peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_common.py
""" | |
General tests for all estimators in sklearn. | |
""" | |
# Authors: Andreas Mueller <[email protected]> | |
# Gael Varoquaux [email protected] | |
# License: BSD 3 clause | |
import os | |
import pkgutil | |
import re | |
import sys | |
import warnings | |
from functools import partial | |
from inspect import isgenerator, signature | |
from itertools import chain, product | |
from pathlib import Path | |
import numpy as np | |
import pytest | |
import sklearn | |
from sklearn.cluster import ( | |
OPTICS, | |
AffinityPropagation, | |
Birch, | |
MeanShift, | |
SpectralClustering, | |
) | |
from sklearn.compose import ColumnTransformer | |
from sklearn.datasets import make_blobs | |
from sklearn.decomposition import PCA | |
from sklearn.exceptions import ConvergenceWarning, FitFailedWarning | |
# make it possible to discover experimental estimators when calling `all_estimators` | |
from sklearn.experimental import ( | |
enable_halving_search_cv, # noqa | |
enable_iterative_imputer, # noqa | |
) | |
from sklearn.linear_model import LogisticRegression, Ridge | |
from sklearn.linear_model._base import LinearClassifierMixin | |
from sklearn.manifold import TSNE, Isomap, LocallyLinearEmbedding | |
from sklearn.model_selection import ( | |
GridSearchCV, | |
HalvingGridSearchCV, | |
HalvingRandomSearchCV, | |
RandomizedSearchCV, | |
) | |
from sklearn.neighbors import ( | |
KNeighborsClassifier, | |
KNeighborsRegressor, | |
LocalOutlierFactor, | |
RadiusNeighborsClassifier, | |
RadiusNeighborsRegressor, | |
) | |
from sklearn.pipeline import Pipeline, make_pipeline | |
from sklearn.preprocessing import ( | |
FunctionTransformer, | |
MinMaxScaler, | |
OneHotEncoder, | |
StandardScaler, | |
) | |
from sklearn.semi_supervised import LabelPropagation, LabelSpreading | |
from sklearn.utils import _IS_WASM, IS_PYPY, all_estimators | |
from sklearn.utils._tags import _DEFAULT_TAGS, _safe_tags | |
from sklearn.utils._testing import ( | |
SkipTest, | |
ignore_warnings, | |
set_random_state, | |
) | |
from sklearn.utils.estimator_checks import ( | |
_construct_instance, | |
_get_check_estimator_ids, | |
_set_checking_parameters, | |
check_class_weight_balanced_linear_classifier, | |
check_dataframe_column_names_consistency, | |
check_estimator, | |
check_get_feature_names_out_error, | |
check_global_output_transform_pandas, | |
check_global_set_output_transform_polars, | |
check_n_features_in_after_fitting, | |
check_param_validation, | |
check_set_output_transform, | |
check_set_output_transform_pandas, | |
check_set_output_transform_polars, | |
check_transformer_get_feature_names_out, | |
check_transformer_get_feature_names_out_pandas, | |
parametrize_with_checks, | |
) | |
def test_all_estimator_no_base_class(): | |
# test that all_estimators doesn't find abstract classes. | |
for name, Estimator in all_estimators(): | |
msg = ( | |
"Base estimators such as {0} should not be included in all_estimators" | |
).format(name) | |
assert not name.lower().startswith("base"), msg | |
def _sample_func(x, y=1): | |
pass | |
def test_get_check_estimator_ids(val, expected): | |
assert _get_check_estimator_ids(val) == expected | |
def _tested_estimators(type_filter=None): | |
for name, Estimator in all_estimators(type_filter=type_filter): | |
try: | |
estimator = _construct_instance(Estimator) | |
except SkipTest: | |
continue | |
yield estimator | |
def _generate_pipeline(): | |
for final_estimator in [Ridge(), LogisticRegression()]: | |
yield Pipeline( | |
steps=[ | |
("scaler", StandardScaler()), | |
("final_estimator", final_estimator), | |
] | |
) | |
def test_estimators(estimator, check, request): | |
# Common tests for estimator instances | |
with ignore_warnings(category=(FutureWarning, ConvergenceWarning, UserWarning)): | |
_set_checking_parameters(estimator) | |
check(estimator) | |
def test_check_estimator_generate_only(): | |
