peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/ccg
/chart.py
| # Natural Language Toolkit: Combinatory Categorial Grammar | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Graeme Gange <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| The lexicon is constructed by calling | |
| ``lexicon.fromstring(<lexicon string>)``. | |
| In order to construct a parser, you also need a rule set. | |
| The standard English rules are provided in chart as | |
| ``chart.DefaultRuleSet``. | |
| The parser can then be constructed by calling, for example: | |
| ``parser = chart.CCGChartParser(<lexicon>, <ruleset>)`` | |
| Parsing is then performed by running | |
| ``parser.parse(<sentence>.split())``. | |
| While this returns a list of trees, the default representation | |
| of the produced trees is not very enlightening, particularly | |
| given that it uses the same tree class as the CFG parsers. | |
| It is probably better to call: | |
| ``chart.printCCGDerivation(<parse tree extracted from list>)`` | |
| which should print a nice representation of the derivation. | |
| This entire process is shown far more clearly in the demonstration: | |
| python chart.py | |
| """ | |
| import itertools | |
| from nltk.ccg.combinator import * | |
| from nltk.ccg.combinator import ( | |
| BackwardApplication, | |
| BackwardBx, | |
| BackwardComposition, | |
| BackwardSx, | |
| BackwardT, | |
| ForwardApplication, | |
| ForwardComposition, | |
| ForwardSubstitution, | |
| ForwardT, | |
| ) | |
| from nltk.ccg.lexicon import Token, fromstring | |
| from nltk.ccg.logic import * | |
| from nltk.parse import ParserI | |
| from nltk.parse.chart import AbstractChartRule, Chart, EdgeI | |
| from nltk.sem.logic import * | |
| from nltk.tree import Tree | |
| # Based on the EdgeI class from NLTK. | |
| # A number of the properties of the EdgeI interface don't | |
| # transfer well to CCGs, however. | |
| class CCGEdge(EdgeI): | |
| def __init__(self, span, categ, rule): | |
| self._span = span | |
| self._categ = categ | |
| self._rule = rule | |
| self._comparison_key = (span, categ, rule) | |
| # Accessors | |
| def lhs(self): | |
| return self._categ | |
| def span(self): | |
| return self._span | |
| def start(self): | |
| return self._span[0] | |
| def end(self): | |
| return self._span[1] | |
| def length(self): | |
| return self._span[1] - self.span[0] | |
| def rhs(self): | |
| return () | |
| def dot(self): | |
| return 0 | |
| def is_complete(self): | |
| return True | |
| def is_incomplete(self): | |
| return False | |
| def nextsym(self): | |
| return None | |
| def categ(self): | |
| return self._categ | |
| def rule(self): | |
| return self._rule | |
| class CCGLeafEdge(EdgeI): | |
| """ | |
| Class representing leaf edges in a CCG derivation. | |
| """ | |
| def __init__(self, pos, token, leaf): | |
| self._pos = pos | |
| self._token = token | |
| self._leaf = leaf | |
| self._comparison_key = (pos, token.categ(), leaf) | |
| # Accessors | |
| def lhs(self): | |
| return self._token.categ() | |
| def span(self): | |
| return (self._pos, self._pos + 1) | |
| def start(self): | |
| return self._pos | |
| def end(self): | |
| return self._pos + 1 | |
| def length(self): | |
| return 1 | |
| def rhs(self): | |
| return self._leaf | |
| def dot(self): | |
| return 0 | |
| def is_complete(self): | |
| return True | |
| def is_incomplete(self): | |
| return False | |
| def nextsym(self): | |
| return None | |
| def token(self): | |
| return self._token | |
| def categ(self): | |
| return self._token.categ() | |
| def leaf(self): | |
| return self._leaf | |
| class BinaryCombinatorRule(AbstractChartRule): | |
| """ | |
| Class implementing application of a binary combinator to a chart. | |
| Takes the directed combinator to apply. | |
| """ | |
| NUMEDGES = 2 | |
| def __init__(self, combinator): | |
| self._combinator = combinator | |
| # Apply a combinator | |
| def apply(self, chart, grammar, left_edge, right_edge): | |
| # The left & right edges must be touching. | |
| if not (left_edge.end() == right_edge.start()): | |
| return | |
| # Check if the two edges are permitted to combine. | |
| # If so, generate the corresponding edge. | |
| if self._combinator.can_combine(left_edge.categ(), right_edge.categ()): | |
| for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): | |
| new_edge = CCGEdge( | |
| span=(left_edge.start(), right_edge.end()), | |
| categ=res, | |
| rule=self._combinator, | |
