peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/_internal
/_fields.py
"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`.""" | |
from __future__ import annotations as _annotations | |
import dataclasses | |
import sys | |
import warnings | |
from copy import copy | |
from functools import lru_cache | |
from typing import TYPE_CHECKING, Any | |
from pydantic_core import PydanticUndefined | |
from pydantic.errors import PydanticUserError | |
from . import _typing_extra | |
from ._config import ConfigWrapper | |
from ._docs_extraction import extract_docstrings_from_cls | |
from ._repr import Representation | |
from ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar | |
if TYPE_CHECKING: | |
from annotated_types import BaseMetadata | |
from ..fields import FieldInfo | |
from ..main import BaseModel | |
from ._dataclasses import StandardDataclass | |
from ._decorators import DecoratorInfos | |
def get_type_hints_infer_globalns( | |
obj: Any, | |
localns: dict[str, Any] | None = None, | |
include_extras: bool = False, | |
) -> dict[str, Any]: | |
"""Gets type hints for an object by inferring the global namespace. | |
It uses the `typing.get_type_hints`, The only thing that we do here is fetching | |
global namespace from `obj.__module__` if it is not `None`. | |
Args: | |
obj: The object to get its type hints. | |
localns: The local namespaces. | |
include_extras: Whether to recursively include annotation metadata. | |
Returns: | |
The object type hints. | |
""" | |
module_name = getattr(obj, '__module__', None) | |
globalns: dict[str, Any] | None = None | |
if module_name: | |
try: | |
globalns = sys.modules[module_name].__dict__ | |
except KeyError: | |
# happens occasionally, see https://github.com/pydantic/pydantic/issues/2363 | |
pass | |
return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras) | |
class PydanticMetadata(Representation): | |
"""Base class for annotation markers like `Strict`.""" | |
__slots__ = () | |
def pydantic_general_metadata(**metadata: Any) -> BaseMetadata: | |
"""Create a new `_PydanticGeneralMetadata` class with the given metadata. | |
Args: | |
**metadata: The metadata to add. | |
Returns: | |
The new `_PydanticGeneralMetadata` class. | |
""" | |
return _general_metadata_cls()(metadata) # type: ignore | |
def _general_metadata_cls() -> type[BaseMetadata]: | |
"""Do it this way to avoid importing `annotated_types` at import time.""" | |
from annotated_types import BaseMetadata | |
class _PydanticGeneralMetadata(PydanticMetadata, BaseMetadata): | |
"""Pydantic general metadata like `max_digits`.""" | |
def __init__(self, metadata: Any): | |
self.__dict__ = metadata | |
return _PydanticGeneralMetadata # type: ignore | |
def _update_fields_from_docstrings(cls: type[Any], fields: dict[str, FieldInfo], config_wrapper: ConfigWrapper) -> None: | |
if config_wrapper.use_attribute_docstrings: | |
fields_docs = extract_docstrings_from_cls(cls) | |
for ann_name, field_info in fields.items(): | |
if field_info.description is None and ann_name in fields_docs: | |
field_info.description = fields_docs[ann_name] | |
def collect_model_fields( # noqa: C901 | |
cls: type[BaseModel], | |
bases: tuple[type[Any], ...], | |
config_wrapper: ConfigWrapper, | |
types_namespace: dict[str, Any] | None, | |
*, | |
typevars_map: dict[Any, Any] | None = None, | |
) -> tuple[dict[str, FieldInfo], set[str]]: | |
"""Collect the fields of a nascent pydantic model. | |
Also collect the names of any ClassVars present in the type hints. | |
The returned value is a tuple of two items: the fields dict, and the set of ClassVar names. | |
Args: | |
cls: BaseModel or dataclass. | |
bases: Parents of the class, generally `cls.__bases__`. | |
config_wrapper: The config wrapper instance. | |
types_namespace: Optional extra namespace to look for types in. | |
typevars_map: A dictionary mapping type variables to their concrete types. | |
Returns: | |
A tuple contains fields and class variables. | |
Raises: | |
NameError: | |
- If there is a conflict between a field name and protected namespaces. | |
- If there is a field other than `root` in `RootModel`. | |
- If a field shadows an attribute in the parent model. | |
""" | |
from ..fields import FieldInfo | |
type_hints = get_cls_type_hints_lenient(cls, types_namespace) | |
# https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older | |
# annotations is only used for finding fields in parent classes | |
annotations = cls.__dict__.get('__annotations__', {}) | |
fields: dict[str, FieldInfo] = {} | |
class_vars: set[str] = set() | |
for ann_name, ann_type in type_hints.items(): | |
if ann_name == 'model_config': | |
# We never want to treat `model_config` as a field | |
# Note: we may need to change this logic if/when we introduce a `BareModel` class with no | |
# protected namespaces (where `model_config` might be allowed as a field name) | |
continue | |
for protected_namespace in config_wrapper.protected_namespaces: | |
if ann_name.startswith(protected_namespace): | |
for b in bases: | |
if hasattr(b, ann_name): | |
from ..main import BaseModel | |
if not (issubclass(b, BaseModel) and ann_name in b.model_fields): | |
raise NameError( | |
f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}' | |
f' of protected namespace "{protected_namespace}".' | |
) | |
else: | |
valid_namespaces = tuple( | |
x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x) | |
) | |
warnings.warn( | |
f'Field "{ann_name}" has conflict with protected namespace "{protected_namespace}".' | |
'\n\nYou may be able to resolve this warning by setting' | |
f" `model_config['protected_namespaces'] = {valid_namespaces}`.", | |
UserWarning, | |
) | |
if is_classvar(ann_type): | |
class_vars.add(ann_name) | |
continue | |
if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)): | |
class_vars.add(ann_name) | |
continue | |
if not is_valid_field_name(ann_name): | |
continue | |
if cls.__pydantic_root_model__ and ann_name != 'root': | |
raise NameError( | |
