peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/compose
/tests
/test_target.py
import numpy as np | |
import pytest | |
from sklearn import datasets | |
from sklearn.base import BaseEstimator, TransformerMixin, clone | |
from sklearn.compose import TransformedTargetRegressor | |
from sklearn.dummy import DummyRegressor | |
from sklearn.linear_model import LinearRegression, OrthogonalMatchingPursuit | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import FunctionTransformer, StandardScaler | |
from sklearn.utils._testing import assert_allclose, assert_no_warnings | |
friedman = datasets.make_friedman1(random_state=0) | |
def test_transform_target_regressor_error(): | |
X, y = friedman | |
# provide a transformer and functions at the same time | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), | |
transformer=StandardScaler(), | |
func=np.exp, | |
inverse_func=np.log, | |
) | |
with pytest.raises( | |
ValueError, | |
match="'transformer' and functions 'func'/'inverse_func' cannot both be set.", | |
): | |
regr.fit(X, y) | |
# fit with sample_weight with a regressor which does not support it | |
sample_weight = np.ones((y.shape[0],)) | |
regr = TransformedTargetRegressor( | |
regressor=OrthogonalMatchingPursuit(), transformer=StandardScaler() | |
) | |
with pytest.raises( | |
TypeError, | |
match=r"fit\(\) got an unexpected " "keyword argument 'sample_weight'", | |
): | |
regr.fit(X, y, sample_weight=sample_weight) | |
# func is given but inverse_func is not | |
regr = TransformedTargetRegressor(func=np.exp) | |
with pytest.raises( | |
ValueError, | |
match="When 'func' is provided, 'inverse_func' must also be provided", | |
): | |
regr.fit(X, y) | |
def test_transform_target_regressor_invertible(): | |
X, y = friedman | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), | |
func=np.sqrt, | |
inverse_func=np.log, | |
check_inverse=True, | |
) | |
with pytest.warns( | |
UserWarning, | |
match=( | |
"The provided functions or" | |
" transformer are not strictly inverse of each other." | |
), | |
): | |
regr.fit(X, y) | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), func=np.sqrt, inverse_func=np.log | |
) | |
regr.set_params(check_inverse=False) | |
assert_no_warnings(regr.fit, X, y) | |
def _check_standard_scaled(y, y_pred): | |
y_mean = np.mean(y, axis=0) | |
y_std = np.std(y, axis=0) | |
assert_allclose((y - y_mean) / y_std, y_pred) | |
def _check_shifted_by_one(y, y_pred): | |
assert_allclose(y + 1, y_pred) | |
def test_transform_target_regressor_functions(): | |
X, y = friedman | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), func=np.log, inverse_func=np.exp | |
) | |
y_pred = regr.fit(X, y).predict(X) | |
# check the transformer output | |
y_tran = regr.transformer_.transform(y.reshape(-1, 1)).squeeze() | |
assert_allclose(np.log(y), y_tran) | |
assert_allclose( | |
y, regr.transformer_.inverse_transform(y_tran.reshape(-1, 1)).squeeze() | |
) | |
assert y.shape == y_pred.shape | |
assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X))) | |
# check the regressor output | |
lr = LinearRegression().fit(X, regr.func(y)) | |
assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel()) | |
def test_transform_target_regressor_functions_multioutput(): | |
X = friedman[0] | |
y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), func=np.log, inverse_func=np.exp | |
) | |
y_pred = regr.fit(X, y).predict(X) | |
# check the transformer output | |
y_tran = regr.transformer_.transform(y) | |
assert_allclose(np.log(y), y_tran) | |
assert_allclose(y, regr.transformer_.inverse_transform(y_tran)) | |
assert y.shape == y_pred.shape | |
assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X))) | |
# check the regressor output | |
lr = LinearRegression().fit(X, regr.func(y)) | |
assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel()) | |
def test_transform_target_regressor_1d_transformer(X, y): | |
# All transformer in scikit-learn expect 2D data. FunctionTransformer with | |
# validate=False lift this constraint without checking that the input is a | |
# 2D vector. We check the consistency of the data shape using a 1D and 2D y | |
# array. | |
transformer = FunctionTransformer( | |
