peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/lm_eval
/tasks
/race
/preprocess_race.py
import ast | |
def process_ast(string): | |
return ast.literal_eval(string) | |
def last_problem(doc): | |
return process_ast(doc["problems"])[-1] | |
def get_answer_option(problem): | |
letter_to_num = {"A": 0, "B": 1, "C": 2, "D": 3} | |
answer = letter_to_num[problem["answer"]] | |
return problem["options"][answer] | |
def doc_to_choice(doc): | |
problem = last_problem(doc) | |
choices = [problem["options"][i] for i in range(4)] | |
return choices | |
def doc_to_text(doc): | |
text = "Article: " + doc["article"] + "\n\n" | |
for problem in process_ast(doc["problems"])[:-1]: | |
if problem["question"][-6:] == " _ .": | |
text += problem["question"][-5:] + get_answer_option(problem) + "\n" | |
else: | |
question = "Question: " + problem["question"] + "\n" | |
answer = "Answer: " + get_answer_option(problem) + "\n" | |
text += question + answer | |
text += last_problem(doc)["question"] | |
return text | |
def doc_to_target(doc): | |
letter_to_num = {"A": 0, "B": 1, "C": 2, "D": 3} | |
answer = letter_to_num[last_problem(doc)["answer"]] | |
return answer | |