peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_expm_frechet.py
| """Frechet derivative of the matrix exponential.""" | |
| import numpy as np | |
| import scipy.linalg | |
| __all__ = ['expm_frechet', 'expm_cond'] | |
| def expm_frechet(A, E, method=None, compute_expm=True, check_finite=True): | |
| """ | |
| Frechet derivative of the matrix exponential of A in the direction E. | |
| Parameters | |
| ---------- | |
| A : (N, N) array_like | |
| Matrix of which to take the matrix exponential. | |
| E : (N, N) array_like | |
| Matrix direction in which to take the Frechet derivative. | |
| method : str, optional | |
| Choice of algorithm. Should be one of | |
| - `SPS` (default) | |
| - `blockEnlarge` | |
| compute_expm : bool, optional | |
| Whether to compute also `expm_A` in addition to `expm_frechet_AE`. | |
| Default is True. | |
| check_finite : bool, optional | |
| Whether to check that the input matrix contains only finite numbers. | |
| Disabling may give a performance gain, but may result in problems | |
| (crashes, non-termination) if the inputs do contain infinities or NaNs. | |
| Returns | |
| ------- | |
| expm_A : ndarray | |
| Matrix exponential of A. | |
| expm_frechet_AE : ndarray | |
| Frechet derivative of the matrix exponential of A in the direction E. | |
| For ``compute_expm = False``, only `expm_frechet_AE` is returned. | |
| See Also | |
| -------- | |
| expm : Compute the exponential of a matrix. | |
| Notes | |
| ----- | |
| This section describes the available implementations that can be selected | |
| by the `method` parameter. The default method is *SPS*. | |
| Method *blockEnlarge* is a naive algorithm. | |
| Method *SPS* is Scaling-Pade-Squaring [1]_. | |
| It is a sophisticated implementation which should take | |
| only about 3/8 as much time as the naive implementation. | |
| The asymptotics are the same. | |
| .. versionadded:: 0.13.0 | |
| References | |
| ---------- | |
| .. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009) | |
| Computing the Frechet Derivative of the Matrix Exponential, | |
| with an application to Condition Number Estimation. | |
| SIAM Journal On Matrix Analysis and Applications., | |
| 30 (4). pp. 1639-1657. ISSN 1095-7162 | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy import linalg | |
| >>> rng = np.random.default_rng() | |
| >>> A = rng.standard_normal((3, 3)) | |
| >>> E = rng.standard_normal((3, 3)) | |
| >>> expm_A, expm_frechet_AE = linalg.expm_frechet(A, E) | |
| >>> expm_A.shape, expm_frechet_AE.shape | |
| ((3, 3), (3, 3)) | |
| Create a 6x6 matrix containing [[A, E], [0, A]]: | |
| >>> M = np.zeros((6, 6)) | |
| >>> M[:3, :3] = A | |
| >>> M[:3, 3:] = E | |
| >>> M[3:, 3:] = A | |
| >>> expm_M = linalg.expm(M) | |
| >>> np.allclose(expm_A, expm_M[:3, :3]) | |
| True | |
| >>> np.allclose(expm_frechet_AE, expm_M[:3, 3:]) | |
| True | |
| """ | |
| if check_finite: | |
| A = np.asarray_chkfinite(A) | |
| E = np.asarray_chkfinite(E) | |
| else: | |
| A = np.asarray(A) | |
| E = np.asarray(E) | |
| if A.ndim != 2 or A.shape[0] != A.shape[1]: | |
| raise ValueError('expected A to be a square matrix') | |
