peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/preprocessing
/_label.py
# Authors: Alexandre Gramfort <[email protected]> | |
# Mathieu Blondel <[email protected]> | |
# Olivier Grisel <[email protected]> | |
# Andreas Mueller <[email protected]> | |
# Joel Nothman <[email protected]> | |
# Hamzeh Alsalhi <[email protected]> | |
# License: BSD 3 clause | |
import array | |
import itertools | |
import warnings | |
from collections import defaultdict | |
from numbers import Integral | |
import numpy as np | |
import scipy.sparse as sp | |
from ..base import BaseEstimator, TransformerMixin, _fit_context | |
from ..utils import column_or_1d | |
from ..utils._encode import _encode, _unique | |
from ..utils._param_validation import Interval, validate_params | |
from ..utils.multiclass import type_of_target, unique_labels | |
from ..utils.sparsefuncs import min_max_axis | |
from ..utils.validation import _num_samples, check_array, check_is_fitted | |
__all__ = [ | |
"label_binarize", | |
"LabelBinarizer", | |
"LabelEncoder", | |
"MultiLabelBinarizer", | |
] | |
class LabelEncoder(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None): | |
"""Encode target labels with value between 0 and n_classes-1. | |
This transformer should be used to encode target values, *i.e.* `y`, and | |
not the input `X`. | |
Read more in the :ref:`User Guide <preprocessing_targets>`. | |
.. versionadded:: 0.12 | |
Attributes | |
---------- | |
classes_ : ndarray of shape (n_classes,) | |
Holds the label for each class. | |
See Also | |
-------- | |
OrdinalEncoder : Encode categorical features using an ordinal encoding | |
scheme. | |
OneHotEncoder : Encode categorical features as a one-hot numeric array. | |
Examples | |
-------- | |
`LabelEncoder` can be used to normalize labels. | |
>>> from sklearn.preprocessing import LabelEncoder | |
>>> le = LabelEncoder() | |
>>> le.fit([1, 2, 2, 6]) | |
LabelEncoder() | |
>>> le.classes_ | |
array([1, 2, 6]) | |
>>> le.transform([1, 1, 2, 6]) | |
array([0, 0, 1, 2]...) | |
>>> le.inverse_transform([0, 0, 1, 2]) | |
array([1, 1, 2, 6]) | |
It can also be used to transform non-numerical labels (as long as they are | |
hashable and comparable) to numerical labels. | |
>>> le = LabelEncoder() | |
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) | |
LabelEncoder() | |
>>> list(le.classes_) | |
['amsterdam', 'paris', 'tokyo'] | |
>>> le.transform(["tokyo", "tokyo", "paris"]) | |
array([2, 2, 1]...) | |
>>> list(le.inverse_transform([2, 2, 1])) | |
['tokyo', 'tokyo', 'paris'] | |
""" | |
def fit(self, y): | |
"""Fit label encoder. | |
Parameters | |
---------- | |
y : array-like of shape (n_samples,) | |
Target values. | |
Returns | |
------- | |
self : returns an instance of self. | |
Fitted label encoder. | |
""" | |
y = column_or_1d(y, warn=True) | |
self.classes_ = _unique(y) | |
return self | |
def fit_transform(self, y): | |
"""Fit label encoder and return encoded labels. | |
Parameters | |
---------- | |
y : array-like of shape (n_samples,) | |
Target values. | |
Returns | |
------- | |
y : array-like of shape (n_samples,) | |
Encoded labels. | |
""" | |
y = column_or_1d(y, warn=True) | |
self.classes_, y = _unique(y, return_inverse=True) | |
return y | |
def transform(self, y): | |
"""Transform labels to normalized encoding. | |
Parameters | |
---------- | |
y : array-like of shape (n_samples,) | |
Target values. | |
Returns | |
------- | |
y : array-like of shape (n_samples,) | |
Labels as normalized encodings. | |
""" | |
check_is_fitted(self) | |
y = column_or_1d(y, dtype=self.classes_.dtype, warn=True) | |
# transform of empty array is empty array | |
if _num_samples(y) == 0: | |
return np.array([]) | |
return _encode(y, uniques=self.classes_) | |
def inverse_transform(self, y): | |
"""Transform labels back to original encoding. | |
Parameters | |
---------- | |
