peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/integrate
/tests
/test_bvp.py
import sys | |
try: | |
from StringIO import StringIO | |
except ImportError: | |
from io import StringIO | |
import numpy as np | |
from numpy.testing import (assert_, assert_array_equal, assert_allclose, | |
assert_equal) | |
from pytest import raises as assert_raises | |
from scipy.sparse import coo_matrix | |
from scipy.special import erf | |
from scipy.integrate._bvp import (modify_mesh, estimate_fun_jac, | |
estimate_bc_jac, compute_jac_indices, | |
construct_global_jac, solve_bvp) | |
def exp_fun(x, y): | |
return np.vstack((y[1], y[0])) | |
def exp_fun_jac(x, y): | |
df_dy = np.empty((2, 2, x.shape[0])) | |
df_dy[0, 0] = 0 | |
df_dy[0, 1] = 1 | |
df_dy[1, 0] = 1 | |
df_dy[1, 1] = 0 | |
return df_dy | |
def exp_bc(ya, yb): | |
return np.hstack((ya[0] - 1, yb[0])) | |
def exp_bc_complex(ya, yb): | |
return np.hstack((ya[0] - 1 - 1j, yb[0])) | |
def exp_bc_jac(ya, yb): | |
dbc_dya = np.array([ | |
[1, 0], | |
[0, 0] | |
]) | |
dbc_dyb = np.array([ | |
[0, 0], | |
[1, 0] | |
]) | |
return dbc_dya, dbc_dyb | |
def exp_sol(x): | |
return (np.exp(-x) - np.exp(x - 2)) / (1 - np.exp(-2)) | |
def sl_fun(x, y, p): | |
return np.vstack((y[1], -p[0]**2 * y[0])) | |
def sl_fun_jac(x, y, p): | |
n, m = y.shape | |
df_dy = np.empty((n, 2, m)) | |
df_dy[0, 0] = 0 | |
df_dy[0, 1] = 1 | |
df_dy[1, 0] = -p[0]**2 | |
df_dy[1, 1] = 0 | |
df_dp = np.empty((n, 1, m)) | |
df_dp[0, 0] = 0 | |
df_dp[1, 0] = -2 * p[0] * y[0] | |
return df_dy, df_dp | |
def sl_bc(ya, yb, p): | |
return np.hstack((ya[0], yb[0], ya[1] - p[0])) | |
def sl_bc_jac(ya, yb, p): | |
dbc_dya = np.zeros((3, 2)) | |
dbc_dya[0, 0] = 1 | |
dbc_dya[2, 1] = 1 | |
dbc_dyb = np.zeros((3, 2)) | |
dbc_dyb[1, 0] = 1 | |
dbc_dp = np.zeros((3, 1)) | |
dbc_dp[2, 0] = -1 | |
return dbc_dya, dbc_dyb, dbc_dp | |
def sl_sol(x, p): | |
return np.sin(p[0] * x) | |
def emden_fun(x, y): | |
return np.vstack((y[1], -y[0]**5)) | |
def emden_fun_jac(x, y): | |
df_dy = np.empty((2, 2, x.shape[0])) | |
df_dy[0, 0] = 0 | |
df_dy[0, 1] = 1 | |
df_dy[1, 0] = -5 * y[0]**4 | |
df_dy[1, 1] = 0 | |
return df_dy | |
def emden_bc(ya, yb): | |
return np.array([ya[1], yb[0] - (3/4)**0.5]) | |
def emden_bc_jac(ya, yb): | |
dbc_dya = np.array([ | |
[0, 1], | |
[0, 0] | |
]) | |
dbc_dyb = np.array([ | |
[0, 0], | |
[1, 0] | |
]) | |
return dbc_dya, dbc_dyb | |
def emden_sol(x): | |
return (1 + x**2/3)**-0.5 | |
def undefined_fun(x, y): | |
return np.zeros_like(y) | |
def undefined_bc(ya, yb): | |
return np.array([ya[0], yb[0] - 1]) | |
def big_fun(x, y): | |
f = np.zeros_like(y) | |
f[::2] = y[1::2] | |
return f | |
def big_bc(ya, yb): | |
return np.hstack((ya[::2], yb[::2] - 1)) | |
def big_sol(x, n): | |
y = np.ones((2 * n, x.size)) | |
y[::2] = x | |
return x | |
def big_fun_with_parameters(x, y, p): | |
""" Big version of sl_fun, with two parameters. | |
The two differential equations represented by sl_fun are broadcast to the | |