| if E.ndim != 2 or E.shape[0] != E.shape[1]: | |
| raise ValueError('expected E to be a square matrix') | |
| if A.shape != E.shape: | |
| raise ValueError('expected A and E to be the same shape') | |
| if method is None: | |
| method = 'SPS' | |
| if method == 'SPS': | |
| expm_A, expm_frechet_AE = expm_frechet_algo_64(A, E) | |
| elif method == 'blockEnlarge': | |
| expm_A, expm_frechet_AE = expm_frechet_block_enlarge(A, E) | |
| else: | |
| raise ValueError('Unknown implementation %s' % method) | |
| if compute_expm: | |
| return expm_A, expm_frechet_AE | |
| else: | |
| return expm_frechet_AE | |
| def expm_frechet_block_enlarge(A, E): | |
| """ | |
| This is a helper function, mostly for testing and profiling. | |
| Return expm(A), frechet(A, E) | |
| """ | |
| n = A.shape[0] | |
| M = np.vstack([ | |
| np.hstack([A, E]), | |
| np.hstack([np.zeros_like(A), A])]) | |
| expm_M = scipy.linalg.expm(M) | |
| return expm_M[:n, :n], expm_M[:n, n:] | |
| """ | |
| Maximal values ell_m of ||2**-s A|| such that the backward error bound | |
| does not exceed 2**-53. | |
| """ | |
| ell_table_61 = ( | |
| None, | |
| # 1 | |
| 2.11e-8, | |
| 3.56e-4, | |
| 1.08e-2, | |
| 6.49e-2, | |
| 2.00e-1, | |
| 4.37e-1, | |
| 7.83e-1, | |
| 1.23e0, | |
| 1.78e0, | |
| 2.42e0, | |
| # 11 | |
| 3.13e0, | |
| 3.90e0, | |
| 4.74e0, | |
| 5.63e0, | |
| 6.56e0, | |
| 7.52e0, | |
| 8.53e0, | |
| 9.56e0, | |
| 1.06e1, | |
| 1.17e1, | |
| ) | |
| # The b vectors and U and V are copypasted | |
| # from scipy.sparse.linalg.matfuncs.py. | |
| # M, Lu, Lv follow (6.11), (6.12), (6.13), (3.3) | |
| def _diff_pade3(A, E, ident): | |
| b = (120., 60., 12., 1.) | |
| A2 = A.dot(A) | |
| M2 = np.dot(A, E) + np.dot(E, A) | |
| U = A.dot(b[3]*A2 + b[1]*ident) | |
| V = b[2]*A2 + b[0]*ident | |
| Lu = A.dot(b[3]*M2) + E.dot(b[3]*A2 + b[1]*ident) | |
| Lv = b[2]*M2 | |
| return U, V, Lu, Lv | |
| def _diff_pade5(A, E, ident): | |
| b = (30240., 15120., 3360., 420., 30., 1.) | |
| A2 = A.dot(A) | |
| M2 = np.dot(A, E) + np.dot(E, A) | |
| A4 = np.dot(A2, A2) | |
| M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
| U = A.dot(b[5]*A4 + b[3]*A2 + b[1]*ident) | |
| V = b[4]*A4 + b[2]*A2 + b[0]*ident | |
| Lu = (A.dot(b[5]*M4 + b[3]*M2) + | |
| E.dot(b[5]*A4 + b[3]*A2 + b[1]*ident)) | |
| Lv = b[4]*M4 + b[2]*M2 | |
| return U, V, Lu, Lv | |
| def _diff_pade7(A, E, ident): | |
| b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.) | |
| A2 = A.dot(A) | |
| M2 = np.dot(A, E) + np.dot(E, A) | |
| A4 = np.dot(A2, A2) | |
| M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
| A6 = np.dot(A2, A4) | |
| M6 = np.dot(A4, M2) + np.dot(M4, A2) | |
| U = A.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident) | |
| V = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident | |
| Lu = (A.dot(b[7]*M6 + b[5]*M4 + b[3]*M2) + | |
| E.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)) | |
| Lv = b[6]*M6 + b[4]*M4 + b[2]*M2 | |
| return U, V, Lu, Lv | |
| def _diff_pade9(A, E, ident): | |
| b = (17643225600., 8821612800., 2075673600., 302702400., 30270240., | |
| 2162160., 110880., 3960., 90., 1.) | |
| A2 = A.dot(A) | |
| M2 = np.dot(A, E) + np.dot(E, A) | |