| ) | |
| if chart.insert(new_edge, (left_edge, right_edge)): | |
| yield new_edge | |
| # The representation of the combinator (for printing derivations) | |
| def __str__(self): | |
| return "%s" % self._combinator | |
| # Type-raising must be handled slightly differently to the other rules, as the | |
| # resulting rules only span a single edge, rather than both edges. | |
| class ForwardTypeRaiseRule(AbstractChartRule): | |
| """ | |
| Class for applying forward type raising | |
| """ | |
| NUMEDGES = 2 | |
| def __init__(self): | |
| self._combinator = ForwardT | |
| def apply(self, chart, grammar, left_edge, right_edge): | |
| if not (left_edge.end() == right_edge.start()): | |
| return | |
| for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): | |
| new_edge = CCGEdge(span=left_edge.span(), categ=res, rule=self._combinator) | |
| if chart.insert(new_edge, (left_edge,)): | |
| yield new_edge | |
| def __str__(self): | |
| return "%s" % self._combinator | |
| class BackwardTypeRaiseRule(AbstractChartRule): | |
| """ | |
| Class for applying backward type raising. | |
| """ | |
| NUMEDGES = 2 | |
| def __init__(self): | |
| self._combinator = BackwardT | |
| def apply(self, chart, grammar, left_edge, right_edge): | |
| if not (left_edge.end() == right_edge.start()): | |
| return | |
| for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): | |
| new_edge = CCGEdge(span=right_edge.span(), categ=res, rule=self._combinator) | |
| if chart.insert(new_edge, (right_edge,)): | |
| yield new_edge | |
| def __str__(self): | |
| return "%s" % self._combinator | |
| # Common sets of combinators used for English derivations. | |
| ApplicationRuleSet = [ | |
| BinaryCombinatorRule(ForwardApplication), | |
| BinaryCombinatorRule(BackwardApplication), | |
| ] | |
| CompositionRuleSet = [ | |
| BinaryCombinatorRule(ForwardComposition), | |
| BinaryCombinatorRule(BackwardComposition), | |
| BinaryCombinatorRule(BackwardBx), | |
| ] | |
| SubstitutionRuleSet = [ | |
| BinaryCombinatorRule(ForwardSubstitution), | |
| BinaryCombinatorRule(BackwardSx), | |
| ] | |
| TypeRaiseRuleSet = [ForwardTypeRaiseRule(), BackwardTypeRaiseRule()] | |
| # The standard English rule set. | |
| DefaultRuleSet = ( | |
| ApplicationRuleSet + CompositionRuleSet + SubstitutionRuleSet + TypeRaiseRuleSet | |
| ) | |
| class CCGChartParser(ParserI): | |
| """ | |
| Chart parser for CCGs. | |
| Based largely on the ChartParser class from NLTK. | |
| """ | |
| def __init__(self, lexicon, rules, trace=0): | |
| self._lexicon = lexicon | |
| self._rules = rules | |
| self._trace = trace | |
| def lexicon(self): | |
| return self._lexicon | |
| # Implements the CYK algorithm | |
| def parse(self, tokens): | |
| tokens = list(tokens) | |
| chart = CCGChart(list(tokens)) | |
| lex = self._lexicon | |
| # Initialize leaf edges. | |
| for index in range(chart.num_leaves()): | |
| for token in lex.categories(chart.leaf(index)): | |
| new_edge = CCGLeafEdge(index, token, chart.leaf(index)) | |
| chart.insert(new_edge, ()) | |
| # Select a span for the new edges | |
| for span in range(2, chart.num_leaves() + 1): | |
| for start in range(0, chart.num_leaves() - span + 1): | |
| # Try all possible pairs of edges that could generate | |
| # an edge for that span | |
| for part in range(1, span): | |
| lstart = start | |
| mid = start + part | |
| rend = start + span | |
| for left in chart.select(span=(lstart, mid)): | |
| for right in chart.select(span=(mid, rend)): | |
| # Generate all possible combinations of the two edges | |
| for rule in self._rules: | |
| edges_added_by_rule = 0 | |
| for newedge in rule.apply(chart, lex, left, right): | |
| edges_added_by_rule += 1 | |
| # Output the resulting parses | |
| return chart.parses(lex.start()) | |
| class CCGChart(Chart): | |
| def __init__(self, tokens): | |
| Chart.__init__(self, tokens) | |
| # Constructs the trees for a given parse. Unfortnunately, the parse trees need to be | |
| # constructed slightly differently to those in the default Chart class, so it has to | |
| # be reimplemented | |
| def _trees(self, edge, complete, memo, tree_class): | |
| assert complete, "CCGChart cannot build incomplete trees" | |
| if edge in memo: | |
| return memo[edge] | |
| if isinstance(edge, CCGLeafEdge): | |
| word = tree_class(edge.token(), [self._tokens[edge.start()]]) | |
| leaf = tree_class((edge.token(), "Leaf"), [word]) | |
| memo[edge] = [leaf] | |