y : ndarray of shape (n_samples,) | |
Target values. | |
Returns | |
------- | |
y : ndarray of shape (n_samples,) | |
Original encoding. | |
""" | |
check_is_fitted(self) | |
y = column_or_1d(y, warn=True) | |
# inverse transform of empty array is empty array | |
if _num_samples(y) == 0: | |
return np.array([]) | |
diff = np.setdiff1d(y, np.arange(len(self.classes_))) | |
if len(diff): | |
raise ValueError("y contains previously unseen labels: %s" % str(diff)) | |
y = np.asarray(y) | |
return self.classes_[y] | |
def _more_tags(self): | |
return {"X_types": ["1dlabels"]} | |
class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None): | |
"""Binarize labels in a one-vs-all fashion. | |
Several regression and binary classification algorithms are | |
available in scikit-learn. A simple way to extend these algorithms | |
to the multi-class classification case is to use the so-called | |
one-vs-all scheme. | |
At learning time, this simply consists in learning one regressor | |
or binary classifier per class. In doing so, one needs to convert | |
multi-class labels to binary labels (belong or does not belong | |
to the class). `LabelBinarizer` makes this process easy with the | |
transform method. | |
At prediction time, one assigns the class for which the corresponding | |
model gave the greatest confidence. `LabelBinarizer` makes this easy | |
with the :meth:`inverse_transform` method. | |
Read more in the :ref:`User Guide <preprocessing_targets>`. | |
Parameters | |
---------- | |
neg_label : int, default=0 | |
Value with which negative labels must be encoded. | |
pos_label : int, default=1 | |
Value with which positive labels must be encoded. | |
sparse_output : bool, default=False | |
True if the returned array from transform is desired to be in sparse | |
CSR format. | |
Attributes | |
---------- | |
classes_ : ndarray of shape (n_classes,) | |
Holds the label for each class. | |
y_type_ : str | |
Represents the type of the target data as evaluated by | |
:func:`~sklearn.utils.multiclass.type_of_target`. Possible type are | |
'continuous', 'continuous-multioutput', 'binary', 'multiclass', | |
'multiclass-multioutput', 'multilabel-indicator', and 'unknown'. | |
sparse_input_ : bool | |
`True` if the input data to transform is given as a sparse matrix, | |
`False` otherwise. | |
See Also | |
-------- | |
label_binarize : Function to perform the transform operation of | |
LabelBinarizer with fixed classes. | |
OneHotEncoder : Encode categorical features using a one-hot aka one-of-K | |
scheme. | |
Examples | |
-------- | |
>>> from sklearn.preprocessing import LabelBinarizer | |
>>> lb = LabelBinarizer() | |
>>> lb.fit([1, 2, 6, 4, 2]) | |
LabelBinarizer() | |
>>> lb.classes_ | |
array([1, 2, 4, 6]) | |
>>> lb.transform([1, 6]) | |
array([[1, 0, 0, 0], | |
[0, 0, 0, 1]]) | |
Binary targets transform to a column vector | |
>>> lb = LabelBinarizer() | |
>>> lb.fit_transform(['yes', 'no', 'no', 'yes']) | |
array([[1], | |
[0], | |
[0], | |
[1]]) | |
Passing a 2D matrix for multilabel classification | |
>>> import numpy as np | |
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) | |
LabelBinarizer() | |
>>> lb.classes_ | |
array([0, 1, 2]) | |
>>> lb.transform([0, 1, 2, 1]) | |
array([[1, 0, 0], | |
[0, 1, 0], | |
[0, 0, 1], | |
[0, 1, 0]]) | |
""" | |
_parameter_constraints: dict = { | |
"neg_label": [Integral], | |
"pos_label": [Integral], | |
"sparse_output": ["boolean"], | |
} | |
def __init__(self, *, neg_label=0, pos_label=1, sparse_output=False): | |
self.neg_label = neg_label | |
self.pos_label = pos_label | |
self.sparse_output = sparse_output | |
def fit(self, y): | |
"""Fit label binarizer. | |
Parameters | |
---------- | |
y : ndarray of shape (n_samples,) or (n_samples, n_classes) | |
Target values. The 2-d matrix should only contain 0 and 1, | |