| A4 = np.dot(A2, A2) | |
| M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
| A6 = np.dot(A2, A4) | |
| M6 = np.dot(A4, M2) + np.dot(M4, A2) | |
| A8 = np.dot(A4, A4) | |
| M8 = np.dot(A4, M4) + np.dot(M4, A4) | |
| U = A.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident) | |
| V = b[8]*A8 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident | |
| Lu = (A.dot(b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2) + | |
| E.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)) | |
| Lv = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 | |
| return U, V, Lu, Lv | |
| def expm_frechet_algo_64(A, E): | |
| n = A.shape[0] | |
| s = None | |
| ident = np.identity(n) | |
| A_norm_1 = scipy.linalg.norm(A, 1) | |
| m_pade_pairs = ( | |
| (3, _diff_pade3), | |
| (5, _diff_pade5), | |
| (7, _diff_pade7), | |
| (9, _diff_pade9)) | |
| for m, pade in m_pade_pairs: | |
| if A_norm_1 <= ell_table_61[m]: | |
| U, V, Lu, Lv = pade(A, E, ident) | |
| s = 0 | |
| break | |
| if s is None: | |
| # scaling | |
| s = max(0, int(np.ceil(np.log2(A_norm_1 / ell_table_61[13])))) | |
| A = A * 2.0**-s | |
| E = E * 2.0**-s | |
| # pade order 13 | |
| A2 = np.dot(A, A) | |
| M2 = np.dot(A, E) + np.dot(E, A) | |
| A4 = np.dot(A2, A2) | |
| M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
| A6 = np.dot(A2, A4) | |
| M6 = np.dot(A4, M2) + np.dot(M4, A2) | |
| b = (64764752532480000., 32382376266240000., 7771770303897600., | |
| 1187353796428800., 129060195264000., 10559470521600., | |
| 670442572800., 33522128640., 1323241920., 40840800., 960960., | |
| 16380., 182., 1.) | |
| W1 = b[13]*A6 + b[11]*A4 + b[9]*A2 | |
| W2 = b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident | |
| Z1 = b[12]*A6 + b[10]*A4 + b[8]*A2 | |
| Z2 = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident | |
| W = np.dot(A6, W1) + W2 | |
| U = np.dot(A, W) | |
| V = np.dot(A6, Z1) + Z2 | |
| Lw1 = b[13]*M6 + b[11]*M4 + b[9]*M2 | |
| Lw2 = b[7]*M6 + b[5]*M4 + b[3]*M2 | |
| Lz1 = b[12]*M6 + b[10]*M4 + b[8]*M2 | |
| Lz2 = b[6]*M6 + b[4]*M4 + b[2]*M2 | |
| Lw = np.dot(A6, Lw1) + np.dot(M6, W1) + Lw2 | |
| Lu = np.dot(A, Lw) + np.dot(E, W) | |
| Lv = np.dot(A6, Lz1) + np.dot(M6, Z1) + Lz2 | |
| # factor once and solve twice | |
| lu_piv = scipy.linalg.lu_factor(-U + V) | |
| R = scipy.linalg.lu_solve(lu_piv, U + V) | |
| L = scipy.linalg.lu_solve(lu_piv, Lu + Lv + np.dot((Lu - Lv), R)) | |
| # squaring | |
| for k in range(s): | |
| L = np.dot(R, L) + np.dot(L, R) | |
| R = np.dot(R, R) | |
| return R, L | |
| def vec(M): | |
| """ | |
| Stack columns of M to construct a single vector. | |
| This is somewhat standard notation in linear algebra. | |
| Parameters | |
| ---------- | |
| M : 2-D array_like | |
| Input matrix | |
| Returns | |
| ------- | |
| v : 1-D ndarray | |
| Output vector | |
| """ | |
| return M.T.ravel() | |
| def expm_frechet_kronform(A, method=None, check_finite=True): | |
| """ | |
| Construct the Kronecker form of the Frechet derivative of expm. | |
| Parameters | |
| ---------- | |
| A : array_like with shape (N, N) | |
| Matrix to be expm'd. | |
| method : str, optional | |