func=lambda x: x + 1, inverse_func=lambda x: x - 1 | |
) | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), transformer=transformer | |
) | |
y_pred = regr.fit(X, y).predict(X) | |
assert y.shape == y_pred.shape | |
# consistency forward transform | |
y_tran = regr.transformer_.transform(y) | |
_check_shifted_by_one(y, y_tran) | |
assert y.shape == y_pred.shape | |
# consistency inverse transform | |
assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze()) | |
# consistency of the regressor | |
lr = LinearRegression() | |
transformer2 = clone(transformer) | |
lr.fit(X, transformer2.fit_transform(y)) | |
y_lr_pred = lr.predict(X) | |
assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred)) | |
assert_allclose(regr.regressor_.coef_, lr.coef_) | |
def test_transform_target_regressor_2d_transformer(X, y): | |
# Check consistency with transformer accepting only 2D array and a 1D/2D y | |
# array. | |
transformer = StandardScaler() | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), transformer=transformer | |
) | |
y_pred = regr.fit(X, y).predict(X) | |
assert y.shape == y_pred.shape | |
# consistency forward transform | |
if y.ndim == 1: # create a 2D array and squeeze results | |
y_tran = regr.transformer_.transform(y.reshape(-1, 1)) | |
else: | |
y_tran = regr.transformer_.transform(y) | |
_check_standard_scaled(y, y_tran.squeeze()) | |
assert y.shape == y_pred.shape | |
# consistency inverse transform | |
assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze()) | |
# consistency of the regressor | |
lr = LinearRegression() | |
transformer2 = clone(transformer) | |
if y.ndim == 1: # create a 2D array and squeeze results | |
lr.fit(X, transformer2.fit_transform(y.reshape(-1, 1)).squeeze()) | |
y_lr_pred = lr.predict(X).reshape(-1, 1) | |
y_pred2 = transformer2.inverse_transform(y_lr_pred).squeeze() | |
else: | |
lr.fit(X, transformer2.fit_transform(y)) | |
y_lr_pred = lr.predict(X) | |
y_pred2 = transformer2.inverse_transform(y_lr_pred) | |
assert_allclose(y_pred, y_pred2) | |
assert_allclose(regr.regressor_.coef_, lr.coef_) | |
def test_transform_target_regressor_2d_transformer_multioutput(): | |
# Check consistency with transformer accepting only 2D array and a 2D y | |
# array. | |
X = friedman[0] | |
y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T | |
transformer = StandardScaler() | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), transformer=transformer | |
) | |
y_pred = regr.fit(X, y).predict(X) | |
assert y.shape == y_pred.shape | |
# consistency forward transform | |
y_tran = regr.transformer_.transform(y) | |
_check_standard_scaled(y, y_tran) | |
assert y.shape == y_pred.shape | |
# consistency inverse transform | |
assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze()) | |
# consistency of the regressor | |
lr = LinearRegression() | |
transformer2 = clone(transformer) | |
lr.fit(X, transformer2.fit_transform(y)) | |
y_lr_pred = lr.predict(X) | |
assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred)) | |
assert_allclose(regr.regressor_.coef_, lr.coef_) | |
def test_transform_target_regressor_3d_target(): | |
# Non-regression test for: | |
# https://github.com/scikit-learn/scikit-learn/issues/18866 | |
# Check with a 3D target with a transformer that reshapes the target | |
X = friedman[0] | |
y = np.tile(friedman[1].reshape(-1, 1, 1), [1, 3, 2]) | |
def flatten_data(data): | |
return data.reshape(data.shape[0], -1) | |
def unflatten_data(data): | |
return data.reshape(data.shape[0], -1, 2) | |
transformer = FunctionTransformer(func=flatten_data, inverse_func=unflatten_data) | |
regr = TransformedTargetRegressor( | |
regressor=LinearRegression(), transformer=transformer | |
) | |
y_pred = regr.fit(X, y).predict(X) | |
assert y.shape == y_pred.shape | |
def test_transform_target_regressor_multi_to_single(): | |
X = friedman[0] | |
y = np.transpose([friedman[1], (friedman[1] ** 2 + 1)]) | |
def func(y): | |
out = np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2) | |
return out[:, np.newaxis] | |
def inverse_func(y): | |
return y | |
