peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/lm_eval
/tasks
/super_glue
/cb
/aggregate.py
import numpy as np | |
import sklearn | |
def cb_multi_fi(items): | |
preds, golds = zip(*items) | |
preds = np.array(preds) | |
golds = np.array(golds) | |
f11 = sklearn.metrics.f1_score(y_true=golds == 0, y_pred=preds == 0) | |
f12 = sklearn.metrics.f1_score(y_true=golds == 1, y_pred=preds == 1) | |
f13 = sklearn.metrics.f1_score(y_true=golds == 2, y_pred=preds == 2) | |
avg_f1 = np.mean([f11, f12, f13]) | |
return avg_f1 | |