peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/byte_level_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union | |
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers | |
from tokenizers.models import BPE | |
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str | |
from .base_tokenizer import BaseTokenizer | |
class ByteLevelBPETokenizer(BaseTokenizer): | |
"""ByteLevelBPETokenizer | |
Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model | |
""" | |
def __init__( | |
self, | |
vocab: Optional[Union[str, Dict[str, int]]] = None, | |
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None, | |
add_prefix_space: bool = False, | |
lowercase: bool = False, | |
dropout: Optional[float] = None, | |
unicode_normalizer: Optional[str] = None, | |
continuing_subword_prefix: Optional[str] = None, | |
end_of_word_suffix: Optional[str] = None, | |
trim_offsets: bool = False, | |
): | |
if vocab is not None and merges is not None: | |
tokenizer = Tokenizer( | |
BPE( | |
vocab, | |
merges, | |
dropout=dropout, | |
continuing_subword_prefix=continuing_subword_prefix or "", | |
end_of_word_suffix=end_of_word_suffix or "", | |
) | |
) | |
else: | |
tokenizer = Tokenizer(BPE()) | |
# Check for Unicode normalization first (before everything else) | |
normalizers = [] | |
if unicode_normalizer: | |
normalizers += [unicode_normalizer_from_str(unicode_normalizer)] | |
if lowercase: | |
normalizers += [Lowercase()] | |
# Create the normalizer structure | |
if len(normalizers) > 0: | |
if len(normalizers) > 1: | |
tokenizer.normalizer = Sequence(normalizers) | |
else: | |
tokenizer.normalizer = normalizers[0] | |
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space) | |
tokenizer.decoder = decoders.ByteLevel() | |
tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets) | |
parameters = { | |
"model": "ByteLevelBPE", | |
"add_prefix_space": add_prefix_space, | |
"lowercase": lowercase, | |
"dropout": dropout, | |
"unicode_normalizer": unicode_normalizer, | |
"continuing_subword_prefix": continuing_subword_prefix, | |
"end_of_word_suffix": end_of_word_suffix, | |
"trim_offsets": trim_offsets, | |
} | |
super().__init__(tokenizer, parameters) | |
def from_file(vocab_filename: str, merges_filename: str, **kwargs): | |
vocab, merges = BPE.read_file(vocab_filename, merges_filename) | |
return ByteLevelBPETokenizer(vocab, merges, **kwargs) | |
def train( | |
self, | |
files: Union[str, List[str]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
show_progress: bool = True, | |
special_tokens: List[Union[str, AddedToken]] = [], | |
): | |
"""Train the model using the given files""" | |
trainer = trainers.BpeTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
show_progress=show_progress, | |
special_tokens=special_tokens, | |
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), | |
) | |
if isinstance(files, str): | |
files = [files] | |
self._tokenizer.train(files, trainer=trainer) | |
def train_from_iterator( | |
self, | |
iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
show_progress: bool = True, | |
special_tokens: List[Union[str, AddedToken]] = [], | |
length: Optional[int] = None, | |
): | |
"""Train the model using the given iterator""" | |
trainer = trainers.BpeTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
show_progress=show_progress, | |
special_tokens=special_tokens, | |
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), | |
) | |
self._tokenizer.train_from_iterator( | |
iterator, | |
trainer=trainer, | |
length=length, | |
) | |