peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/_wavelets.py
import warnings | |
import numpy as np | |
from scipy.linalg import eig | |
from scipy.special import comb | |
from scipy.signal import convolve | |
__all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'morlet2', 'cwt'] | |
_msg="""scipy.signal.%s is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
""" | |
def daub(p): | |
""" | |
The coefficients for the FIR low-pass filter producing Daubechies wavelets. | |
.. deprecated:: 1.12.0 | |
scipy.signal.daub is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
p>=1 gives the order of the zero at f=1/2. | |
There are 2p filter coefficients. | |
Parameters | |
---------- | |
p : int | |
Order of the zero at f=1/2, can have values from 1 to 34. | |
Returns | |
------- | |
daub : ndarray | |
Return | |
""" | |
warnings.warn(_msg % 'daub', DeprecationWarning, stacklevel=2) | |
sqrt = np.sqrt | |
if p < 1: | |
raise ValueError("p must be at least 1.") | |
if p == 1: | |
c = 1 / sqrt(2) | |
return np.array([c, c]) | |
elif p == 2: | |
f = sqrt(2) / 8 | |
c = sqrt(3) | |
return f * np.array([1 + c, 3 + c, 3 - c, 1 - c]) | |
elif p == 3: | |
tmp = 12 * sqrt(10) | |
z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6 | |
z1c = np.conj(z1) | |
f = sqrt(2) / 8 | |
d0 = np.real((1 - z1) * (1 - z1c)) | |
a0 = np.real(z1 * z1c) | |
a1 = 2 * np.real(z1) | |
return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1, | |
a0 - 3 * a1 + 3, 3 - a1, 1]) | |
elif p < 35: | |
# construct polynomial and factor it | |
if p < 35: | |
P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1] | |
yj = np.roots(P) | |
else: # try different polynomial --- needs work | |
P = [comb(p - 1 + k, k, exact=1) / 4.0**k | |
for k in range(p)][::-1] | |
yj = np.roots(P) / 4 | |
# for each root, compute two z roots, select the one with |z|>1 | |
# Build up final polynomial | |
c = np.poly1d([1, 1])**p | |
q = np.poly1d([1]) | |
for k in range(p - 1): | |
yval = yj[k] | |
part = 2 * sqrt(yval * (yval - 1)) | |
const = 1 - 2 * yval | |
z1 = const + part | |
if (abs(z1)) < 1: | |
z1 = const - part | |
q = q * [1, -z1] | |
q = c * np.real(q) | |
# Normalize result | |
q = q / np.sum(q) * sqrt(2) | |
return q.c[::-1] | |
else: | |
raise ValueError("Polynomial factorization does not work " | |
"well for p too large.") | |
def qmf(hk): | |
""" | |
Return high-pass qmf filter from low-pass | |
.. deprecated:: 1.12.0 | |
scipy.signal.qmf is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
Parameters | |
---------- | |
hk : array_like | |
Coefficients of high-pass filter. | |
Returns | |
------- | |
array_like | |
High-pass filter coefficients. | |
""" | |
warnings.warn(_msg % 'qmf', DeprecationWarning, stacklevel=2) | |
N = len(hk) - 1 | |
asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)] | |
return hk[::-1] * np.array(asgn) | |
def cascade(hk, J=7): | |
""" | |
Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients. | |
.. deprecated:: 1.12.0 | |
scipy.signal.cascade is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
Parameters | |
---------- | |
hk : array_like | |
Coefficients of low-pass filter. | |
J : int, optional | |
Values will be computed at grid points ``K/2**J``. Default is 7. | |
Returns | |
------- | |
x : ndarray | |
The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where | |
``len(hk) = len(gk) = N+1``. | |
phi : ndarray | |
The scaling function ``phi(x)`` at `x`: | |
``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N. | |
psi : ndarray, optional | |
The wavelet function ``psi(x)`` at `x`: | |
``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N. | |
`psi` is only returned if `gk` is not None. | |
Notes | |
----- | |
