peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/integrate
/tests
/test_quadpack.py
import sys | |
import math | |
import numpy as np | |
from numpy import sqrt, cos, sin, arctan, exp, log, pi | |
from numpy.testing import (assert_, | |
assert_allclose, assert_array_less, assert_almost_equal) | |
import pytest | |
from scipy.integrate import quad, dblquad, tplquad, nquad | |
from scipy.special import erf, erfc | |
from scipy._lib._ccallback import LowLevelCallable | |
import ctypes | |
import ctypes.util | |
from scipy._lib._ccallback_c import sine_ctypes | |
import scipy.integrate._test_multivariate as clib_test | |
def assert_quad(value_and_err, tabled_value, error_tolerance=1.5e-8): | |
value, err = value_and_err | |
assert_allclose(value, tabled_value, atol=err, rtol=0) | |
if error_tolerance is not None: | |
assert_array_less(err, error_tolerance) | |
def get_clib_test_routine(name, restype, *argtypes): | |
ptr = getattr(clib_test, name) | |
return ctypes.cast(ptr, ctypes.CFUNCTYPE(restype, *argtypes)) | |
class TestCtypesQuad: | |
def setup_method(self): | |
if sys.platform == 'win32': | |
files = ['api-ms-win-crt-math-l1-1-0.dll'] | |
elif sys.platform == 'darwin': | |
files = ['libm.dylib'] | |
else: | |
files = ['libm.so', 'libm.so.6'] | |
for file in files: | |
try: | |
self.lib = ctypes.CDLL(file) | |
break | |
except OSError: | |
pass | |
else: | |
# This test doesn't work on some Linux platforms (Fedora for | |
# example) that put an ld script in libm.so - see gh-5370 | |
pytest.skip("Ctypes can't import libm.so") | |
restype = ctypes.c_double | |
argtypes = (ctypes.c_double,) | |
for name in ['sin', 'cos', 'tan']: | |
func = getattr(self.lib, name) | |
func.restype = restype | |
func.argtypes = argtypes | |
def test_typical(self): | |
assert_quad(quad(self.lib.sin, 0, 5), quad(math.sin, 0, 5)[0]) | |
assert_quad(quad(self.lib.cos, 0, 5), quad(math.cos, 0, 5)[0]) | |
assert_quad(quad(self.lib.tan, 0, 1), quad(math.tan, 0, 1)[0]) | |
def test_ctypes_sine(self): | |
quad(LowLevelCallable(sine_ctypes), 0, 1) | |
def test_ctypes_variants(self): | |
sin_0 = get_clib_test_routine('_sin_0', ctypes.c_double, | |
ctypes.c_double, ctypes.c_void_p) | |
sin_1 = get_clib_test_routine('_sin_1', ctypes.c_double, | |
ctypes.c_int, ctypes.POINTER(ctypes.c_double), | |
ctypes.c_void_p) | |
sin_2 = get_clib_test_routine('_sin_2', ctypes.c_double, | |
ctypes.c_double) | |
sin_3 = get_clib_test_routine('_sin_3', ctypes.c_double, | |
ctypes.c_int, ctypes.POINTER(ctypes.c_double)) | |
sin_4 = get_clib_test_routine('_sin_3', ctypes.c_double, | |
ctypes.c_int, ctypes.c_double) | |
all_sigs = [sin_0, sin_1, sin_2, sin_3, sin_4] | |
legacy_sigs = [sin_2, sin_4] | |
legacy_only_sigs = [sin_4] | |
# LowLevelCallables work for new signatures | |
for j, func in enumerate(all_sigs): | |
callback = LowLevelCallable(func) | |
if func in legacy_only_sigs: | |
pytest.raises(ValueError, quad, callback, 0, pi) | |
else: | |
assert_allclose(quad(callback, 0, pi)[0], 2.0) | |
# Plain ctypes items work only for legacy signatures | |
for j, func in enumerate(legacy_sigs): | |
if func in legacy_sigs: | |
assert_allclose(quad(func, 0, pi)[0], 2.0) | |
else: | |
pytest.raises(ValueError, quad, func, 0, pi) | |
class TestMultivariateCtypesQuad: | |
def setup_method(self): | |
restype = ctypes.c_double | |
argtypes = (ctypes.c_int, ctypes.c_double) | |
for name in ['_multivariate_typical', '_multivariate_indefinite', | |
