peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/cluster
/_feature_agglomeration.py
""" | |
Feature agglomeration. Base classes and functions for performing feature | |
agglomeration. | |
""" | |
# Author: V. Michel, A. Gramfort | |
# License: BSD 3 clause | |
import warnings | |
import numpy as np | |
from scipy.sparse import issparse | |
from ..base import TransformerMixin | |
from ..utils import metadata_routing | |
from ..utils.validation import check_is_fitted | |
############################################################################### | |
# Mixin class for feature agglomeration. | |
class AgglomerationTransform(TransformerMixin): | |
""" | |
A class for feature agglomeration via the transform interface. | |
""" | |
# This prevents ``set_split_inverse_transform`` to be generated for the | |
# non-standard ``Xred`` arg on ``inverse_transform``. | |
# TODO(1.5): remove when Xred is removed for inverse_transform. | |
__metadata_request__inverse_transform = {"Xred": metadata_routing.UNUSED} | |
def transform(self, X): | |
""" | |
Transform a new matrix using the built clustering. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) or \ | |
(n_samples, n_samples) | |
A M by N array of M observations in N dimensions or a length | |
M array of M one-dimensional observations. | |
Returns | |
------- | |
Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) | |
The pooled values for each feature cluster. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, reset=False) | |
if self.pooling_func == np.mean and not issparse(X): | |
size = np.bincount(self.labels_) | |
n_samples = X.shape[0] | |
# a fast way to compute the mean of grouped features | |
nX = np.array( | |
[np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] | |
) | |
else: | |
nX = [ | |
self.pooling_func(X[:, self.labels_ == l], axis=1) | |
for l in np.unique(self.labels_) | |
] | |
nX = np.array(nX).T | |
return nX | |
def inverse_transform(self, Xt=None, Xred=None): | |
""" | |
Inverse the transformation and return a vector of size `n_features`. | |
Parameters | |
---------- | |
Xt : array-like of shape (n_samples, n_clusters) or (n_clusters,) | |
The values to be assigned to each cluster of samples. | |
Xred : deprecated | |
Use `Xt` instead. | |
.. deprecated:: 1.3 | |
Returns | |
------- | |
X : ndarray of shape (n_samples, n_features) or (n_features,) | |
A vector of size `n_samples` with the values of `Xred` assigned to | |
each of the cluster of samples. | |
""" | |
if Xt is None and Xred is None: | |
raise TypeError("Missing required positional argument: Xt") | |
if Xred is not None and Xt is not None: | |
raise ValueError("Please provide only `Xt`, and not `Xred`.") | |
if Xred is not None: | |
warnings.warn( | |
( | |
"Input argument `Xred` was renamed to `Xt` in v1.3 and will be" | |
" removed in v1.5." | |
), | |
FutureWarning, | |
) | |
Xt = Xred | |
check_is_fitted(self) | |
unil, inverse = np.unique(self.labels_, return_inverse=True) | |
return Xt[..., inverse] | |