represents multilabel classification. | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
if self.neg_label >= self.pos_label: | |
raise ValueError( | |
f"neg_label={self.neg_label} must be strictly less than " | |
f"pos_label={self.pos_label}." | |
) | |
if self.sparse_output and (self.pos_label == 0 or self.neg_label != 0): | |
raise ValueError( | |
"Sparse binarization is only supported with non " | |
"zero pos_label and zero neg_label, got " | |
f"pos_label={self.pos_label} and neg_label={self.neg_label}" | |
) | |
self.y_type_ = type_of_target(y, input_name="y") | |
if "multioutput" in self.y_type_: | |
raise ValueError( | |
"Multioutput target data is not supported with label binarization" | |
) | |
if _num_samples(y) == 0: | |
raise ValueError("y has 0 samples: %r" % y) | |
self.sparse_input_ = sp.issparse(y) | |
self.classes_ = unique_labels(y) | |
return self | |
def fit_transform(self, y): | |
"""Fit label binarizer/transform multi-class labels to binary labels. | |
The output of transform is sometimes referred to as | |
the 1-of-K coding scheme. | |
Parameters | |
---------- | |
y : {ndarray, sparse matrix} of shape (n_samples,) or \ | |
(n_samples, n_classes) | |
Target values. The 2-d matrix should only contain 0 and 1, | |
represents multilabel classification. Sparse matrix can be | |
CSR, CSC, COO, DOK, or LIL. | |
Returns | |
------- | |
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) | |
Shape will be (n_samples, 1) for binary problems. Sparse matrix | |
will be of CSR format. | |
""" | |
return self.fit(y).transform(y) | |
def transform(self, y): | |
"""Transform multi-class labels to binary labels. | |
The output of transform is sometimes referred to by some authors as | |
the 1-of-K coding scheme. | |
Parameters | |
---------- | |
y : {array, sparse matrix} of shape (n_samples,) or \ | |
(n_samples, n_classes) | |
Target values. The 2-d matrix should only contain 0 and 1, | |
represents multilabel classification. Sparse matrix can be | |
CSR, CSC, COO, DOK, or LIL. | |
Returns | |
------- | |
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) | |
Shape will be (n_samples, 1) for binary problems. Sparse matrix | |
will be of CSR format. | |
""" | |
check_is_fitted(self) | |
y_is_multilabel = type_of_target(y).startswith("multilabel") | |
if y_is_multilabel and not self.y_type_.startswith("multilabel"): | |
raise ValueError("The object was not fitted with multilabel input.") | |
return label_binarize( | |
y, | |
classes=self.classes_, | |
pos_label=self.pos_label, | |
neg_label=self.neg_label, | |
sparse_output=self.sparse_output, | |
) | |
def inverse_transform(self, Y, threshold=None): | |
"""Transform binary labels back to multi-class labels. | |
Parameters | |
---------- | |
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) | |
Target values. All sparse matrices are converted to CSR before | |
inverse transformation. | |
threshold : float, default=None | |
Threshold used in the binary and multi-label cases. | |
Use 0 when ``Y`` contains the output of :term:`decision_function` | |
(classifier). | |
Use 0.5 when ``Y`` contains the output of :term:`predict_proba`. | |
If None, the threshold is assumed to be half way between | |
neg_label and pos_label. | |
Returns | |
------- | |
y : {ndarray, sparse matrix} of shape (n_samples,) | |
Target values. Sparse matrix will be of CSR format. | |
Notes | |
----- | |
In the case when the binary labels are fractional | |
(probabilistic), :meth:`inverse_transform` chooses the class with the | |
greatest value. Typically, this allows to use the output of a | |
linear model's :term:`decision_function` method directly as the input | |
of :meth:`inverse_transform`. | |
""" | |
check_is_fitted(self) | |
if threshold is None: | |
threshold = (self.pos_label + self.neg_label) / 2.0 | |
if self.y_type_ == "multiclass": | |
y_inv = _inverse_binarize_multiclass(Y, self.classes_) | |