The algorithm uses the vector cascade algorithm described by Strang and | |
Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values | |
and slices for quick reuse. Then inserts vectors into final vector at the | |
end. | |
""" | |
warnings.warn(_msg % 'cascade', DeprecationWarning, stacklevel=2) | |
N = len(hk) - 1 | |
if (J > 30 - np.log2(N + 1)): | |
raise ValueError("Too many levels.") | |
if (J < 1): | |
raise ValueError("Too few levels.") | |
# construct matrices needed | |
nn, kk = np.ogrid[:N, :N] | |
s2 = np.sqrt(2) | |
# append a zero so that take works | |
thk = np.r_[hk, 0] | |
gk = qmf(hk) | |
tgk = np.r_[gk, 0] | |
indx1 = np.clip(2 * nn - kk, -1, N + 1) | |
indx2 = np.clip(2 * nn - kk + 1, -1, N + 1) | |
m = np.empty((2, 2, N, N), 'd') | |
m[0, 0] = np.take(thk, indx1, 0) | |
m[0, 1] = np.take(thk, indx2, 0) | |
m[1, 0] = np.take(tgk, indx1, 0) | |
m[1, 1] = np.take(tgk, indx2, 0) | |
m *= s2 | |
# construct the grid of points | |
x = np.arange(0, N * (1 << J), dtype=float) / (1 << J) | |
phi = 0 * x | |
psi = 0 * x | |
# find phi0, and phi1 | |
lam, v = eig(m[0, 0]) | |
ind = np.argmin(np.absolute(lam - 1)) | |
# a dictionary with a binary representation of the | |
# evaluation points x < 1 -- i.e. position is 0.xxxx | |
v = np.real(v[:, ind]) | |
# need scaling function to integrate to 1 so find | |
# eigenvector normalized to sum(v,axis=0)=1 | |
sm = np.sum(v) | |
if sm < 0: # need scaling function to integrate to 1 | |
v = -v | |
sm = -sm | |
bitdic = {'0': v / sm} | |
bitdic['1'] = np.dot(m[0, 1], bitdic['0']) | |
step = 1 << J | |
phi[::step] = bitdic['0'] | |
phi[(1 << (J - 1))::step] = bitdic['1'] | |
psi[::step] = np.dot(m[1, 0], bitdic['0']) | |
psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0']) | |
# descend down the levels inserting more and more values | |
# into bitdic -- store the values in the correct location once we | |
# have computed them -- stored in the dictionary | |
# for quicker use later. | |
prevkeys = ['1'] | |
for level in range(2, J + 1): | |
newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys] | |
fac = 1 << (J - level) | |
for key in newkeys: | |
# convert key to number | |
num = 0 | |
for pos in range(level): | |
if key[pos] == '1': | |
num += (1 << (level - 1 - pos)) | |
pastphi = bitdic[key[1:]] | |
ii = int(key[0]) | |
temp = np.dot(m[0, ii], pastphi) | |
bitdic[key] = temp | |
phi[num * fac::step] = temp | |
psi[num * fac::step] = np.dot(m[1, ii], pastphi) | |
prevkeys = newkeys | |
return x, phi, psi | |
def morlet(M, w=5.0, s=1.0, complete=True): | |
""" | |
Complex Morlet wavelet. | |
.. deprecated:: 1.12.0 | |
scipy.signal.morlet is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
Parameters | |
---------- | |
M : int | |
Length of the wavelet. | |
w : float, optional | |
Omega0. Default is 5 | |
s : float, optional | |
Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1. | |
complete : bool, optional | |
Whether to use the complete or the standard version. | |
Returns | |
------- | |
morlet : (M,) ndarray | |
See Also | |
-------- | |
morlet2 : Implementation of Morlet wavelet, compatible with `cwt`. | |
scipy.signal.gausspulse | |
Notes | |
----- | |
The standard version:: | |
pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2)) | |
This commonly used wavelet is often referred to simply as the | |
Morlet wavelet. Note that this simplified version can cause | |
admissibility problems at low values of `w`. | |
The complete version:: | |
pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2)) | |
This version has a correction | |
term to improve admissibility. For `w` greater than 5, the | |
correction term is negligible. | |
Note that the energy of the return wavelet is not normalised | |