all_instance_gen_checks = check_estimator(LogisticRegression(), generate_only=True) | |
assert isgenerator(all_instance_gen_checks) | |
def test_configure(): | |
# Smoke test `python setup.py config` command run at the root of the | |
# scikit-learn source tree. | |
# This test requires Cython which is not necessarily there when running | |
# the tests of an installed version of scikit-learn or when scikit-learn | |
# is installed in editable mode by pip build isolation enabled. | |
pytest.importorskip("Cython") | |
cwd = os.getcwd() | |
setup_path = Path(sklearn.__file__).parent.parent | |
setup_filename = os.path.join(setup_path, "setup.py") | |
if not os.path.exists(setup_filename): | |
pytest.skip("setup.py not available") | |
try: | |
os.chdir(setup_path) | |
old_argv = sys.argv | |
sys.argv = ["setup.py", "config"] | |
with warnings.catch_warnings(): | |
# The configuration spits out warnings when not finding | |
# Blas/Atlas development headers | |
warnings.simplefilter("ignore", UserWarning) | |
with open("setup.py") as f: | |
exec(f.read(), dict(__name__="__main__")) | |
finally: | |
sys.argv = old_argv | |
os.chdir(cwd) | |
def _tested_linear_classifiers(): | |
classifiers = all_estimators(type_filter="classifier") | |
with warnings.catch_warnings(record=True): | |
for name, clazz in classifiers: | |
required_parameters = getattr(clazz, "_required_parameters", []) | |
if len(required_parameters): | |
# FIXME | |
continue | |
if "class_weight" in clazz().get_params().keys() and issubclass( | |
clazz, LinearClassifierMixin | |
): | |
yield name, clazz | |
def test_class_weight_balanced_linear_classifiers(name, Classifier): | |
check_class_weight_balanced_linear_classifier(name, Classifier) | |
def test_import_all_consistency(): | |
sklearn_path = [os.path.dirname(sklearn.__file__)] | |
# Smoke test to check that any name in a __all__ list is actually defined | |
# in the namespace of the module or package. | |
pkgs = pkgutil.walk_packages( | |
path=sklearn_path, prefix="sklearn.", onerror=lambda _: None | |
) | |
submods = [modname for _, modname, _ in pkgs] | |
for modname in submods + ["sklearn"]: | |
if ".tests." in modname: | |
continue | |
# Avoid test suite depending on setuptools | |
if "sklearn._build_utils" in modname: | |
continue | |
if IS_PYPY and ( | |
"_svmlight_format_io" in modname | |
or "feature_extraction._hashing_fast" in modname | |
): | |
continue | |
package = __import__(modname, fromlist="dummy") | |
for name in getattr(package, "__all__", ()): | |
assert hasattr(package, name), "Module '{0}' has no attribute '{1}'".format( | |
modname, name | |
) | |
def test_root_import_all_completeness(): | |
sklearn_path = [os.path.dirname(sklearn.__file__)] | |
EXCEPTIONS = ("utils", "tests", "base", "setup", "conftest") | |
for _, modname, _ in pkgutil.walk_packages( | |
path=sklearn_path, onerror=lambda _: None | |
): | |
if "." in modname or modname.startswith("_") or modname in EXCEPTIONS: | |
continue | |
assert modname in sklearn.__all__ | |
def test_all_tests_are_importable(): | |
# Ensure that for each contentful subpackage, there is a test directory | |
# within it that is also a subpackage (i.e. a directory with __init__.py) | |
HAS_TESTS_EXCEPTIONS = re.compile(r"""(?x) | |
\.externals(\.|$)| | |
\.tests(\.|$)| | |
\._ | |
""") | |
resource_modules = { | |
"sklearn.datasets.data", | |
"sklearn.datasets.descr", | |
"sklearn.datasets.images", | |
} | |
sklearn_path = [os.path.dirname(sklearn.__file__)] | |
lookup = { | |
name: ispkg | |
for _, name, ispkg in pkgutil.walk_packages(sklearn_path, prefix="sklearn.") | |
} | |
missing_tests = [ | |
name | |
for name, ispkg in lookup.items() | |
if ispkg | |
and name not in resource_modules | |
and not HAS_TESTS_EXCEPTIONS.search(name) | |
and name + ".tests" not in lookup | |
] | |
assert missing_tests == [], ( | |
"{0} do not have `tests` subpackages. " | |
"Perhaps they require " | |