number of rows of y, rotating between the parameters p[0] and p[1]. | |
Here are the differential equations: | |
dy[0]/dt = y[1] | |
dy[1]/dt = -p[0]**2 * y[0] | |
dy[2]/dt = y[3] | |
dy[3]/dt = -p[1]**2 * y[2] | |
dy[4]/dt = y[5] | |
dy[5]/dt = -p[0]**2 * y[4] | |
dy[6]/dt = y[7] | |
dy[7]/dt = -p[1]**2 * y[6] | |
. | |
. | |
. | |
""" | |
f = np.zeros_like(y) | |
f[::2] = y[1::2] | |
f[1::4] = -p[0]**2 * y[::4] | |
f[3::4] = -p[1]**2 * y[2::4] | |
return f | |
def big_fun_with_parameters_jac(x, y, p): | |
# big version of sl_fun_jac, with two parameters | |
n, m = y.shape | |
df_dy = np.zeros((n, n, m)) | |
df_dy[range(0, n, 2), range(1, n, 2)] = 1 | |
df_dy[range(1, n, 4), range(0, n, 4)] = -p[0]**2 | |
df_dy[range(3, n, 4), range(2, n, 4)] = -p[1]**2 | |
df_dp = np.zeros((n, 2, m)) | |
df_dp[range(1, n, 4), 0] = -2 * p[0] * y[range(0, n, 4)] | |
df_dp[range(3, n, 4), 1] = -2 * p[1] * y[range(2, n, 4)] | |
return df_dy, df_dp | |
def big_bc_with_parameters(ya, yb, p): | |
# big version of sl_bc, with two parameters | |
return np.hstack((ya[::2], yb[::2], ya[1] - p[0], ya[3] - p[1])) | |
def big_bc_with_parameters_jac(ya, yb, p): | |
# big version of sl_bc_jac, with two parameters | |
n = ya.shape[0] | |
dbc_dya = np.zeros((n + 2, n)) | |
dbc_dyb = np.zeros((n + 2, n)) | |
dbc_dya[range(n // 2), range(0, n, 2)] = 1 | |
dbc_dyb[range(n // 2, n), range(0, n, 2)] = 1 | |
dbc_dp = np.zeros((n + 2, 2)) | |
dbc_dp[n, 0] = -1 | |
dbc_dya[n, 1] = 1 | |
dbc_dp[n + 1, 1] = -1 | |
dbc_dya[n + 1, 3] = 1 | |
return dbc_dya, dbc_dyb, dbc_dp | |
def big_sol_with_parameters(x, p): | |
# big version of sl_sol, with two parameters | |
return np.vstack((np.sin(p[0] * x), np.sin(p[1] * x))) | |
def shock_fun(x, y): | |
eps = 1e-3 | |
return np.vstack(( | |
y[1], | |
-(x * y[1] + eps * np.pi**2 * np.cos(np.pi * x) + | |
np.pi * x * np.sin(np.pi * x)) / eps | |
)) | |
def shock_bc(ya, yb): | |
return np.array([ya[0] + 2, yb[0]]) | |
def shock_sol(x): | |
eps = 1e-3 | |
k = np.sqrt(2 * eps) | |
return np.cos(np.pi * x) + erf(x / k) / erf(1 / k) | |
def nonlin_bc_fun(x, y): | |
# laplace eq. | |
return np.stack([y[1], np.zeros_like(x)]) | |
def nonlin_bc_bc(ya, yb): | |
phiA, phipA = ya | |
phiC, phipC = yb | |
kappa, ioA, ioC, V, f = 1.64, 0.01, 1.0e-4, 0.5, 38.9 | |
# Butler-Volmer Kinetics at Anode | |
hA = 0.0-phiA-0.0 | |
iA = ioA * (np.exp(f*hA) - np.exp(-f*hA)) | |
res0 = iA + kappa * phipA | |
# Butler-Volmer Kinetics at Cathode | |
hC = V - phiC - 1.0 | |
iC = ioC * (np.exp(f*hC) - np.exp(-f*hC)) | |
res1 = iC - kappa*phipC | |
return np.array([res0, res1]) | |
def nonlin_bc_sol(x): | |
return -0.13426436116763119 - 1.1308709 * x | |
def test_modify_mesh(): | |
x = np.array([0, 1, 3, 9], dtype=float) | |
x_new = modify_mesh(x, np.array([0]), np.array([2])) | |
assert_array_equal(x_new, np.array([0, 0.5, 1, 3, 5, 7, 9])) | |
x = np.array([-6, -3, 0, 3, 6], dtype=float) | |
x_new = modify_mesh(x, np.array([1], dtype=int), np.array([0, 2, 3])) | |