'_multivariate_sin']: | |
func = get_clib_test_routine(name, restype, *argtypes) | |
setattr(self, name, func) | |
def test_typical(self): | |
# 1) Typical function with two extra arguments: | |
assert_quad(quad(self._multivariate_typical, 0, pi, (2, 1.8)), | |
0.30614353532540296487) | |
def test_indefinite(self): | |
# 2) Infinite integration limits --- Euler's constant | |
assert_quad(quad(self._multivariate_indefinite, 0, np.inf), | |
0.577215664901532860606512) | |
def test_threadsafety(self): | |
# Ensure multivariate ctypes are threadsafe | |
def threadsafety(y): | |
return y + quad(self._multivariate_sin, 0, 1)[0] | |
assert_quad(quad(threadsafety, 0, 1), 0.9596976941318602) | |
class TestQuad: | |
def test_typical(self): | |
# 1) Typical function with two extra arguments: | |
def myfunc(x, n, z): # Bessel function integrand | |
return cos(n*x-z*sin(x))/pi | |
assert_quad(quad(myfunc, 0, pi, (2, 1.8)), 0.30614353532540296487) | |
def test_indefinite(self): | |
# 2) Infinite integration limits --- Euler's constant | |
def myfunc(x): # Euler's constant integrand | |
return -exp(-x)*log(x) | |
assert_quad(quad(myfunc, 0, np.inf), 0.577215664901532860606512) | |
def test_singular(self): | |
# 3) Singular points in region of integration. | |
def myfunc(x): | |
if 0 < x < 2.5: | |
return sin(x) | |
elif 2.5 <= x <= 5.0: | |
return exp(-x) | |
else: | |
return 0.0 | |
assert_quad(quad(myfunc, 0, 10, points=[2.5, 5.0]), | |
1 - cos(2.5) + exp(-2.5) - exp(-5.0)) | |
def test_sine_weighted_finite(self): | |
# 4) Sine weighted integral (finite limits) | |
def myfunc(x, a): | |
return exp(a*(x-1)) | |
ome = 2.0**3.4 | |
assert_quad(quad(myfunc, 0, 1, args=20, weight='sin', wvar=ome), | |
(20*sin(ome)-ome*cos(ome)+ome*exp(-20))/(20**2 + ome**2)) | |
def test_sine_weighted_infinite(self): | |
# 5) Sine weighted integral (infinite limits) | |
def myfunc(x, a): | |
return exp(-x*a) | |
a = 4.0 | |
ome = 3.0 | |
assert_quad(quad(myfunc, 0, np.inf, args=a, weight='sin', wvar=ome), | |
ome/(a**2 + ome**2)) | |
def test_cosine_weighted_infinite(self): | |
# 6) Cosine weighted integral (negative infinite limits) | |
def myfunc(x, a): | |
return exp(x*a) | |
a = 2.5 | |
ome = 2.3 | |
assert_quad(quad(myfunc, -np.inf, 0, args=a, weight='cos', wvar=ome), | |
a/(a**2 + ome**2)) | |
def test_algebraic_log_weight(self): | |
# 6) Algebraic-logarithmic weight. | |
def myfunc(x, a): | |
return 1/(1+x+2**(-a)) | |
a = 1.5 | |
assert_quad(quad(myfunc, -1, 1, args=a, weight='alg', | |
wvar=(-0.5, -0.5)), | |
pi/sqrt((1+2**(-a))**2 - 1)) | |
def test_cauchypv_weight(self): | |
# 7) Cauchy prinicpal value weighting w(x) = 1/(x-c) | |
def myfunc(x, a): | |
return 2.0**(-a)/((x-1)**2+4.0**(-a)) | |
a = 0.4 | |
tabledValue = ((2.0**(-0.4)*log(1.5) - | |
2.0**(-1.4)*log((4.0**(-a)+16) / (4.0**(-a)+1)) - | |
arctan(2.0**(a+2)) - | |
arctan(2.0**a)) / | |
(4.0**(-a) + 1)) | |
assert_quad(quad(myfunc, 0, 5, args=0.4, weight='cauchy', wvar=2.0), | |
tabledValue, error_tolerance=1.9e-8) | |
def test_b_less_than_a(self): | |
def f(x, p, q): | |
return p * np.exp(-q*x) | |
val_1, err_1 = quad(f, 0, np.inf, args=(2, 3)) | |
val_2, err_2 = quad(f, np.inf, 0, args=(2, 3)) | |
assert_allclose(val_1, -val_2, atol=max(err_1, err_2)) | |
def test_b_less_than_a_2(self): | |
def f(x, s): | |
return np.exp(-x**2 / 2 / s) / np.sqrt(2.*s) | |
val_1, err_1 = quad(f, -np.inf, np.inf, args=(2,)) | |
