467691130294144838258730, | |
-0.741531185599394439863864773280788, | |
-0.864864423359769072789712788640926, | |
-0.949107912342758524526189684047851, | |
-0.991455371120812639206854697526329) | |
# 7-point weights | |
w = (0.129484966168869693270611432679082, | |
0.279705391489276667901467771423780, | |
0.381830050505118944950369775488975, | |
0.417959183673469387755102040816327, | |
0.381830050505118944950369775488975, | |
0.279705391489276667901467771423780, | |
0.129484966168869693270611432679082) | |
# 15-point weights | |
v = (0.022935322010529224963732008058970, | |
0.063092092629978553290700663189204, | |
0.104790010322250183839876322541518, | |
0.140653259715525918745189590510238, | |
0.169004726639267902826583426598550, | |
0.190350578064785409913256402421014, | |
0.204432940075298892414161999234649, | |
0.209482141084727828012999174891714, | |
0.204432940075298892414161999234649, | |
0.190350578064785409913256402421014, | |
0.169004726639267902826583426598550, | |
0.140653259715525918745189590510238, | |
0.104790010322250183839876322541518, | |
0.063092092629978553290700663189204, | |
0.022935322010529224963732008058970) | |
return _quadrature_gk(a, b, f, norm_func, x, w, v) | |
_quadrature_gk15.num_eval = 15 | |