assert_array_equal(x_new, [-6, -5, -4, -3, -1.5, 0, 1, 2, 3, 4, 5, 6]) | |
def test_compute_fun_jac(): | |
x = np.linspace(0, 1, 5) | |
y = np.empty((2, x.shape[0])) | |
y[0] = 0.01 | |
y[1] = 0.02 | |
p = np.array([]) | |
df_dy, df_dp = estimate_fun_jac(lambda x, y, p: exp_fun(x, y), x, y, p) | |
df_dy_an = exp_fun_jac(x, y) | |
assert_allclose(df_dy, df_dy_an) | |
assert_(df_dp is None) | |
x = np.linspace(0, np.pi, 5) | |
y = np.empty((2, x.shape[0])) | |
y[0] = np.sin(x) | |
y[1] = np.cos(x) | |
p = np.array([1.0]) | |
df_dy, df_dp = estimate_fun_jac(sl_fun, x, y, p) | |
df_dy_an, df_dp_an = sl_fun_jac(x, y, p) | |
assert_allclose(df_dy, df_dy_an) | |
assert_allclose(df_dp, df_dp_an) | |
x = np.linspace(0, 1, 10) | |
y = np.empty((2, x.shape[0])) | |
y[0] = (3/4)**0.5 | |
y[1] = 1e-4 | |
p = np.array([]) | |
df_dy, df_dp = estimate_fun_jac(lambda x, y, p: emden_fun(x, y), x, y, p) | |
df_dy_an = emden_fun_jac(x, y) | |
assert_allclose(df_dy, df_dy_an) | |
assert_(df_dp is None) | |
def test_compute_bc_jac(): | |
ya = np.array([-1.0, 2]) | |
yb = np.array([0.5, 3]) | |
p = np.array([]) | |
dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac( | |
lambda ya, yb, p: exp_bc(ya, yb), ya, yb, p) | |
dbc_dya_an, dbc_dyb_an = exp_bc_jac(ya, yb) | |
assert_allclose(dbc_dya, dbc_dya_an) | |
assert_allclose(dbc_dyb, dbc_dyb_an) | |
assert_(dbc_dp is None) | |
ya = np.array([0.0, 1]) | |
yb = np.array([0.0, -1]) | |
p = np.array([0.5]) | |
dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(sl_bc, ya, yb, p) | |
dbc_dya_an, dbc_dyb_an, dbc_dp_an = sl_bc_jac(ya, yb, p) | |
assert_allclose(dbc_dya, dbc_dya_an) | |
assert_allclose(dbc_dyb, dbc_dyb_an) | |
assert_allclose(dbc_dp, dbc_dp_an) | |
ya = np.array([0.5, 100]) | |
yb = np.array([-1000, 10.5]) | |
p = np.array([]) | |
dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac( | |
lambda ya, yb, p: emden_bc(ya, yb), ya, yb, p) | |
dbc_dya_an, dbc_dyb_an = emden_bc_jac(ya, yb) | |
assert_allclose(dbc_dya, dbc_dya_an) | |
assert_allclose(dbc_dyb, dbc_dyb_an) | |
assert_(dbc_dp is None) | |
def test_compute_jac_indices(): | |
n = 2 | |
m = 4 | |
k = 2 | |
i, j = compute_jac_indices(n, m, k) | |
s = coo_matrix((np.ones_like(i), (i, j))).toarray() | |
s_true = np.array([ | |
[1, 1, 1, 1, 0, 0, 0, 0, 1, 1], | |
[1, 1, 1, 1, 0, 0, 0, 0, 1, 1], | |
[0, 0, 1, 1, 1, 1, 0, 0, 1, 1], | |
[0, 0, 1, 1, 1, 1, 0, 0, 1, 1], | |
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1], | |
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1], | |
[1, 1, 0, 0, 0, 0, 1, 1, 1, 1], | |
[1, 1, 0, 0, 0, 0, 1, 1, 1, 1], | |
[1, 1, 0, 0, 0, 0, 1, 1, 1, 1], | |
[1, 1, 0, 0, 0, 0, 1, 1, 1, 1], | |
]) | |
assert_array_equal(s, s_true) | |
def test_compute_global_jac(): | |
n = 2 | |
m = 5 | |
k = 1 | |
i_jac, j_jac = compute_jac_indices(2, 5, 1) | |
x = np.linspace(0, 1, 5) | |
h = np.diff(x) | |
y = np.vstack((np.sin(np.pi * x), np.pi * np.cos(np.pi * x))) | |
