applied-ai-018's picture
Add files using upload-large-folder tool
a9dbdfb verified
raw
history blame
6.25 kB
"""
Take in a YAML, and output all "other" splits with this YAML
"""
import argparse
import os
import pandas as pd
import yaml
from tqdm import tqdm
# Copy from https://github.com/iKala/ievals/blob/main/ievals/settings.py
# from TMMLU+ offical example
categories = {
"STEM": [
"physics",
"chemistry",
"biology",
"computer science",
"math",
"engineering",
],
"humanities": ["history", "philosophy", "law"],
"social_sciences": [
"politics",
"culture",
"economics",
"geography",
"psychology",
"education",
],
"other": ["other", "business", "health"], # (business, health, misc.)
}
task_list = [
"engineering_math",
"dentistry",
"traditional_chinese_medicine_clinical_medicine",
"clinical_psychology",
"technical",
"culinary_skills",
"mechanical",
"logic_reasoning",
"real_estate",
"general_principles_of_law",
"finance_banking",
"anti_money_laundering",
"ttqav2",
"marketing_management",
"business_management",
"organic_chemistry",
"advance_chemistry",
"physics",
"secondary_physics",
"human_behavior",
"national_protection",
"jce_humanities",
"politic_science",
"agriculture",
"official_document_management",
"financial_analysis",
"pharmacy",
"educational_psychology",
"statistics_and_machine_learning",
"management_accounting",
"introduction_to_law",
"computer_science",
"veterinary_pathology",
"accounting",
"fire_science",
"optometry",
"insurance_studies",
"pharmacology",
"taxation",
"education_(profession_level)",
"economics",
"veterinary_pharmacology",
"nautical_science",
"occupational_therapy_for_psychological_disorders",
"trust_practice",
"geography_of_taiwan",
"physical_education",
"auditing",
"administrative_law",
"basic_medical_science",
"macroeconomics",
"trade",
"chinese_language_and_literature",
"tve_design",
"junior_science_exam",
"junior_math_exam",
"junior_chinese_exam",
"junior_social_studies",
"tve_mathematics",
"tve_chinese_language",
"tve_natural_sciences",
"junior_chemistry",
"music",
"education",
"three_principles_of_people",
"taiwanese_hokkien",
]
subject2name = {}
# subject2category = {}
SUBJECTS = {}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_yaml_path", required=True)
parser.add_argument("--save_prefix_path", default="tmmluplus")
parser.add_argument("--cot_prompt_path", default=None)
parser.add_argument("--task_prefix", default="")
parser.add_argument("--group_prefix", default="")
parser.add_argument("--subject_file", default="subject.tsv")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
from pathlib import Path
# Initialization
SUBJECT_FILE = Path(__file__).parent / Path(args.subject_file)
df = pd.read_csv(SUBJECT_FILE, delimiter="\t")
for _, row in df.iterrows():
for _c in categories:
if row["subject"] in SUBJECTS:
raise ValueError("Duplicate tasks.")
if row["category"] in categories[_c]: # append new item into SUBJECTS
SUBJECTS[row["subject"]] = _c
subject2name[row["subject"]] = row["name"]
break
# End of SUBJECTS initialization
# get filename of base_yaml so we can `"include": ` it in our "other" YAMLs.
base_yaml_name = os.path.split(args.base_yaml_path)[-1]
with open(args.base_yaml_path) as f:
base_yaml = yaml.full_load(f)
if args.cot_prompt_path is not None:
import json
with open(args.cot_prompt_path) as f:
cot_file = json.load(f)
ALL_CATEGORIES = []
for subject, category in tqdm(SUBJECTS.items()):
if category not in ALL_CATEGORIES:
ALL_CATEGORIES.append(category)
if args.cot_prompt_path is not None:
description = cot_file[subject]
else:
name_of_subject = subject2name[subject].replace("_", " ")
description = f"以下為{name_of_subject}的單選題,請提供正確答案的選項。\n\n"
# description = f"The following are multiple choice questions (with answers) about {' '.join(subject.split('_'))}.\n\n"
yaml_dict = {
"include": base_yaml_name,
"group": f"tmmluplus_{args.task_prefix}_{category}"
if args.task_prefix != ""
else f"tmmluplus_{category}",
"group_alias": category.replace("_", " "),
"task": f"tmmluplus_{args.task_prefix}_{subject}"
if args.task_prefix != ""
else f"tmmluplus_{subject}",
"task_alias": subject.replace("_", " "),
"dataset_name": subject,
"description": description,
}
file_save_path = args.save_prefix_path + f"_{subject}.yaml"
# eval_logger.info(f"Saving yaml for subset {subject} to {file_save_path}")
with open(file_save_path, "w") as yaml_file:
yaml.dump(
yaml_dict,
yaml_file,
# width=float("inf"),
allow_unicode=True,
default_style='"',
)
if args.task_prefix != "":
mmlu_subcategories = [
f"tmmluplus_{args.task_prefix}_{category}" for category in ALL_CATEGORIES
]
else:
mmlu_subcategories = [f"tmmluplus_{category}" for category in ALL_CATEGORIES]
if args.group_prefix != "":
file_save_path = args.group_prefix + ".yaml"
else:
file_save_path = args.save_prefix_path + ".yaml"
# eval_logger.info(f"Saving benchmark config to {file_save_path}")
with open(file_save_path, "w") as yaml_file:
yaml.dump(
{
"group": f"tmmluplus_{args.task_prefix}"
if args.task_prefix != ""
else "tmmluplus",
"task": mmlu_subcategories,
},
yaml_file,
indent=4,
default_flow_style=False,
)