else: | |
y_inv = _inverse_binarize_thresholding( | |
Y, self.y_type_, self.classes_, threshold | |
) | |
if self.sparse_input_: | |
y_inv = sp.csr_matrix(y_inv) | |
elif sp.issparse(y_inv): | |
y_inv = y_inv.toarray() | |
return y_inv | |
def _more_tags(self): | |
return {"X_types": ["1dlabels"]} | |
def label_binarize(y, *, classes, neg_label=0, pos_label=1, sparse_output=False): | |
"""Binarize labels in a one-vs-all fashion. | |
Several regression and binary classification algorithms are | |
available in scikit-learn. A simple way to extend these algorithms | |
to the multi-class classification case is to use the so-called | |
one-vs-all scheme. | |
This function makes it possible to compute this transformation for a | |
fixed set of class labels known ahead of time. | |
Parameters | |
---------- | |
y : array-like | |
Sequence of integer labels or multilabel data to encode. | |
classes : array-like of shape (n_classes,) | |
Uniquely holds the label for each class. | |
neg_label : int, default=0 | |
Value with which negative labels must be encoded. | |
pos_label : int, default=1 | |
Value with which positive labels must be encoded. | |
sparse_output : bool, default=False, | |
Set to true if output binary array is desired in CSR sparse format. | |
Returns | |
------- | |
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) | |
Shape will be (n_samples, 1) for binary problems. Sparse matrix will | |
be of CSR format. | |
See Also | |
-------- | |
LabelBinarizer : Class used to wrap the functionality of label_binarize and | |
allow for fitting to classes independently of the transform operation. | |
Examples | |
-------- | |
>>> from sklearn.preprocessing import label_binarize | |
>>> label_binarize([1, 6], classes=[1, 2, 4, 6]) | |
array([[1, 0, 0, 0], | |
[0, 0, 0, 1]]) | |
The class ordering is preserved: | |
>>> label_binarize([1, 6], classes=[1, 6, 4, 2]) | |
array([[1, 0, 0, 0], | |
[0, 1, 0, 0]]) | |
Binary targets transform to a column vector | |
>>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) | |
array([[1], | |
[0], | |
[0], | |
[1]]) | |
""" | |
if not isinstance(y, list): | |
# XXX Workaround that will be removed when list of list format is | |
# dropped | |
y = check_array( | |
y, input_name="y", accept_sparse="csr", ensure_2d=False, dtype=None | |
) | |
else: | |
if _num_samples(y) == 0: | |
raise ValueError("y has 0 samples: %r" % y) | |
if neg_label >= pos_label: | |
raise ValueError( | |
"neg_label={0} must be strictly less than pos_label={1}.".format( | |
neg_label, pos_label | |
) | |
) | |
if sparse_output and (pos_label == 0 or neg_label != 0): | |
raise ValueError( | |
"Sparse binarization is only supported with non " | |
"zero pos_label and zero neg_label, got " | |
"pos_label={0} and neg_label={1}" | |
"".format(pos_label, neg_label) | |
) | |
# To account for pos_label == 0 in the dense case | |
pos_switch = pos_label == 0 | |
if pos_switch: | |
pos_label = -neg_label | |
y_type = type_of_target(y) | |
if "multioutput" in y_type: | |
raise ValueError( | |
"Multioutput target data is not supported with label binarization" | |
) | |
if y_type == "unknown": | |
raise ValueError("The type of target data is not known") | |
n_samples = y.shape[0] if sp.issparse(y) else len(y) | |
n_classes = len(classes) | |
classes = np.asarray(classes) | |
if y_type == "binary": | |
if n_classes == 1: | |
if sparse_output: | |
return sp.csr_matrix((n_samples, 1), dtype=int) | |
else: | |
Y = np.zeros((len(y), 1), dtype=int) | |
Y += neg_label | |
return Y | |
elif len(classes) >= 3: | |
y_type = "multiclass" | |
sorted_class = np.sort(classes) | |
if y_type == "multilabel-indicator": | |
y_n_classes = y.shape[1] if hasattr(y, "shape") else len(y[0]) | |
if classes.size != y_n_classes: | |
raise ValueError( | |
"classes {0} mismatch with the labels {1} found in the data".format( | |