p = np.array([3.0]) | |
f = sl_fun(x, y, p) | |
x_middle = x[:-1] + 0.5 * h | |
y_middle = 0.5 * (y[:, :-1] + y[:, 1:]) - h/8 * (f[:, 1:] - f[:, :-1]) | |
df_dy, df_dp = sl_fun_jac(x, y, p) | |
df_dy_middle, df_dp_middle = sl_fun_jac(x_middle, y_middle, p) | |
dbc_dya, dbc_dyb, dbc_dp = sl_bc_jac(y[:, 0], y[:, -1], p) | |
J = construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy, df_dy_middle, | |
df_dp, df_dp_middle, dbc_dya, dbc_dyb, dbc_dp) | |
J = J.toarray() | |
def J_block(h, p): | |
return np.array([ | |
[h**2*p**2/12 - 1, -0.5*h, -h**2*p**2/12 + 1, -0.5*h], | |
[0.5*h*p**2, h**2*p**2/12 - 1, 0.5*h*p**2, 1 - h**2*p**2/12] | |
]) | |
J_true = np.zeros((m * n + k, m * n + k)) | |
for i in range(m - 1): | |
J_true[i * n: (i + 1) * n, i * n: (i + 2) * n] = J_block(h[i], p[0]) | |
J_true[:(m - 1) * n:2, -1] = p * h**2/6 * (y[0, :-1] - y[0, 1:]) | |
J_true[1:(m - 1) * n:2, -1] = p * (h * (y[0, :-1] + y[0, 1:]) + | |
h**2/6 * (y[1, :-1] - y[1, 1:])) | |
J_true[8, 0] = 1 | |
J_true[9, 8] = 1 | |
J_true[10, 1] = 1 | |
J_true[10, 10] = -1 | |
assert_allclose(J, J_true, rtol=1e-10) | |
df_dy, df_dp = estimate_fun_jac(sl_fun, x, y, p) | |
df_dy_middle, df_dp_middle = estimate_fun_jac(sl_fun, x_middle, y_middle, p) | |
dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(sl_bc, y[:, 0], y[:, -1], p) | |
J = construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy, df_dy_middle, | |
df_dp, df_dp_middle, dbc_dya, dbc_dyb, dbc_dp) | |
J = J.toarray() | |
assert_allclose(J, J_true, rtol=2e-8, atol=2e-8) | |
def test_parameter_validation(): | |
x = [0, 1, 0.5] | |
y = np.zeros((2, 3)) | |
assert_raises(ValueError, solve_bvp, exp_fun, exp_bc, x, y) | |
x = np.linspace(0, 1, 5) | |
y = np.zeros((2, 4)) | |
assert_raises(ValueError, solve_bvp, exp_fun, exp_bc, x, y) | |
def fun(x, y, p): | |
return exp_fun(x, y) | |
def bc(ya, yb, p): | |
return exp_bc(ya, yb) | |
y = np.zeros((2, x.shape[0])) | |
assert_raises(ValueError, solve_bvp, fun, bc, x, y, p=[1]) | |
def wrong_shape_fun(x, y): | |
return np.zeros(3) | |
assert_raises(ValueError, solve_bvp, wrong_shape_fun, bc, x, y) | |
S = np.array([[0, 0]]) | |
assert_raises(ValueError, solve_bvp, exp_fun, exp_bc, x, y, S=S) | |
def test_no_params(): | |
x = np.linspace(0, 1, 5) | |
x_test = np.linspace(0, 1, 100) | |
y = np.zeros((2, x.shape[0])) | |
for fun_jac in [None, exp_fun_jac]: | |
for bc_jac in [None, exp_bc_jac]: | |
sol = solve_bvp(exp_fun, exp_bc, x, y, fun_jac=fun_jac, | |
bc_jac=bc_jac) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
assert_equal(sol.x.size, 5) | |
sol_test = sol.sol(x_test) | |
assert_allclose(sol_test[0], exp_sol(x_test), atol=1e-5) | |
f_test = exp_fun(x_test, sol_test) | |
r = sol.sol(x_test, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(rel_res**2, axis=0)**0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_(np.all(sol.rms_residuals < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_with_params(): | |
