peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/lm_eval
/tasks
/tmmluplus
/default
/_generate_configs.py
""" | |
Take in a YAML, and output all "other" splits with this YAML | |
""" | |
import argparse | |
import os | |
import pandas as pd | |
import yaml | |
from tqdm import tqdm | |
# Copy from https://github.com/iKala/ievals/blob/main/ievals/settings.py | |
# from TMMLU+ offical example | |
categories = { | |
"STEM": [ | |
"physics", | |
"chemistry", | |
"biology", | |
"computer science", | |
"math", | |
"engineering", | |
], | |
"humanities": ["history", "philosophy", "law"], | |
"social_sciences": [ | |
"politics", | |
"culture", | |
"economics", | |
"geography", | |
"psychology", | |
"education", | |
], | |
"other": ["other", "business", "health"], # (business, health, misc.) | |
} | |
task_list = [ | |
"engineering_math", | |
"dentistry", | |
"traditional_chinese_medicine_clinical_medicine", | |
"clinical_psychology", | |
"technical", | |
"culinary_skills", | |
"mechanical", | |
"logic_reasoning", | |
"real_estate", | |
"general_principles_of_law", | |
"finance_banking", | |
"anti_money_laundering", | |
"ttqav2", | |
"marketing_management", | |
"business_management", | |
"organic_chemistry", | |
"advance_chemistry", | |
"physics", | |
"secondary_physics", | |
"human_behavior", | |
"national_protection", | |
"jce_humanities", | |
"politic_science", | |
"agriculture", | |
"official_document_management", | |
"financial_analysis", | |
"pharmacy", | |
"educational_psychology", | |
"statistics_and_machine_learning", | |
"management_accounting", | |
"introduction_to_law", | |
"computer_science", | |
"veterinary_pathology", | |
"accounting", | |
"fire_science", | |
"optometry", | |
"insurance_studies", | |
"pharmacology", | |
"taxation", | |
"education_(profession_level)", | |
"economics", | |
"veterinary_pharmacology", | |
"nautical_science", | |
"occupational_therapy_for_psychological_disorders", | |
"trust_practice", | |
"geography_of_taiwan", | |
"physical_education", | |
"auditing", | |
"administrative_law", | |
"basic_medical_science", | |
"macroeconomics", | |
"trade", | |
"chinese_language_and_literature", | |
"tve_design", | |
"junior_science_exam", | |
"junior_math_exam", | |
"junior_chinese_exam", | |
"junior_social_studies", | |
"tve_mathematics", | |
"tve_chinese_language", | |
"tve_natural_sciences", | |
"junior_chemistry", | |
"music", | |
"education", | |
"three_principles_of_people", | |
"taiwanese_hokkien", | |
] | |
subject2name = {} | |
# subject2category = {} | |
SUBJECTS = {} | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base_yaml_path", required=True) | |
parser.add_argument("--save_prefix_path", default="tmmluplus") | |
parser.add_argument("--cot_prompt_path", default=None) | |
parser.add_argument("--task_prefix", default="") | |
parser.add_argument("--group_prefix", default="") | |
parser.add_argument("--subject_file", default="subject.tsv") | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = parse_args() | |
from pathlib import Path | |
# Initialization | |
SUBJECT_FILE = Path(__file__).parent / Path(args.subject_file) | |
df = pd.read_csv(SUBJECT_FILE, delimiter="\t") | |
for _, row in df.iterrows(): | |
for _c in categories: | |
if row["subject"] in SUBJECTS: | |
raise ValueError("Duplicate tasks.") | |
if row["category"] in categories[_c]: # append new item into SUBJECTS | |
SUBJECTS[row["subject"]] = _c | |
subject2name[row["subject"]] = row["name"] | |
break | |
# End of SUBJECTS initialization | |
# get filename of base_yaml so we can `"include": ` it in our "other" YAMLs. | |
base_yaml_name = os.path.split(args.base_yaml_path)[-1] | |
with open(args.base_yaml_path) as f: | |
base_yaml = yaml.full_load(f) | |
if args.cot_prompt_path is not None: | |
import json | |
with open(args.cot_prompt_path) as f: | |
cot_file = json.load(f) | |
ALL_CATEGORIES = [] | |
for subject, category in tqdm(SUBJECTS.items()): | |
if category not in ALL_CATEGORIES: | |
ALL_CATEGORIES.append(category) | |
if args.cot_prompt_path is not None: | |
description = cot_file[subject] | |
else: | |
name_of_subject = subject2name[subject].replace("_", " ") | |
description = f"以下為{name_of_subject}的單選題,請提供正確答案的選項。\n\n" | |
# description = f"The following are multiple choice questions (with answers) about {' '.join(subject.split('_'))}.\n\n" | |
yaml_dict = { | |
"include": base_yaml_name, | |
"group": f"tmmluplus_{args.task_prefix}_{category}" | |
if args.task_prefix != "" | |
else f"tmmluplus_{category}", | |
"group_alias": category.replace("_", " "), | |
"task": f"tmmluplus_{args.task_prefix}_{subject}" | |
if args.task_prefix != "" | |
else f"tmmluplus_{subject}", | |
"task_alias": subject.replace("_", " "), | |
"dataset_name": subject, | |
"description": description, | |
} | |
file_save_path = args.save_prefix_path + f"_{subject}.yaml" | |
# eval_logger.info(f"Saving yaml for subset {subject} to {file_save_path}") | |
with open(file_save_path, "w") as yaml_file: | |
yaml.dump( | |
yaml_dict, | |
yaml_file, | |
# width=float("inf"), | |
allow_unicode=True, | |
default_style='"', | |
) | |
if args.task_prefix != "": | |
mmlu_subcategories = [ | |
f"tmmluplus_{args.task_prefix}_{category}" for category in ALL_CATEGORIES | |
] | |
else: | |
mmlu_subcategories = [f"tmmluplus_{category}" for category in ALL_CATEGORIES] | |
if args.group_prefix != "": | |
file_save_path = args.group_prefix + ".yaml" | |
else: | |
file_save_path = args.save_prefix_path + ".yaml" | |
# eval_logger.info(f"Saving benchmark config to {file_save_path}") | |
with open(file_save_path, "w") as yaml_file: | |
yaml.dump( | |
{ | |
"group": f"tmmluplus_{args.task_prefix}" | |
if args.task_prefix != "" | |
else "tmmluplus", | |
"task": mmlu_subcategories, | |
}, | |
yaml_file, | |
indent=4, | |
default_flow_style=False, | |
) | |