classes, unique_labels(y) | |
) | |
) | |
if y_type in ("binary", "multiclass"): | |
y = column_or_1d(y) | |
# pick out the known labels from y | |
y_in_classes = np.isin(y, classes) | |
y_seen = y[y_in_classes] | |
indices = np.searchsorted(sorted_class, y_seen) | |
indptr = np.hstack((0, np.cumsum(y_in_classes))) | |
data = np.empty_like(indices) | |
data.fill(pos_label) | |
Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) | |
elif y_type == "multilabel-indicator": | |
Y = sp.csr_matrix(y) | |
if pos_label != 1: | |
data = np.empty_like(Y.data) | |
data.fill(pos_label) | |
Y.data = data | |
else: | |
raise ValueError( | |
"%s target data is not supported with label binarization" % y_type | |
) | |
if not sparse_output: | |
Y = Y.toarray() | |
Y = Y.astype(int, copy=False) | |
if neg_label != 0: | |
Y[Y == 0] = neg_label | |
if pos_switch: | |
Y[Y == pos_label] = 0 | |
else: | |
Y.data = Y.data.astype(int, copy=False) | |
# preserve label ordering | |
if np.any(classes != sorted_class): | |
indices = np.searchsorted(sorted_class, classes) | |
Y = Y[:, indices] | |
if y_type == "binary": | |
if sparse_output: | |
Y = Y.getcol(-1) | |
else: | |
Y = Y[:, -1].reshape((-1, 1)) | |
return Y | |
def _inverse_binarize_multiclass(y, classes): | |
"""Inverse label binarization transformation for multiclass. | |
Multiclass uses the maximal score instead of a threshold. | |
""" | |
classes = np.asarray(classes) | |
if sp.issparse(y): | |
# Find the argmax for each row in y where y is a CSR matrix | |
y = y.tocsr() | |
n_samples, n_outputs = y.shape | |
outputs = np.arange(n_outputs) | |
row_max = min_max_axis(y, 1)[1] | |
row_nnz = np.diff(y.indptr) | |
y_data_repeated_max = np.repeat(row_max, row_nnz) | |
# picks out all indices obtaining the maximum per row | |
y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) | |
# For corner case where last row has a max of 0 | |
if row_max[-1] == 0: | |
y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) | |
# Gets the index of the first argmax in each row from y_i_all_argmax | |
index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) | |
# first argmax of each row | |
y_ind_ext = np.append(y.indices, [0]) | |
y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] | |
# Handle rows of all 0 | |
y_i_argmax[np.where(row_nnz == 0)[0]] = 0 | |
# Handles rows with max of 0 that contain negative numbers | |
samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] | |
for i in samples: | |
ind = y.indices[y.indptr[i] : y.indptr[i + 1]] | |
y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] | |
return classes[y_i_argmax] | |
else: | |
return classes.take(y.argmax(axis=1), mode="clip") | |
def _inverse_binarize_thresholding(y, output_type, classes, threshold): | |
"""Inverse label binarization transformation using thresholding.""" | |
if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: | |
raise ValueError("output_type='binary', but y.shape = {0}".format(y.shape)) | |
if output_type != "binary" and y.shape[1] != len(classes): | |
raise ValueError( | |
"The number of class is not equal to the number of dimension of y." | |
) | |
classes = np.asarray(classes) | |
# Perform thresholding | |
if sp.issparse(y): | |
if threshold > 0: | |
if y.format not in ("csr", "csc"): | |
y = y.tocsr() | |
y.data = np.array(y.data > threshold, dtype=int) | |
y.eliminate_zeros() | |
else: | |
y = np.array(y.toarray() > threshold, dtype=int) | |
else: | |
y = np.array(y > threshold, dtype=int) | |
# Inverse transform data | |
if output_type == "binary": | |
if sp.issparse(y): | |
y = y.toarray() | |
if y.ndim == 2 and y.shape[1] == 2: | |
return classes[y[:, 1]] | |
else: | |
if len(classes) == 1: | |
return np.repeat(classes[0], len(y)) | |
else: | |
return classes[y.ravel()] | |
elif output_type == "multilabel-indicator": | |
return y | |
else: | |