according to `s`. | |
The fundamental frequency of this wavelet in Hz is given | |
by ``f = 2*s*w*r / M`` where `r` is the sampling rate. | |
Note: This function was created before `cwt` and is not compatible | |
with it. | |
Examples | |
-------- | |
>>> from scipy import signal | |
>>> import matplotlib.pyplot as plt | |
>>> M = 100 | |
>>> s = 4.0 | |
>>> w = 2.0 | |
>>> wavelet = signal.morlet(M, s, w) | |
>>> plt.plot(wavelet.real, label="real") | |
>>> plt.plot(wavelet.imag, label="imag") | |
>>> plt.legend() | |
>>> plt.show() | |
""" | |
warnings.warn(_msg % 'morlet', DeprecationWarning, stacklevel=2) | |
x = np.linspace(-s * 2 * np.pi, s * 2 * np.pi, M) | |
output = np.exp(1j * w * x) | |
if complete: | |
output -= np.exp(-0.5 * (w**2)) | |
output *= np.exp(-0.5 * (x**2)) * np.pi**(-0.25) | |
return output | |
def ricker(points, a): | |
""" | |
Return a Ricker wavelet, also known as the "Mexican hat wavelet". | |
.. deprecated:: 1.12.0 | |
scipy.signal.ricker is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
It models the function: | |
``A * (1 - (x/a)**2) * exp(-0.5*(x/a)**2)``, | |
where ``A = 2/(sqrt(3*a)*(pi**0.25))``. | |
Parameters | |
---------- | |
points : int | |
Number of points in `vector`. | |
Will be centered around 0. | |
a : scalar | |
Width parameter of the wavelet. | |
Returns | |
------- | |
vector : (N,) ndarray | |
Array of length `points` in shape of ricker curve. | |
Examples | |
-------- | |
>>> from scipy import signal | |
>>> import matplotlib.pyplot as plt | |
>>> points = 100 | |
>>> a = 4.0 | |
>>> vec2 = signal.ricker(points, a) | |
>>> print(len(vec2)) | |
100 | |
>>> plt.plot(vec2) | |
>>> plt.show() | |
""" | |
warnings.warn(_msg % 'ricker', DeprecationWarning, stacklevel=2) | |
return _ricker(points, a) | |
def _ricker(points, a): | |
A = 2 / (np.sqrt(3 * a) * (np.pi**0.25)) | |
wsq = a**2 | |
vec = np.arange(0, points) - (points - 1.0) / 2 | |
xsq = vec**2 | |
mod = (1 - xsq / wsq) | |
gauss = np.exp(-xsq / (2 * wsq)) | |
total = A * mod * gauss | |
return total | |
def morlet2(M, s, w=5): | |
""" | |
Complex Morlet wavelet, designed to work with `cwt`. | |
.. deprecated:: 1.12.0 | |
scipy.signal.morlet2 is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
Returns the complete version of morlet wavelet, normalised | |
according to `s`:: | |
exp(1j*w*x/s) * exp(-0.5*(x/s)**2) * pi**(-0.25) * sqrt(1/s) | |
Parameters | |
---------- | |
M : int | |
Length of the wavelet. | |
s : float | |
Width parameter of the wavelet. | |
w : float, optional | |
Omega0. Default is 5 | |
Returns | |
------- | |
morlet : (M,) ndarray | |
See Also | |
-------- | |
morlet : Implementation of Morlet wavelet, incompatible with `cwt` | |
Notes | |
----- | |
.. versionadded:: 1.4.0 | |
This function was designed to work with `cwt`. Because `morlet2` | |
returns an array of complex numbers, the `dtype` argument of `cwt` | |
should be set to `complex128` for best results. | |
Note the difference in implementation with `morlet`. | |
The fundamental frequency of this wavelet in Hz is given by:: | |
f = w*fs / (2*s*np.pi) | |
where ``fs`` is the sampling rate and `s` is the wavelet width parameter. | |
Similarly we can get the wavelet width parameter at ``f``:: | |
s = w*fs / (2*f*np.pi) | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import signal | |
>>> import matplotlib.pyplot as plt | |
>>> M = 100 | |
>>> s = 4.0 | |
>>> w = 2.0 | |
>>> wavelet = signal.morlet2(M, s, w) | |
>>> plt.plot(abs(wavelet)) | |
>>> plt.show() | |
This example shows basic use of `morlet2` with `cwt` in time-frequency | |
analysis: | |
>>> t, dt = np.linspace(0, 1, 200, retstep=True) | |
>>> fs = 1/dt | |
>>> w = 6. | |
