peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_linprog_highs.py
"""HiGHS Linear Optimization Methods | |
Interface to HiGHS linear optimization software. | |
https://highs.dev/ | |
.. versionadded:: 1.5.0 | |
References | |
---------- | |
.. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex | |
method." Mathematical Programming Computation, 10 (1), 119-142, | |
2018. DOI: 10.1007/s12532-017-0130-5 | |
""" | |
import inspect | |
import numpy as np | |
from ._optimize import OptimizeWarning, OptimizeResult | |
from warnings import warn | |
from ._highs._highs_wrapper import _highs_wrapper | |
from ._highs._highs_constants import ( | |
CONST_INF, | |
MESSAGE_LEVEL_NONE, | |
HIGHS_OBJECTIVE_SENSE_MINIMIZE, | |
MODEL_STATUS_NOTSET, | |
MODEL_STATUS_LOAD_ERROR, | |
MODEL_STATUS_MODEL_ERROR, | |
MODEL_STATUS_PRESOLVE_ERROR, | |
MODEL_STATUS_SOLVE_ERROR, | |
MODEL_STATUS_POSTSOLVE_ERROR, | |
MODEL_STATUS_MODEL_EMPTY, | |
MODEL_STATUS_OPTIMAL, | |
MODEL_STATUS_INFEASIBLE, | |
MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE, | |
MODEL_STATUS_UNBOUNDED, | |
MODEL_STATUS_REACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND | |
as MODEL_STATUS_RDOVUB, | |
MODEL_STATUS_REACHED_OBJECTIVE_TARGET, | |
MODEL_STATUS_REACHED_TIME_LIMIT, | |
MODEL_STATUS_REACHED_ITERATION_LIMIT, | |
HIGHS_SIMPLEX_STRATEGY_DUAL, | |
HIGHS_SIMPLEX_CRASH_STRATEGY_OFF, | |
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE, | |
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG, | |
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX, | |
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE, | |
) | |
from scipy.sparse import csc_matrix, vstack, issparse | |
def _highs_to_scipy_status_message(highs_status, highs_message): | |
"""Converts HiGHS status number/message to SciPy status number/message""" | |
scipy_statuses_messages = { | |
None: (4, "HiGHS did not provide a status code. "), | |
MODEL_STATUS_NOTSET: (4, ""), | |
MODEL_STATUS_LOAD_ERROR: (4, ""), | |
MODEL_STATUS_MODEL_ERROR: (2, ""), | |
MODEL_STATUS_PRESOLVE_ERROR: (4, ""), | |
MODEL_STATUS_SOLVE_ERROR: (4, ""), | |
MODEL_STATUS_POSTSOLVE_ERROR: (4, ""), | |
MODEL_STATUS_MODEL_EMPTY: (4, ""), | |
MODEL_STATUS_RDOVUB: (4, ""), | |
MODEL_STATUS_REACHED_OBJECTIVE_TARGET: (4, ""), | |
MODEL_STATUS_OPTIMAL: (0, "Optimization terminated successfully. "), | |
MODEL_STATUS_REACHED_TIME_LIMIT: (1, "Time limit reached. "), | |
MODEL_STATUS_REACHED_ITERATION_LIMIT: (1, "Iteration limit reached. "), | |
MODEL_STATUS_INFEASIBLE: (2, "The problem is infeasible. "), | |
MODEL_STATUS_UNBOUNDED: (3, "The problem is unbounded. "), | |
MODEL_STATUS_UNBOUNDED_OR_INFEASIBLE: (4, "The problem is unbounded " | |
"or infeasible. ")} | |
unrecognized = (4, "The HiGHS status code was not recognized. ") | |
scipy_status, scipy_message = ( | |
scipy_statuses_messages.get(highs_status, unrecognized)) | |
scipy_message = (f"{scipy_message}" | |
f"(HiGHS Status {highs_status}: {highs_message})") | |
return scipy_status, scipy_message | |
def _replace_inf(x): | |
# Replace `np.inf` with CONST_INF | |
infs = np.isinf(x) | |
with np.errstate(invalid="ignore"): | |
x[infs] = np.sign(x[infs])*CONST_INF | |
return x | |
def _convert_to_highs_enum(option, option_str, choices): | |
# If option is in the choices we can look it up, if not use | |
# the default value taken from function signature and warn: | |
try: | |
return choices[option.lower()] | |
except AttributeError: | |
return choices[option] | |
except KeyError: | |
sig = inspect.signature(_linprog_highs) | |
default_str = sig.parameters[option_str].default | |
warn(f"Option {option_str} is {option}, but only values in " | |
f"{set(choices.keys())} are allowed. Using default: " | |
f"{default_str}.", | |
OptimizeWarning, stacklevel=3) | |
return choices[default_str] | |
def _linprog_highs(lp, solver, time_limit=None, presolve=True, | |
disp=False, maxiter=None, | |