| return [leaf] | |
| memo[edge] = [] | |
| trees = [] | |
| for cpl in self.child_pointer_lists(edge): | |
| child_choices = [self._trees(cp, complete, memo, tree_class) for cp in cpl] | |
| for children in itertools.product(*child_choices): | |
| lhs = ( | |
| Token( | |
| self._tokens[edge.start() : edge.end()], | |
| edge.lhs(), | |
| compute_semantics(children, edge), | |
| ), | |
| str(edge.rule()), | |
| ) | |
| trees.append(tree_class(lhs, children)) | |
| memo[edge] = trees | |
| return trees | |
| def compute_semantics(children, edge): | |
| if children[0].label()[0].semantics() is None: | |
| return None | |
| if len(children) == 2: | |
| if isinstance(edge.rule(), BackwardCombinator): | |
| children = [children[1], children[0]] | |
| combinator = edge.rule()._combinator | |
| function = children[0].label()[0].semantics() | |
| argument = children[1].label()[0].semantics() | |
| if isinstance(combinator, UndirectedFunctionApplication): | |
| return compute_function_semantics(function, argument) | |
| elif isinstance(combinator, UndirectedComposition): | |
| return compute_composition_semantics(function, argument) | |
| elif isinstance(combinator, UndirectedSubstitution): | |
| return compute_substitution_semantics(function, argument) | |
| else: | |
| raise AssertionError("Unsupported combinator '" + combinator + "'") | |
| else: | |
| return compute_type_raised_semantics(children[0].label()[0].semantics()) | |
| # -------- | |
| # Displaying derivations | |
| # -------- | |
| def printCCGDerivation(tree): | |
| # Get the leaves and initial categories | |
| leafcats = tree.pos() | |
| leafstr = "" | |
| catstr = "" | |
| # Construct a string with both the leaf word and corresponding | |
| # category aligned. | |
| for (leaf, cat) in leafcats: | |
| str_cat = "%s" % cat | |
| nextlen = 2 + max(len(leaf), len(str_cat)) | |
| lcatlen = (nextlen - len(str_cat)) // 2 | |
| rcatlen = lcatlen + (nextlen - len(str_cat)) % 2 | |
| catstr += " " * lcatlen + str_cat + " " * rcatlen | |
| lleaflen = (nextlen - len(leaf)) // 2 | |
| rleaflen = lleaflen + (nextlen - len(leaf)) % 2 | |
| leafstr += " " * lleaflen + leaf + " " * rleaflen | |
| print(leafstr.rstrip()) | |
| print(catstr.rstrip()) | |
| # Display the derivation steps | |
| printCCGTree(0, tree) | |
| # Prints the sequence of derivation steps. | |
| def printCCGTree(lwidth, tree): | |
| rwidth = lwidth | |
| # Is a leaf (word). | |
| # Increment the span by the space occupied by the leaf. | |
| if not isinstance(tree, Tree): | |
| return 2 + lwidth + len(tree) | |
| # Find the width of the current derivation step | |
| for child in tree: | |
| rwidth = max(rwidth, printCCGTree(rwidth, child)) | |
| # Is a leaf node. | |
| # Don't print anything, but account for the space occupied. | |
| if not isinstance(tree.label(), tuple): | |
| return max( | |
| rwidth, 2 + lwidth + len("%s" % tree.label()), 2 + lwidth + len(tree[0]) | |
| ) | |
| (token, op) = tree.label() | |
| if op == "Leaf": | |
| return rwidth | |
| # Pad to the left with spaces, followed by a sequence of '-' | |
| # and the derivation rule. | |
| print(lwidth * " " + (rwidth - lwidth) * "-" + "%s" % op) | |
| # Print the resulting category on a new line. | |
| str_res = "%s" % (token.categ()) | |
| if token.semantics() is not None: | |
| str_res += " {" + str(token.semantics()) + "}" | |
| respadlen = (rwidth - lwidth - len(str_res)) // 2 + lwidth | |
| print(respadlen * " " + str_res) | |
| return rwidth | |
| ### Demonstration code | |
| # Construct the lexicon | |
| lex = fromstring( | |
| """ | |
| :- S, NP, N, VP # Primitive categories, S is the target primitive | |
| Det :: NP/N # Family of words | |
| Pro :: NP | |
| TV :: VP/NP | |
| Modal :: (S\\NP)/VP # Backslashes need to be escaped | |
| I => Pro # Word -> Category mapping | |
| you => Pro | |
| the => Det | |
| # Variables have the special keyword 'var' | |
| # '.' prevents permutation | |
| # ',' prevents composition | |
| and => var\\.,var/.,var | |
| which => (N\\N)/(S/NP) | |
| will => Modal # Categories can be either explicit, or families. | |
| might => Modal | |
| cook => TV | |
| eat => TV | |
| mushrooms => N | |
| parsnips => N | |
| bacon => N | |
| """ | |
| ) | |
| def demo(): | |
| parser = CCGChartParser(lex, DefaultRuleSet) | |
| for parse in parser.parse("I might cook and eat the bacon".split()): | |
| printCCGDerivation(parse) | |
| if __name__ == "__main__": | |
| demo() | |