val_2, err_2 = quad(f, np.inf, -np.inf, args=(2,)) | |
assert_allclose(val_1, -val_2, atol=max(err_1, err_2)) | |
def test_b_less_than_a_3(self): | |
def f(x): | |
return 1.0 | |
val_1, err_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0)) | |
val_2, err_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0)) | |
assert_allclose(val_1, -val_2, atol=max(err_1, err_2)) | |
def test_b_less_than_a_full_output(self): | |
def f(x): | |
return 1.0 | |
res_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0), full_output=True) | |
res_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0), full_output=True) | |
err = max(res_1[1], res_2[1]) | |
assert_allclose(res_1[0], -res_2[0], atol=err) | |
def test_double_integral(self): | |
# 8) Double Integral test | |
def simpfunc(y, x): # Note order of arguments. | |
return x+y | |
a, b = 1.0, 2.0 | |
assert_quad(dblquad(simpfunc, a, b, lambda x: x, lambda x: 2*x), | |
5/6.0 * (b**3.0-a**3.0)) | |
def test_double_integral2(self): | |
def func(x0, x1, t0, t1): | |
return x0 + x1 + t0 + t1 | |
def g(x): | |
return x | |
def h(x): | |
return 2 * x | |
args = 1, 2 | |
assert_quad(dblquad(func, 1, 2, g, h, args=args),35./6 + 9*.5) | |
def test_double_integral3(self): | |
def func(x0, x1): | |
return x0 + x1 + 1 + 2 | |
assert_quad(dblquad(func, 1, 2, 1, 2),6.) | |
def test_double_integral_improper( | |
self, x_lower, x_upper, y_lower, y_upper, expected | |
): | |
# The Gaussian Integral. | |
def f(x, y): | |
return np.exp(-x ** 2 - y ** 2) | |
assert_quad( | |
dblquad(f, x_lower, x_upper, y_lower, y_upper), | |
expected, | |
error_tolerance=3e-8 | |
) | |
def test_triple_integral(self): | |
# 9) Triple Integral test | |
def simpfunc(z, y, x, t): # Note order of arguments. | |
return (x+y+z)*t | |
a, b = 1.0, 2.0 | |
assert_quad(tplquad(simpfunc, a, b, | |
lambda x: x, lambda x: 2*x, | |
lambda x, y: x - y, lambda x, y: x + y, | |
(2.,)), | |
2*8/3.0 * (b**4.0 - a**4.0)) | |
def test_triple_integral_improper( | |
self, | |
x_lower, | |
x_upper, | |
y_lower, | |
y_upper, | |
z_lower, | |
z_upper, | |
expected | |
): | |
# The Gaussian Integral. | |
def f(x, y, z): | |
return np.exp(-x ** 2 - y ** 2 - z ** 2) | |
assert_quad( | |
tplquad(f, x_lower, x_upper, y_lower, y_upper, z_lower, z_upper), | |
expected, | |
error_tolerance=6e-8 | |
) | |
def test_complex(self): | |
def tfunc(x): | |
return np.exp(1j*x) | |
assert np.allclose( | |
quad(tfunc, 0, np.pi/2, complex_func=True)[0], | |
1+1j) | |
# We consider a divergent case in order to force quadpack | |
# to return an error message. The output is compared | |
# against what is returned by explicit integration | |
# of the parts. | |
kwargs = {'a': 0, 'b': np.inf, 'full_output': True, | |
'weight': 'cos', 'wvar': 1} | |
res_c = quad(tfunc, complex_func=True, **kwargs) | |
res_r = quad(lambda x: np.real(np.exp(1j*x)), | |
complex_func=False, | |
**kwargs) | |
res_i = quad(lambda x: np.imag(np.exp(1j*x)), | |
complex_func=False, | |
**kwargs) | |
np.testing.assert_equal(res_c[0], res_r[0] + 1j*res_i[0]) | |
np.testing.assert_equal(res_c[1], res_r[1] + 1j*res_i[1]) | |
assert len(res_c[2]['real']) == len(res_r[2:]) == 3 | |
assert res_c[2]['real'][2] == res_r[4] | |
assert res_c[2]['real'][1] == res_r[3] | |
assert res_c[2]['real'][0]['lst'] == res_r[2]['lst'] | |
assert len(res_c[2]['imag']) == len(res_i[2:]) == 1 | |
assert res_c[2]['imag'][0]['lst'] == res_i[2]['lst'] | |
class TestNQuad: | |
def test_fixed_limits(self): | |