f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`" | |
) | |
# when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get | |
# "... shadows an attribute" warnings | |
generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin') | |
for base in bases: | |
dataclass_fields = { | |
field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ()) | |
} | |
if hasattr(base, ann_name): | |
if base is generic_origin: | |
# Don't warn when "shadowing" of attributes in parametrized generics | |
continue | |
if ann_name in dataclass_fields: | |
# Don't warn when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set | |
# on the class instance. | |
continue | |
if ann_name not in annotations: | |
# Don't warn when a field exists in a parent class but has not been defined in the current class | |
continue | |
warnings.warn( | |
f'Field name "{ann_name}" in "{cls.__qualname__}" shadows an attribute in parent ' | |
f'"{base.__qualname__}"', | |
UserWarning, | |
) | |
try: | |
default = getattr(cls, ann_name, PydanticUndefined) | |
if default is PydanticUndefined: | |
raise AttributeError | |
except AttributeError: | |
if ann_name in annotations: | |
field_info = FieldInfo.from_annotation(ann_type) | |
else: | |
# if field has no default value and is not in __annotations__ this means that it is | |
# defined in a base class and we can take it from there | |
model_fields_lookup: dict[str, FieldInfo] = {} | |
for x in cls.__bases__[::-1]: | |
model_fields_lookup.update(getattr(x, 'model_fields', {})) | |
if ann_name in model_fields_lookup: | |
# The field was present on one of the (possibly multiple) base classes | |
# copy the field to make sure typevar substitutions don't cause issues with the base classes | |
field_info = copy(model_fields_lookup[ann_name]) | |
else: | |
# The field was not found on any base classes; this seems to be caused by fields not getting | |
# generated thanks to models not being fully defined while initializing recursive models. | |
# Nothing stops us from just creating a new FieldInfo for this type hint, so we do this. | |
field_info = FieldInfo.from_annotation(ann_type) | |
else: | |
field_info = FieldInfo.from_annotated_attribute(ann_type, default) | |
# attributes which are fields are removed from the class namespace: | |
# 1. To match the behaviour of annotation-only fields | |
# 2. To avoid false positives in the NameError check above | |
try: | |
delattr(cls, ann_name) | |
except AttributeError: | |
pass # indicates the attribute was on a parent class | |
# Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__ | |
# to make sure the decorators have already been built for this exact class | |
decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__'] | |
if ann_name in decorators.computed_fields: | |
raise ValueError("you can't override a field with a computed field") | |
fields[ann_name] = field_info | |
if typevars_map: | |
for field in fields.values(): | |
field.apply_typevars_map(typevars_map, types_namespace) | |
_update_fields_from_docstrings(cls, fields, config_wrapper) | |
return fields, class_vars | |
def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool: | |
from ..fields import FieldInfo | |
if not is_finalvar(type_): | |
return False | |
elif val is PydanticUndefined: | |
return False | |
elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None): | |
return False | |
else: | |
return True | |
def collect_dataclass_fields( | |
cls: type[StandardDataclass], | |
types_namespace: dict[str, Any] | None, | |
*, | |
typevars_map: dict[Any, Any] | None = None, | |
config_wrapper: ConfigWrapper | None = None, | |
) -> dict[str, FieldInfo]: | |
"""Collect the fields of a dataclass. | |
Args: | |
cls: dataclass. | |
types_namespace: Optional extra namespace to look for types in. | |
typevars_map: A dictionary mapping type variables to their concrete types. | |
config_wrapper: The config wrapper instance. | |
Returns: | |
The dataclass fields. | |
""" | |
from ..fields import FieldInfo | |
fields: dict[str, FieldInfo] = {} | |
dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__ | |
cls_localns = dict(vars(cls)) # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead | |
source_module = sys.modules.get(cls.__module__) | |
if source_module is not None: | |
types_namespace = {**source_module.__dict__, **(types_namespace or {})} | |
for ann_name, dataclass_field in dataclass_fields.items(): | |
ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns) | |
if is_classvar(ann_type): | |
continue | |
if ( | |
not dataclass_field.init | |
and dataclass_field.default == dataclasses.MISSING | |
and dataclass_field.default_factory == dataclasses.MISSING | |
): | |
# TODO: We should probably do something with this so that validate_assignment behaves properly | |
# Issue: https://github.com/pydantic/pydantic/issues/5470 | |
continue | |
if isinstance(dataclass_field.default, FieldInfo): | |
if dataclass_field.default.init_var: | |
if dataclass_field.default.init is False: | |
raise PydanticUserError( | |
f'Dataclass field {ann_name} has init=False and init_var=True, but these are mutually exclusive.', | |
code='clashing-init-and-init-var', | |
) | |
# TODO: same note as above re validate_assignment | |
continue | |
field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default) | |
else: | |
field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field) | |
fields[ann_name] = field_info | |
if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo): | |
# We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo | |
setattr(cls, ann_name, field_info.default) | |
if typevars_map: | |
for field in fields.values(): | |
field.apply_typevars_map(typevars_map, types_namespace) | |
if config_wrapper is not None: | |
_update_fields_from_docstrings(cls, fields, config_wrapper) | |
return fields | |
def is_valid_field_name(name: str) -> bool: | |
return not name.startswith('_') | |
def is_valid_privateattr_name(name: str) -> bool: | |
return name.startswith('_') and not name.startswith('__') | |