peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/tests
/test_digamma.py
import numpy as np | |
from numpy import pi, log, sqrt | |
from numpy.testing import assert_, assert_equal | |
from scipy.special._testutils import FuncData | |
import scipy.special as sc | |
# Euler-Mascheroni constant | |
euler = 0.57721566490153286 | |
def test_consistency(): | |
# Make sure the implementation of digamma for real arguments | |
# agrees with the implementation of digamma for complex arguments. | |
# It's all poles after -1e16 | |
x = np.r_[-np.logspace(15, -30, 200), np.logspace(-30, 300, 200)] | |
dataset = np.vstack((x + 0j, sc.digamma(x))).T | |
FuncData(sc.digamma, dataset, 0, 1, rtol=5e-14, nan_ok=True).check() | |
def test_special_values(): | |
# Test special values from Gauss's digamma theorem. See | |
# | |
# https://en.wikipedia.org/wiki/Digamma_function | |
dataset = [ | |
(1, -euler), | |
(0.5, -2*log(2) - euler), | |
(1/3, -pi/(2*sqrt(3)) - 3*log(3)/2 - euler), | |
(1/4, -pi/2 - 3*log(2) - euler), | |
(1/6, -pi*sqrt(3)/2 - 2*log(2) - 3*log(3)/2 - euler), | |
(1/8, | |
-pi/2 - 4*log(2) - (pi + log(2 + sqrt(2)) - log(2 - sqrt(2)))/sqrt(2) - euler) | |
] | |
dataset = np.asarray(dataset) | |
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check() | |
def test_nonfinite(): | |
pts = [0.0, -0.0, np.inf] | |
std = [-np.inf, np.inf, np.inf] | |
assert_equal(sc.digamma(pts), std) | |
assert_(all(np.isnan(sc.digamma([-np.inf, -1])))) | |