| Extra keyword to be passed to expm_frechet. | |
| check_finite : bool, optional | |
| Whether to check that the input matrix contains only finite numbers. | |
| Disabling may give a performance gain, but may result in problems | |
| (crashes, non-termination) if the inputs do contain infinities or NaNs. | |
| Returns | |
| ------- | |
| K : 2-D ndarray with shape (N*N, N*N) | |
| Kronecker form of the Frechet derivative of the matrix exponential. | |
| Notes | |
| ----- | |
| This function is used to help compute the condition number | |
| of the matrix exponential. | |
| See Also | |
| -------- | |
| expm : Compute a matrix exponential. | |
| expm_frechet : Compute the Frechet derivative of the matrix exponential. | |
| expm_cond : Compute the relative condition number of the matrix exponential | |
| in the Frobenius norm. | |
| """ | |
| if check_finite: | |
| A = np.asarray_chkfinite(A) | |
| else: | |
| A = np.asarray(A) | |
| if len(A.shape) != 2 or A.shape[0] != A.shape[1]: | |
| raise ValueError('expected a square matrix') | |
| n = A.shape[0] | |
| ident = np.identity(n) | |
| cols = [] | |
| for i in range(n): | |
| for j in range(n): | |
| E = np.outer(ident[i], ident[j]) | |
| F = expm_frechet(A, E, | |
| method=method, compute_expm=False, check_finite=False) | |
| cols.append(vec(F)) | |
| return np.vstack(cols).T | |
| def expm_cond(A, check_finite=True): | |
| """ | |
| Relative condition number of the matrix exponential in the Frobenius norm. | |
| Parameters | |
| ---------- | |
| A : 2-D array_like | |
| Square input matrix with shape (N, N). | |
| check_finite : bool, optional | |
| Whether to check that the input matrix contains only finite numbers. | |
| Disabling may give a performance gain, but may result in problems | |
| (crashes, non-termination) if the inputs do contain infinities or NaNs. | |
| Returns | |
| ------- | |
| kappa : float | |
| The relative condition number of the matrix exponential | |
| in the Frobenius norm | |
| See Also | |
| -------- | |
| expm : Compute the exponential of a matrix. | |
| expm_frechet : Compute the Frechet derivative of the matrix exponential. | |
| Notes | |
| ----- | |
| A faster estimate for the condition number in the 1-norm | |
| has been published but is not yet implemented in SciPy. | |
| .. versionadded:: 0.14.0 | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.linalg import expm_cond | |
| >>> A = np.array([[-0.3, 0.2, 0.6], [0.6, 0.3, -0.1], [-0.7, 1.2, 0.9]]) | |
| >>> k = expm_cond(A) | |
| >>> k | |
| 1.7787805864469866 | |
| """ | |
| if check_finite: | |
| A = np.asarray_chkfinite(A) | |
| else: | |
| A = np.asarray(A) | |
| if len(A.shape) != 2 or A.shape[0] != A.shape[1]: | |
| raise ValueError('expected a square matrix') | |
| X = scipy.linalg.expm(A) | |
| K = expm_frechet_kronform(A, check_finite=False) | |
| # The following norm choices are deliberate. | |
| # The norms of A and X are Frobenius norms, | |
| # and the norm of K is the induced 2-norm. | |
| A_norm = scipy.linalg.norm(A, 'fro') | |
| X_norm = scipy.linalg.norm(X, 'fro') | |
| K_norm = scipy.linalg.norm(K, 2) | |
| kappa = (K_norm * A_norm) / X_norm | |
| return kappa | |