raise ValueError("{0} format is not supported".format(output_type)) | |
class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None): | |
"""Transform between iterable of iterables and a multilabel format. | |
Although a list of sets or tuples is a very intuitive format for multilabel | |
data, it is unwieldy to process. This transformer converts between this | |
intuitive format and the supported multilabel format: a (samples x classes) | |
binary matrix indicating the presence of a class label. | |
Parameters | |
---------- | |
classes : array-like of shape (n_classes,), default=None | |
Indicates an ordering for the class labels. | |
All entries should be unique (cannot contain duplicate classes). | |
sparse_output : bool, default=False | |
Set to True if output binary array is desired in CSR sparse format. | |
Attributes | |
---------- | |
classes_ : ndarray of shape (n_classes,) | |
A copy of the `classes` parameter when provided. | |
Otherwise it corresponds to the sorted set of classes found | |
when fitting. | |
See Also | |
-------- | |
OneHotEncoder : Encode categorical features using a one-hot aka one-of-K | |
scheme. | |
Examples | |
-------- | |
>>> from sklearn.preprocessing import MultiLabelBinarizer | |
>>> mlb = MultiLabelBinarizer() | |
>>> mlb.fit_transform([(1, 2), (3,)]) | |
array([[1, 1, 0], | |
[0, 0, 1]]) | |
>>> mlb.classes_ | |
array([1, 2, 3]) | |
>>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}]) | |
array([[0, 1, 1], | |
[1, 0, 0]]) | |
>>> list(mlb.classes_) | |
['comedy', 'sci-fi', 'thriller'] | |
A common mistake is to pass in a list, which leads to the following issue: | |
>>> mlb = MultiLabelBinarizer() | |
>>> mlb.fit(['sci-fi', 'thriller', 'comedy']) | |
MultiLabelBinarizer() | |
>>> mlb.classes_ | |
array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't', | |
'y'], dtype=object) | |
To correct this, the list of labels should be passed in as: | |
>>> mlb = MultiLabelBinarizer() | |
>>> mlb.fit([['sci-fi', 'thriller', 'comedy']]) | |
MultiLabelBinarizer() | |
>>> mlb.classes_ | |
array(['comedy', 'sci-fi', 'thriller'], dtype=object) | |
""" | |
_parameter_constraints: dict = { | |
"classes": ["array-like", None], | |
"sparse_output": ["boolean"], | |
} | |
def __init__(self, *, classes=None, sparse_output=False): | |
self.classes = classes | |
self.sparse_output = sparse_output | |
def fit(self, y): | |
"""Fit the label sets binarizer, storing :term:`classes_`. | |
Parameters | |
---------- | |
y : iterable of iterables | |
A set of labels (any orderable and hashable object) for each | |
sample. If the `classes` parameter is set, `y` will not be | |
iterated. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
self._cached_dict = None | |
if self.classes is None: | |
classes = sorted(set(itertools.chain.from_iterable(y))) | |
elif len(set(self.classes)) < len(self.classes): | |
raise ValueError( | |
"The classes argument contains duplicate " | |
"classes. Remove these duplicates before passing " | |
"them to MultiLabelBinarizer." | |
) | |
else: | |
classes = self.classes | |
dtype = int if all(isinstance(c, int) for c in classes) else object | |
self.classes_ = np.empty(len(classes), dtype=dtype) | |
self.classes_[:] = classes | |
return self | |
def fit_transform(self, y): | |
"""Fit the label sets binarizer and transform the given label sets. | |
Parameters | |
---------- | |
y : iterable of iterables | |
A set of labels (any orderable and hashable object) for each | |
sample. If the `classes` parameter is set, `y` will not be | |
iterated. | |
Returns | |
------- | |
y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes) | |
A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` | |
is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR | |
format. | |
""" | |
if self.classes is not None: | |
return self.fit(y).transform(y) | |
self._cached_dict = None | |