dual_feasibility_tolerance=None, | |
primal_feasibility_tolerance=None, | |
ipm_optimality_tolerance=None, | |
simplex_dual_edge_weight_strategy=None, | |
mip_rel_gap=None, | |
mip_max_nodes=None, | |
**unknown_options): | |
r""" | |
Solve the following linear programming problem using one of the HiGHS | |
solvers: | |
User-facing documentation is in _linprog_doc.py. | |
Parameters | |
---------- | |
lp : _LPProblem | |
A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``. | |
solver : "ipm" or "simplex" or None | |
Which HiGHS solver to use. If ``None``, "simplex" will be used. | |
Options | |
------- | |
maxiter : int | |
The maximum number of iterations to perform in either phase. For | |
``solver='ipm'``, this does not include the number of crossover | |
iterations. Default is the largest possible value for an ``int`` | |
on the platform. | |
disp : bool | |
Set to ``True`` if indicators of optimization status are to be printed | |
to the console each iteration; default ``False``. | |
time_limit : float | |
The maximum time in seconds allotted to solve the problem; default is | |
the largest possible value for a ``double`` on the platform. | |
presolve : bool | |
Presolve attempts to identify trivial infeasibilities, | |
identify trivial unboundedness, and simplify the problem before | |
sending it to the main solver. It is generally recommended | |
to keep the default setting ``True``; set to ``False`` if presolve is | |
to be disabled. | |
dual_feasibility_tolerance : double | |
Dual feasibility tolerance. Default is 1e-07. | |
The minimum of this and ``primal_feasibility_tolerance`` | |
is used for the feasibility tolerance when ``solver='ipm'``. | |
primal_feasibility_tolerance : double | |
Primal feasibility tolerance. Default is 1e-07. | |
The minimum of this and ``dual_feasibility_tolerance`` | |
is used for the feasibility tolerance when ``solver='ipm'``. | |
ipm_optimality_tolerance : double | |
Optimality tolerance for ``solver='ipm'``. Default is 1e-08. | |
Minimum possible value is 1e-12 and must be smaller than the largest | |
possible value for a ``double`` on the platform. | |
simplex_dual_edge_weight_strategy : str (default: None) | |
Strategy for simplex dual edge weights. The default, ``None``, | |
automatically selects one of the following. | |
``'dantzig'`` uses Dantzig's original strategy of choosing the most | |
negative reduced cost. | |
``'devex'`` uses the strategy described in [15]_. | |
``steepest`` uses the exact steepest edge strategy as described in | |
[16]_. | |
``'steepest-devex'`` begins with the exact steepest edge strategy | |
until the computation is too costly or inexact and then switches to | |
the devex method. | |
Currently, using ``None`` always selects ``'steepest-devex'``, but this | |
may change as new options become available. | |
mip_max_nodes : int | |
The maximum number of nodes allotted to solve the problem; default is | |
the largest possible value for a ``HighsInt`` on the platform. | |
Ignored if not using the MIP solver. | |
unknown_options : dict | |
Optional arguments not used by this particular solver. If | |
``unknown_options`` is non-empty, a warning is issued listing all | |
unused options. | |
Returns | |
------- | |
sol : dict | |
A dictionary consisting of the fields: | |
x : 1D array | |
The values of the decision variables that minimizes the | |
objective function while satisfying the constraints. | |
fun : float | |
The optimal value of the objective function ``c @ x``. | |
slack : 1D array | |
The (nominally positive) values of the slack, | |
``b_ub - A_ub @ x``. | |
con : 1D array | |
The (nominally zero) residuals of the equality constraints, | |
``b_eq - A_eq @ x``. | |
success : bool | |
``True`` when the algorithm succeeds in finding an optimal | |
solution. | |
status : int | |
An integer representing the exit status of the algorithm. | |
``0`` : Optimization terminated successfully. | |