def func1(x0, x1, x2, x3): | |
val = (x0**2 + x1*x2 - x3**3 + np.sin(x0) + | |
(1 if (x0 - 0.2*x3 - 0.5 - 0.25*x1 > 0) else 0)) | |
return val | |
def opts_basic(*args): | |
return {'points': [0.2*args[2] + 0.5 + 0.25*args[0]]} | |
res = nquad(func1, [[0, 1], [-1, 1], [.13, .8], [-.15, 1]], | |
opts=[opts_basic, {}, {}, {}], full_output=True) | |
assert_quad(res[:-1], 1.5267454070738635) | |
assert_(res[-1]['neval'] > 0 and res[-1]['neval'] < 4e5) | |
def test_variable_limits(self): | |
scale = .1 | |
def func2(x0, x1, x2, x3, t0, t1): | |
val = (x0*x1*x3**2 + np.sin(x2) + 1 + | |
(1 if x0 + t1*x1 - t0 > 0 else 0)) | |
return val | |
def lim0(x1, x2, x3, t0, t1): | |
return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1, | |
scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1] | |
def lim1(x2, x3, t0, t1): | |
return [scale * (t0*x2 + t1*x3) - 1, | |
scale * (t0*x2 + t1*x3) + 1] | |
def lim2(x3, t0, t1): | |
return [scale * (x3 + t0**2*t1**3) - 1, | |
scale * (x3 + t0**2*t1**3) + 1] | |
def lim3(t0, t1): | |
return [scale * (t0 + t1) - 1, scale * (t0 + t1) + 1] | |
def opts0(x1, x2, x3, t0, t1): | |
return {'points': [t0 - t1*x1]} | |
def opts1(x2, x3, t0, t1): | |
return {} | |
def opts2(x3, t0, t1): | |
return {} | |
def opts3(t0, t1): | |
return {} | |
res = nquad(func2, [lim0, lim1, lim2, lim3], args=(0, 0), | |
opts=[opts0, opts1, opts2, opts3]) | |
assert_quad(res, 25.066666666666663) | |
def test_square_separate_ranges_and_opts(self): | |
def f(y, x): | |
return 1.0 | |
assert_quad(nquad(f, [[-1, 1], [-1, 1]], opts=[{}, {}]), 4.0) | |
def test_square_aliased_ranges_and_opts(self): | |
def f(y, x): | |
return 1.0 | |
r = [-1, 1] | |
opt = {} | |
assert_quad(nquad(f, [r, r], opts=[opt, opt]), 4.0) | |
def test_square_separate_fn_ranges_and_opts(self): | |
def f(y, x): | |
return 1.0 | |
def fn_range0(*args): | |
return (-1, 1) | |
def fn_range1(*args): | |
return (-1, 1) | |
def fn_opt0(*args): | |
return {} | |
def fn_opt1(*args): | |
return {} | |
ranges = [fn_range0, fn_range1] | |
opts = [fn_opt0, fn_opt1] | |
assert_quad(nquad(f, ranges, opts=opts), 4.0) | |
def test_square_aliased_fn_ranges_and_opts(self): | |
def f(y, x): | |
return 1.0 | |
def fn_range(*args): | |
return (-1, 1) | |
def fn_opt(*args): | |
return {} | |
ranges = [fn_range, fn_range] | |
opts = [fn_opt, fn_opt] | |
assert_quad(nquad(f, ranges, opts=opts), 4.0) | |
def test_matching_quad(self): | |
def func(x): | |
return x**2 + 1 | |
res, reserr = quad(func, 0, 4) | |
res2, reserr2 = nquad(func, ranges=[[0, 4]]) | |
assert_almost_equal(res, res2) | |
assert_almost_equal(reserr, reserr2) | |
def test_matching_dblquad(self): | |
def func2d(x0, x1): | |
return x0**2 + x1**3 - x0 * x1 + 1 | |
res, reserr = dblquad(func2d, -2, 2, lambda x: -3, lambda x: 3) | |
res2, reserr2 = nquad(func2d, [[-3, 3], (-2, 2)]) | |
assert_almost_equal(res, res2) | |
assert_almost_equal(reserr, reserr2) | |
def test_matching_tplquad(self): | |
def func3d(x0, x1, x2, c0, c1): | |
return x0**2 + c0 * x1**3 - x0 * x1 + 1 + c1 * np.sin(x2) | |
res = tplquad(func3d, -1, 2, lambda x: -2, lambda x: 2, | |
lambda x, y: -np.pi, lambda x, y: np.pi, | |
args=(2, 3)) | |
res2 = nquad(func3d, [[-np.pi, np.pi], [-2, 2], (-1, 2)], args=(2, 3)) | |
assert_almost_equal(res, res2) | |
def test_dict_as_opts(self): | |
try: | |
nquad(lambda x, y: x * y, [[0, 1], [0, 1]], opts={'epsrel': 0.0001}) | |
except TypeError: | |
assert False | |