"__init__.py or an add_subpackage directive " | |
"in the parent " | |
"setup.py".format(missing_tests) | |
) | |
def test_class_support_removed(): | |
# Make sure passing classes to check_estimator or parametrize_with_checks | |
# raises an error | |
msg = "Passing a class was deprecated.* isn't supported anymore" | |
with pytest.raises(TypeError, match=msg): | |
check_estimator(LogisticRegression) | |
with pytest.raises(TypeError, match=msg): | |
parametrize_with_checks([LogisticRegression]) | |
def _generate_column_transformer_instances(): | |
yield ColumnTransformer( | |
transformers=[ | |
("trans1", StandardScaler(), [0, 1]), | |
] | |
) | |
def _generate_search_cv_instances(): | |
for SearchCV, (Estimator, param_grid) in product( | |
[ | |
GridSearchCV, | |
HalvingGridSearchCV, | |
RandomizedSearchCV, | |
HalvingGridSearchCV, | |
], | |
[ | |
(Ridge, {"alpha": [0.1, 1.0]}), | |
(LogisticRegression, {"C": [0.1, 1.0]}), | |
], | |
): | |
init_params = signature(SearchCV).parameters | |
extra_params = ( | |
{"min_resources": "smallest"} if "min_resources" in init_params else {} | |
) | |
search_cv = SearchCV(Estimator(), param_grid, cv=2, **extra_params) | |
set_random_state(search_cv) | |
yield search_cv | |
for SearchCV, (Estimator, param_grid) in product( | |
[ | |
GridSearchCV, | |
HalvingGridSearchCV, | |
RandomizedSearchCV, | |
HalvingRandomSearchCV, | |
], | |
[ | |
(Ridge, {"ridge__alpha": [0.1, 1.0]}), | |
(LogisticRegression, {"logisticregression__C": [0.1, 1.0]}), | |
], | |
): | |
init_params = signature(SearchCV).parameters | |
extra_params = ( | |
{"min_resources": "smallest"} if "min_resources" in init_params else {} | |
) | |
search_cv = SearchCV( | |
make_pipeline(PCA(), Estimator()), param_grid, cv=2, **extra_params | |
).set_params(error_score="raise") | |
set_random_state(search_cv) | |
yield search_cv | |
def test_search_cv(estimator, check, request): | |
# Common tests for SearchCV instances | |
# We have a separate test because those meta-estimators can accept a | |
# wide range of base estimators (classifiers, regressors, pipelines) | |
with ignore_warnings( | |
category=( | |
FutureWarning, | |
ConvergenceWarning, | |
UserWarning, | |
FitFailedWarning, | |
) | |
): | |
check(estimator) | |
def test_valid_tag_types(estimator): | |
"""Check that estimator tags are valid.""" | |
tags = _safe_tags(estimator) | |
for name, tag in tags.items(): | |
correct_tags = type(_DEFAULT_TAGS[name]) | |
if name == "_xfail_checks": | |
# _xfail_checks can be a dictionary | |
correct_tags = (correct_tags, dict) | |
assert isinstance(tag, correct_tags) | |
def test_check_n_features_in_after_fitting(estimator): | |
_set_checking_parameters(estimator) | |
check_n_features_in_after_fitting(estimator.__class__.__name__, estimator) | |
def _estimators_that_predict_in_fit(): | |
for estimator in _tested_estimators(): | |
est_params = set(estimator.get_params()) | |
if "oob_score" in est_params: | |
yield estimator.set_params(oob_score=True, bootstrap=True) | |
elif "early_stopping" in est_params: | |
est = estimator.set_params(early_stopping=True, n_iter_no_change=1) | |
if est.__class__.__name__ in {"MLPClassifier", "MLPRegressor"}: | |
# TODO: FIX MLP to not check validation set during MLP | |
yield pytest.param( | |
est, marks=pytest.mark.xfail(msg="MLP still validates in fit") | |
) | |
else: | |
yield est | |
elif "n_iter_no_change" in est_params: | |
yield estimator.set_params(n_iter_no_change=1) | |
# NOTE: When running `check_dataframe_column_names_consistency` on a meta-estimator that | |
# delegates validation to a base estimator, the check is testing that the base estimator | |
# is checking for column name consistency. | |
column_name_estimators = list( | |
chain( | |
_tested_estimators(), | |
[make_pipeline(LogisticRegression(C=1))], | |
list(_generate_search_cv_instances()), | |
_estimators_that_predict_in_fit(), | |
) | |
) | |