tt = TransformedTargetRegressor( | |
func=func, inverse_func=inverse_func, check_inverse=False | |
) | |
tt.fit(X, y) | |
y_pred_2d_func = tt.predict(X) | |
assert y_pred_2d_func.shape == (100, 1) | |
# force that the function only return a 1D array | |
def func(y): | |
return np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2) | |
tt = TransformedTargetRegressor( | |
func=func, inverse_func=inverse_func, check_inverse=False | |
) | |
tt.fit(X, y) | |
y_pred_1d_func = tt.predict(X) | |
assert y_pred_1d_func.shape == (100, 1) | |
assert_allclose(y_pred_1d_func, y_pred_2d_func) | |
class DummyCheckerArrayTransformer(TransformerMixin, BaseEstimator): | |
def fit(self, X, y=None): | |
assert isinstance(X, np.ndarray) | |
return self | |
def transform(self, X): | |
assert isinstance(X, np.ndarray) | |
return X | |
def inverse_transform(self, X): | |
assert isinstance(X, np.ndarray) | |
return X | |
class DummyCheckerListRegressor(DummyRegressor): | |
def fit(self, X, y, sample_weight=None): | |
assert isinstance(X, list) | |
return super().fit(X, y, sample_weight) | |
def predict(self, X): | |
assert isinstance(X, list) | |
return super().predict(X) | |
def test_transform_target_regressor_ensure_y_array(): | |
# check that the target ``y`` passed to the transformer will always be a | |
# numpy array. Similarly, if ``X`` is passed as a list, we check that the | |
# predictor receive as it is. | |
X, y = friedman | |
tt = TransformedTargetRegressor( | |
transformer=DummyCheckerArrayTransformer(), | |
regressor=DummyCheckerListRegressor(), | |
check_inverse=False, | |
) | |
tt.fit(X.tolist(), y.tolist()) | |
tt.predict(X.tolist()) | |
with pytest.raises(AssertionError): | |
tt.fit(X, y.tolist()) | |
with pytest.raises(AssertionError): | |
tt.predict(X) | |
class DummyTransformer(TransformerMixin, BaseEstimator): | |
"""Dummy transformer which count how many time fit was called.""" | |
def __init__(self, fit_counter=0): | |
self.fit_counter = fit_counter | |
def fit(self, X, y=None): | |
self.fit_counter += 1 | |
return self | |
def transform(self, X): | |
return X | |
def inverse_transform(self, X): | |
return X | |
def test_transform_target_regressor_count_fit(check_inverse): | |
# regression test for gh-issue #11618 | |
# check that we only call a single time fit for the transformer | |
X, y = friedman | |
ttr = TransformedTargetRegressor( | |
transformer=DummyTransformer(), check_inverse=check_inverse | |
) | |
ttr.fit(X, y) | |
assert ttr.transformer_.fit_counter == 1 | |
class DummyRegressorWithExtraFitParams(DummyRegressor): | |
def fit(self, X, y, sample_weight=None, check_input=True): | |
# on the test below we force this to false, we make sure this is | |
# actually passed to the regressor | |
assert not check_input | |
return super().fit(X, y, sample_weight) | |
def test_transform_target_regressor_pass_fit_parameters(): | |
X, y = friedman | |
regr = TransformedTargetRegressor( | |
regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer() | |
) | |
regr.fit(X, y, check_input=False) | |
assert regr.transformer_.fit_counter == 1 | |
def test_transform_target_regressor_route_pipeline(): | |
X, y = friedman | |
regr = TransformedTargetRegressor( | |
regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer() | |
) | |
estimators = [("normalize", StandardScaler()), ("est", regr)] | |
pip = Pipeline(estimators) | |
pip.fit(X, y, **{"est__check_input": False}) | |
assert regr.transformer_.fit_counter == 1 | |
class DummyRegressorWithExtraPredictParams(DummyRegressor): | |
def predict(self, X, check_input=True): | |
# In the test below we make sure that the check input parameter is | |
# passed as false | |
self.predict_called = True | |
assert not check_input | |
return super().predict(X) | |
def test_transform_target_regressor_pass_extra_predict_parameters(): | |
# Checks that predict kwargs are passed to regressor. | |
X, y = friedman | |
regr = TransformedTargetRegressor( | |
regressor=DummyRegressorWithExtraPredictParams(), transformer=DummyTransformer() | |
) | |
regr.fit(X, y) | |
regr.predict(X, check_input=False) | |
assert regr.regressor_.predict_called | |