# Automatically increment on new class | |
class_mapping = defaultdict(int) | |
class_mapping.default_factory = class_mapping.__len__ | |
yt = self._transform(y, class_mapping) | |
# sort classes and reorder columns | |
tmp = sorted(class_mapping, key=class_mapping.get) | |
# (make safe for tuples) | |
dtype = int if all(isinstance(c, int) for c in tmp) else object | |
class_mapping = np.empty(len(tmp), dtype=dtype) | |
class_mapping[:] = tmp | |
self.classes_, inverse = np.unique(class_mapping, return_inverse=True) | |
# ensure yt.indices keeps its current dtype | |
yt.indices = np.asarray(inverse[yt.indices], dtype=yt.indices.dtype) | |
if not self.sparse_output: | |
yt = yt.toarray() | |
return yt | |
def transform(self, y): | |
"""Transform the given label sets. | |
Parameters | |
---------- | |
y : iterable of iterables | |
A set of labels (any orderable and hashable object) for each | |
sample. If the `classes` parameter is set, `y` will not be | |
iterated. | |
Returns | |
------- | |
y_indicator : array or CSR matrix, shape (n_samples, n_classes) | |
A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in | |
`y[i]`, and 0 otherwise. | |
""" | |
check_is_fitted(self) | |
class_to_index = self._build_cache() | |
yt = self._transform(y, class_to_index) | |
if not self.sparse_output: | |
yt = yt.toarray() | |
return yt | |
def _build_cache(self): | |
if self._cached_dict is None: | |
self._cached_dict = dict(zip(self.classes_, range(len(self.classes_)))) | |
return self._cached_dict | |
def _transform(self, y, class_mapping): | |
"""Transforms the label sets with a given mapping. | |
Parameters | |
---------- | |
y : iterable of iterables | |
A set of labels (any orderable and hashable object) for each | |
sample. If the `classes` parameter is set, `y` will not be | |
iterated. | |
class_mapping : Mapping | |
Maps from label to column index in label indicator matrix. | |
Returns | |
------- | |
y_indicator : sparse matrix of shape (n_samples, n_classes) | |
Label indicator matrix. Will be of CSR format. | |
""" | |
indices = array.array("i") | |
indptr = array.array("i", [0]) | |
unknown = set() | |
for labels in y: | |
index = set() | |
for label in labels: | |
try: | |
index.add(class_mapping[label]) | |
except KeyError: | |
unknown.add(label) | |
indices.extend(index) | |
indptr.append(len(indices)) | |
if unknown: | |
warnings.warn( | |
"unknown class(es) {0} will be ignored".format(sorted(unknown, key=str)) | |
) | |
data = np.ones(len(indices), dtype=int) | |
return sp.csr_matrix( | |
(data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping)) | |
) | |
def inverse_transform(self, yt): | |
"""Transform the given indicator matrix into label sets. | |
Parameters | |
---------- | |
yt : {ndarray, sparse matrix} of shape (n_samples, n_classes) | |
A matrix containing only 1s ands 0s. | |
Returns | |
------- | |
y : list of tuples | |
The set of labels for each sample such that `y[i]` consists of | |
`classes_[j]` for each `yt[i, j] == 1`. | |
""" | |
check_is_fitted(self) | |
if yt.shape[1] != len(self.classes_): | |
raise ValueError( | |
"Expected indicator for {0} classes, but got {1}".format( | |
len(self.classes_), yt.shape[1] | |
) | |
) | |
if sp.issparse(yt): | |
yt = yt.tocsr() | |
if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: | |
raise ValueError("Expected only 0s and 1s in label indicator.") | |
return [ | |
tuple(self.classes_.take(yt.indices[start:end])) | |
for start, end in zip(yt.indptr[:-1], yt.indptr[1:]) | |
] | |
else: | |
unexpected = np.setdiff1d(yt, [0, 1]) | |
if len(unexpected) > 0: | |
raise ValueError( | |
"Expected only 0s and 1s in label indicator. Also got {0}".format( | |
unexpected | |
) | |
) | |
return [tuple(self.classes_.compress(indicators)) for indicators in yt] | |
def _more_tags(self): | |
return {"X_types": ["2dlabels"]} | |