``1`` : Iteration or time limit reached. | |
``2`` : Problem appears to be infeasible. | |
``3`` : Problem appears to be unbounded. | |
``4`` : The HiGHS solver ran into a problem. | |
message : str | |
A string descriptor of the exit status of the algorithm. | |
nit : int | |
The total number of iterations performed. | |
For ``solver='simplex'``, this includes iterations in all | |
phases. For ``solver='ipm'``, this does not include | |
crossover iterations. | |
crossover_nit : int | |
The number of primal/dual pushes performed during the | |
crossover routine for ``solver='ipm'``. This is ``0`` | |
for ``solver='simplex'``. | |
ineqlin : OptimizeResult | |
Solution and sensitivity information corresponding to the | |
inequality constraints, `b_ub`. A dictionary consisting of the | |
fields: | |
residual : np.ndnarray | |
The (nominally positive) values of the slack variables, | |
``b_ub - A_ub @ x``. This quantity is also commonly | |
referred to as "slack". | |
marginals : np.ndarray | |
The sensitivity (partial derivative) of the objective | |
function with respect to the right-hand side of the | |
inequality constraints, `b_ub`. | |
eqlin : OptimizeResult | |
Solution and sensitivity information corresponding to the | |
equality constraints, `b_eq`. A dictionary consisting of the | |
fields: | |
residual : np.ndarray | |
The (nominally zero) residuals of the equality constraints, | |
``b_eq - A_eq @ x``. | |
marginals : np.ndarray | |
The sensitivity (partial derivative) of the objective | |
function with respect to the right-hand side of the | |
equality constraints, `b_eq`. | |
lower, upper : OptimizeResult | |
Solution and sensitivity information corresponding to the | |
lower and upper bounds on decision variables, `bounds`. | |
residual : np.ndarray | |
The (nominally positive) values of the quantity | |
``x - lb`` (lower) or ``ub - x`` (upper). | |
marginals : np.ndarray | |
The sensitivity (partial derivative) of the objective | |
function with respect to the lower and upper | |
`bounds`. | |
mip_node_count : int | |
The number of subproblems or "nodes" solved by the MILP | |
solver. Only present when `integrality` is not `None`. | |
mip_dual_bound : float | |
The MILP solver's final estimate of the lower bound on the | |
optimal solution. Only present when `integrality` is not | |
`None`. | |
mip_gap : float | |
The difference between the final objective function value | |
and the final dual bound, scaled by the final objective | |
function value. Only present when `integrality` is not | |
`None`. | |
Notes | |
----- | |
The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain | |
`marginals`, or partial derivatives of the objective function with respect | |
to the right-hand side of each constraint. These partial derivatives are | |
also referred to as "Lagrange multipliers", "dual values", and | |
"shadow prices". The sign convention of `marginals` is opposite that | |
of Lagrange multipliers produced by many nonlinear solvers. | |
References | |
---------- | |
.. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code." | |
Mathematical programming 5.1 (1973): 1-28. | |
.. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge | |
simplex algorithm." Mathematical Programming 12.1 (1977): 361-371. | |
""" | |
if unknown_options: | |
message = (f"Unrecognized options detected: {unknown_options}. " | |
"These will be passed to HiGHS verbatim.") | |
warn(message, OptimizeWarning, stacklevel=3) | |
# Map options to HiGHS enum values | |
simplex_dual_edge_weight_strategy_enum = _convert_to_highs_enum( | |
simplex_dual_edge_weight_strategy, | |
'simplex_dual_edge_weight_strategy', | |
choices={'dantzig': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DANTZIG, | |
'devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_DEVEX, | |
'steepest-devex': HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_CHOOSE, | |
'steepest': | |