x = np.linspace(0, np.pi, 5) | |
x_test = np.linspace(0, np.pi, 100) | |
y = np.ones((2, x.shape[0])) | |
for fun_jac in [None, sl_fun_jac]: | |
for bc_jac in [None, sl_bc_jac]: | |
sol = solve_bvp(sl_fun, sl_bc, x, y, p=[0.5], fun_jac=fun_jac, | |
bc_jac=bc_jac) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
assert_(sol.x.size < 10) | |
assert_allclose(sol.p, [1], rtol=1e-4) | |
sol_test = sol.sol(x_test) | |
assert_allclose(sol_test[0], sl_sol(x_test, [1]), | |
rtol=1e-4, atol=1e-4) | |
f_test = sl_fun(x_test, sol_test, [1]) | |
r = sol.sol(x_test, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_(np.all(sol.rms_residuals < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_singular_term(): | |
x = np.linspace(0, 1, 10) | |
x_test = np.linspace(0.05, 1, 100) | |
y = np.empty((2, 10)) | |
y[0] = (3/4)**0.5 | |
y[1] = 1e-4 | |
S = np.array([[0, 0], [0, -2]]) | |
for fun_jac in [None, emden_fun_jac]: | |
for bc_jac in [None, emden_bc_jac]: | |
sol = solve_bvp(emden_fun, emden_bc, x, y, S=S, fun_jac=fun_jac, | |
bc_jac=bc_jac) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
assert_equal(sol.x.size, 10) | |
sol_test = sol.sol(x_test) | |
assert_allclose(sol_test[0], emden_sol(x_test), atol=1e-5) | |
f_test = emden_fun(x_test, sol_test) + S.dot(sol_test) / x_test | |
r = sol.sol(x_test, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_complex(): | |
# The test is essentially the same as test_no_params, but boundary | |
# conditions are turned into complex. | |
x = np.linspace(0, 1, 5) | |
x_test = np.linspace(0, 1, 100) | |
y = np.zeros((2, x.shape[0]), dtype=complex) | |
for fun_jac in [None, exp_fun_jac]: | |
for bc_jac in [None, exp_bc_jac]: | |
sol = solve_bvp(exp_fun, exp_bc_complex, x, y, fun_jac=fun_jac, | |
bc_jac=bc_jac) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
sol_test = sol.sol(x_test) | |
assert_allclose(sol_test[0].real, exp_sol(x_test), atol=1e-5) | |
assert_allclose(sol_test[0].imag, exp_sol(x_test), atol=1e-5) | |
f_test = exp_fun(x_test, sol_test) | |
r = sol.sol(x_test, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(np.real(rel_res * np.conj(rel_res)), | |
axis=0) ** 0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_(np.all(sol.rms_residuals < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_failures(): | |
x = np.linspace(0, 1, 2) | |
y = np.zeros((2, x.size)) | |
res = solve_bvp(exp_fun, exp_bc, x, y, tol=1e-5, max_nodes=5) | |
assert_equal(res.status, 1) | |
assert_(not res.success) | |
x = np.linspace(0, 1, 5) | |
y = np.zeros((2, x.size)) | |
res = solve_bvp(undefined_fun, undefined_bc, x, y) | |
assert_equal(res.status, 2) | |
assert_(not res.success) | |
def test_big_problem(): | |
n = 30 | |
x = np.linspace(0, 1, 5) | |
y = np.zeros((2 * n, x.size)) | |
sol = solve_bvp(big_fun, big_bc, x, y) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
sol_test = sol.sol(x) | |
assert_allclose(sol_test[0], big_sol(x, n)) | |
f_test = big_fun(x, sol_test) | |