def test_pandas_column_name_consistency(estimator): | |
_set_checking_parameters(estimator) | |
with ignore_warnings(category=(FutureWarning)): | |
with warnings.catch_warnings(record=True) as record: | |
check_dataframe_column_names_consistency( | |
estimator.__class__.__name__, estimator | |
) | |
for warning in record: | |
assert "was fitted without feature names" not in str(warning.message) | |
# TODO: As more modules support get_feature_names_out they should be removed | |
# from this list to be tested | |
GET_FEATURES_OUT_MODULES_TO_IGNORE = [ | |
"ensemble", | |
"kernel_approximation", | |
] | |
def _include_in_get_feature_names_out_check(transformer): | |
if hasattr(transformer, "get_feature_names_out"): | |
return True | |
module = transformer.__module__.split(".")[1] | |
return module not in GET_FEATURES_OUT_MODULES_TO_IGNORE | |
GET_FEATURES_OUT_ESTIMATORS = [ | |
est | |
for est in _tested_estimators("transformer") | |
if _include_in_get_feature_names_out_check(est) | |
] | |
def test_transformers_get_feature_names_out(transformer): | |
_set_checking_parameters(transformer) | |
with ignore_warnings(category=(FutureWarning)): | |
check_transformer_get_feature_names_out( | |
transformer.__class__.__name__, transformer | |
) | |
check_transformer_get_feature_names_out_pandas( | |
transformer.__class__.__name__, transformer | |
) | |
ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT = [ | |
est for est in _tested_estimators() if hasattr(est, "get_feature_names_out") | |
] | |
def test_estimators_get_feature_names_out_error(estimator): | |
estimator_name = estimator.__class__.__name__ | |
_set_checking_parameters(estimator) | |
check_get_feature_names_out_error(estimator_name, estimator) | |
def test_estimators_do_not_raise_errors_in_init_or_set_params(Estimator): | |
"""Check that init or set_param does not raise errors.""" | |
params = signature(Estimator).parameters | |
smoke_test_values = [-1, 3.0, "helloworld", np.array([1.0, 4.0]), [1], {}, []] | |
for value in smoke_test_values: | |
new_params = {key: value for key in params} | |
# Does not raise | |
est = Estimator(**new_params) | |
# Also do does not raise | |
est.set_params(**new_params) | |
def test_check_param_validation(estimator): | |
name = estimator.__class__.__name__ | |
_set_checking_parameters(estimator) | |
check_param_validation(name, estimator) | |
def test_f_contiguous_array_estimator(Estimator): | |
# Non-regression test for: | |
# https://github.com/scikit-learn/scikit-learn/issues/23988 | |
# https://github.com/scikit-learn/scikit-learn/issues/24013 | |
X, _ = make_blobs(n_samples=80, n_features=4, random_state=0) | |
X = np.asfortranarray(X) | |
y = np.round(X[:, 0]) | |
est = Estimator() | |
est.fit(X, y) | |
if hasattr(est, "transform"): | |
est.transform(X) | |
if hasattr(est, "predict"): | |
est.predict(X) | |
SET_OUTPUT_ESTIMATORS = list( | |
chain( | |
_tested_estimators("transformer"), | |
[ | |
make_pipeline(StandardScaler(), MinMaxScaler()), | |
OneHotEncoder(sparse_output=False), | |
FunctionTransformer(feature_names_out="one-to-one"), | |
], | |
) | |
) | |
def test_set_output_transform(estimator): | |
name = estimator.__class__.__name__ | |
if not hasattr(estimator, "set_output"): | |
pytest.skip( | |
f"Skipping check_set_output_transform for {name}: Does not support" | |
" set_output API" | |
) | |
_set_checking_parameters(estimator) | |
with ignore_warnings(category=(FutureWarning)): | |
check_set_output_transform(estimator.__class__.__name__, estimator) | |
def test_set_output_transform_configured(estimator, check_func): | |
name = estimator.__class__.__name__ | |
if not hasattr(estimator, "set_output"): | |
pytest.skip( | |
f"Skipping {check_func.__name__} for {name}: Does not support" | |
" set_output API yet" | |
) | |
_set_checking_parameters(estimator) | |
with ignore_warnings(category=(FutureWarning)): | |
check_func(estimator.__class__.__name__, estimator) | |