HIGHS_SIMPLEX_EDGE_WEIGHT_STRATEGY_STEEPEST_EDGE, | |
None: None}) | |
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp | |
lb, ub = bounds.T.copy() # separate bounds, copy->C-cntgs | |
# highs_wrapper solves LHS <= A*x <= RHS, not equality constraints | |
with np.errstate(invalid="ignore"): | |
lhs_ub = -np.ones_like(b_ub)*np.inf # LHS of UB constraints is -inf | |
rhs_ub = b_ub # RHS of UB constraints is b_ub | |
lhs_eq = b_eq # Equality constraint is inequality | |
rhs_eq = b_eq # constraint with LHS=RHS | |
lhs = np.concatenate((lhs_ub, lhs_eq)) | |
rhs = np.concatenate((rhs_ub, rhs_eq)) | |
if issparse(A_ub) or issparse(A_eq): | |
A = vstack((A_ub, A_eq)) | |
else: | |
A = np.vstack((A_ub, A_eq)) | |
A = csc_matrix(A) | |
options = { | |
'presolve': presolve, | |
'sense': HIGHS_OBJECTIVE_SENSE_MINIMIZE, | |
'solver': solver, | |
'time_limit': time_limit, | |
'highs_debug_level': MESSAGE_LEVEL_NONE, | |
'dual_feasibility_tolerance': dual_feasibility_tolerance, | |
'ipm_optimality_tolerance': ipm_optimality_tolerance, | |
'log_to_console': disp, | |
'mip_max_nodes': mip_max_nodes, | |
'output_flag': disp, | |
'primal_feasibility_tolerance': primal_feasibility_tolerance, | |
'simplex_dual_edge_weight_strategy': | |
simplex_dual_edge_weight_strategy_enum, | |
'simplex_strategy': HIGHS_SIMPLEX_STRATEGY_DUAL, | |
'simplex_crash_strategy': HIGHS_SIMPLEX_CRASH_STRATEGY_OFF, | |
'ipm_iteration_limit': maxiter, | |
'simplex_iteration_limit': maxiter, | |
'mip_rel_gap': mip_rel_gap, | |
} | |
options.update(unknown_options) | |
# np.inf doesn't work; use very large constant | |
rhs = _replace_inf(rhs) | |
lhs = _replace_inf(lhs) | |
lb = _replace_inf(lb) | |
ub = _replace_inf(ub) | |
if integrality is None or np.sum(integrality) == 0: | |
integrality = np.empty(0) | |
else: | |
integrality = np.array(integrality) | |
res = _highs_wrapper(c, A.indptr, A.indices, A.data, lhs, rhs, | |
lb, ub, integrality.astype(np.uint8), options) | |
# HiGHS represents constraints as lhs/rhs, so | |
# Ax + s = b => Ax = b - s | |
# and we need to split up s by A_ub and A_eq | |
if 'slack' in res: | |
slack = res['slack'] | |
con = np.array(slack[len(b_ub):]) | |
slack = np.array(slack[:len(b_ub)]) | |
else: | |
slack, con = None, None | |
# lagrange multipliers for equalities/inequalities and upper/lower bounds | |
if 'lambda' in res: | |
lamda = res['lambda'] | |
marg_ineqlin = np.array(lamda[:len(b_ub)]) | |
marg_eqlin = np.array(lamda[len(b_ub):]) | |
marg_upper = np.array(res['marg_bnds'][1, :]) | |
marg_lower = np.array(res['marg_bnds'][0, :]) | |
else: | |
marg_ineqlin, marg_eqlin = None, None | |
marg_upper, marg_lower = None, None | |
# this needs to be updated if we start choosing the solver intelligently | |
# Convert to scipy-style status and message | |
highs_status = res.get('status', None) | |
highs_message = res.get('message', None) | |
status, message = _highs_to_scipy_status_message(highs_status, | |
highs_message) | |
x = np.array(res['x']) if 'x' in res else None | |
sol = {'x': x, | |
'slack': slack, | |
'con': con, | |
'ineqlin': OptimizeResult({ | |
'residual': slack, | |
'marginals': marg_ineqlin, | |
}), | |
'eqlin': OptimizeResult({ | |
'residual': con, | |
'marginals': marg_eqlin, | |
}), | |
'lower': OptimizeResult({ | |
'residual': None if x is None else x - lb, | |
'marginals': marg_lower, | |
}), | |
'upper': OptimizeResult({ | |
'residual': None if x is None else ub - x, | |
'marginals': marg_upper | |
}), | |
'fun': res.get('fun'), | |
'status': status, | |
'success': res['status'] == MODEL_STATUS_OPTIMAL, | |
'message': message, | |
'nit': res.get('simplex_nit', 0) or res.get('ipm_nit', 0), | |
'crossover_nit': res.get('crossover_nit'), | |
} | |
if np.any(x) and integrality is not None: | |
sol.update({ | |
'mip_node_count': res.get('mip_node_count', 0), | |
'mip_dual_bound': res.get('mip_dual_bound', 0.0), | |
'mip_gap': res.get('mip_gap', 0.0), | |
}) | |
return sol | |