r = sol.sol(x, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(np.real(rel_res * np.conj(rel_res)), axis=0) ** 0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_(np.all(sol.rms_residuals < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_big_problem_with_parameters(): | |
n = 30 | |
x = np.linspace(0, np.pi, 5) | |
x_test = np.linspace(0, np.pi, 100) | |
y = np.ones((2 * n, x.size)) | |
for fun_jac in [None, big_fun_with_parameters_jac]: | |
for bc_jac in [None, big_bc_with_parameters_jac]: | |
sol = solve_bvp(big_fun_with_parameters, big_bc_with_parameters, x, | |
y, p=[0.5, 0.5], fun_jac=fun_jac, bc_jac=bc_jac) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
assert_allclose(sol.p, [1, 1], rtol=1e-4) | |
sol_test = sol.sol(x_test) | |
for isol in range(0, n, 4): | |
assert_allclose(sol_test[isol], | |
big_sol_with_parameters(x_test, [1, 1])[0], | |
rtol=1e-4, atol=1e-4) | |
assert_allclose(sol_test[isol + 2], | |
big_sol_with_parameters(x_test, [1, 1])[1], | |
rtol=1e-4, atol=1e-4) | |
f_test = big_fun_with_parameters(x_test, sol_test, [1, 1]) | |
r = sol.sol(x_test, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_(np.all(sol.rms_residuals < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_shock_layer(): | |
x = np.linspace(-1, 1, 5) | |
x_test = np.linspace(-1, 1, 100) | |
y = np.zeros((2, x.size)) | |
sol = solve_bvp(shock_fun, shock_bc, x, y) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
assert_(sol.x.size < 110) | |
sol_test = sol.sol(x_test) | |
assert_allclose(sol_test[0], shock_sol(x_test), rtol=1e-5, atol=1e-5) | |
f_test = shock_fun(x_test, sol_test) | |
r = sol.sol(x_test, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_nonlin_bc(): | |
x = np.linspace(0, 0.1, 5) | |
x_test = x | |
y = np.zeros([2, x.size]) | |
sol = solve_bvp(nonlin_bc_fun, nonlin_bc_bc, x, y) | |
assert_equal(sol.status, 0) | |
assert_(sol.success) | |
assert_(sol.x.size < 8) | |
sol_test = sol.sol(x_test) | |
assert_allclose(sol_test[0], nonlin_bc_sol(x_test), rtol=1e-5, atol=1e-5) | |
f_test = nonlin_bc_fun(x_test, sol_test) | |
r = sol.sol(x_test, 1) - f_test | |
rel_res = r / (1 + np.abs(f_test)) | |
norm_res = np.sum(rel_res ** 2, axis=0) ** 0.5 | |
assert_(np.all(norm_res < 1e-3)) | |
assert_allclose(sol.sol(sol.x), sol.y, rtol=1e-10, atol=1e-10) | |
assert_allclose(sol.sol(sol.x, 1), sol.yp, rtol=1e-10, atol=1e-10) | |
def test_verbose(): | |
# Smoke test that checks the printing does something and does not crash | |
x = np.linspace(0, 1, 5) | |
y = np.zeros((2, x.shape[0])) | |
for verbose in [0, 1, 2]: | |
old_stdout = sys.stdout | |
sys.stdout = StringIO() | |
try: | |
sol = solve_bvp(exp_fun, exp_bc, x, y, verbose=verbose) | |
text = sys.stdout.getvalue() | |
finally: | |
sys.stdout = old_stdout | |
assert_(sol.success) | |
if verbose == 0: | |
assert_(not text, text) | |
if verbose >= 1: | |
assert_("Solved in" in text, text) | |
if verbose >= 2: | |
assert_("Max residual" in text, text) | |