>>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t) | |
>>> freq = np.linspace(1, fs/2, 100) | |
>>> widths = w*fs / (2*freq*np.pi) | |
>>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w) | |
>>> plt.pcolormesh(t, freq, np.abs(cwtm), cmap='viridis', shading='gouraud') | |
>>> plt.show() | |
""" | |
warnings.warn(_msg % 'morlet2', DeprecationWarning, stacklevel=2) | |
x = np.arange(0, M) - (M - 1.0) / 2 | |
x = x / s | |
wavelet = np.exp(1j * w * x) * np.exp(-0.5 * x**2) * np.pi**(-0.25) | |
output = np.sqrt(1/s) * wavelet | |
return output | |
def cwt(data, wavelet, widths, dtype=None, **kwargs): | |
""" | |
Continuous wavelet transform. | |
.. deprecated:: 1.12.0 | |
scipy.signal.cwt is deprecated in SciPy 1.12 and will be removed | |
in SciPy 1.15. We recommend using PyWavelets instead. | |
Performs a continuous wavelet transform on `data`, | |
using the `wavelet` function. A CWT performs a convolution | |
with `data` using the `wavelet` function, which is characterized | |
by a width parameter and length parameter. The `wavelet` function | |
is allowed to be complex. | |
Parameters | |
---------- | |
data : (N,) ndarray | |
data on which to perform the transform. | |
wavelet : function | |
Wavelet function, which should take 2 arguments. | |
The first argument is the number of points that the returned vector | |
will have (len(wavelet(length,width)) == length). | |
The second is a width parameter, defining the size of the wavelet | |
(e.g. standard deviation of a gaussian). See `ricker`, which | |
satisfies these requirements. | |
widths : (M,) sequence | |
Widths to use for transform. | |
dtype : data-type, optional | |
The desired data type of output. Defaults to ``float64`` if the | |
output of `wavelet` is real and ``complex128`` if it is complex. | |
.. versionadded:: 1.4.0 | |
kwargs | |
Keyword arguments passed to wavelet function. | |
.. versionadded:: 1.4.0 | |
Returns | |
------- | |
cwt: (M, N) ndarray | |
Will have shape of (len(widths), len(data)). | |
Notes | |
----- | |
.. versionadded:: 1.4.0 | |
For non-symmetric, complex-valued wavelets, the input signal is convolved | |
with the time-reversed complex-conjugate of the wavelet data [1]. | |
:: | |
length = min(10 * width[ii], len(data)) | |
cwt[ii,:] = signal.convolve(data, np.conj(wavelet(length, width[ii], | |
**kwargs))[::-1], mode='same') | |
References | |
---------- | |
.. [1] S. Mallat, "A Wavelet Tour of Signal Processing (3rd Edition)", | |
Academic Press, 2009. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import signal | |
>>> import matplotlib.pyplot as plt | |
>>> t = np.linspace(-1, 1, 200, endpoint=False) | |
>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2) | |
>>> widths = np.arange(1, 31) | |
>>> cwtmatr = signal.cwt(sig, signal.ricker, widths) | |
.. note:: For cwt matrix plotting it is advisable to flip the y-axis | |
>>> cwtmatr_yflip = np.flipud(cwtmatr) | |
>>> plt.imshow(cwtmatr_yflip, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto', | |
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) | |
>>> plt.show() | |
""" | |
warnings.warn(_msg % 'cwt', DeprecationWarning, stacklevel=2) | |
return _cwt(data, wavelet, widths, dtype, **kwargs) | |
def _cwt(data, wavelet, widths, dtype=None, **kwargs): | |
# Determine output type | |
if dtype is None: | |
if np.asarray(wavelet(1, widths[0], **kwargs)).dtype.char in 'FDG': | |
dtype = np.complex128 | |
else: | |
dtype = np.float64 | |
output = np.empty((len(widths), len(data)), dtype=dtype) | |
for ind, width in enumerate(widths): | |
N = np.min([10 * width, len(data)]) | |
wavelet_data = np.conj(wavelet(N, width, **kwargs)[::-1]) | |
output[ind] = convolve(data, wavelet_data, mode='same') | |
return output | |