peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/ensemble
/tests
/test_voting.py
"""Testing for the VotingClassifier and VotingRegressor""" | |
import re | |
import numpy as np | |
import pytest | |
from sklearn import datasets | |
from sklearn.base import BaseEstimator, ClassifierMixin, clone | |
from sklearn.datasets import make_multilabel_classification | |
from sklearn.dummy import DummyRegressor | |
from sklearn.ensemble import ( | |
RandomForestClassifier, | |
RandomForestRegressor, | |
VotingClassifier, | |
VotingRegressor, | |
) | |
from sklearn.exceptions import NotFittedError | |
from sklearn.linear_model import LinearRegression, LogisticRegression | |
from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split | |
from sklearn.multiclass import OneVsRestClassifier | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.svm import SVC | |
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor | |
from sklearn.utils._testing import ( | |
_convert_container, | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
# Load datasets | |
iris = datasets.load_iris() | |
X, y = iris.data[:, 1:3], iris.target | |
# Scaled to solve ConvergenceWarning throw by Logistic Regression | |
X_scaled = StandardScaler().fit_transform(X) | |
X_r, y_r = datasets.load_diabetes(return_X_y=True) | |
def test_voting_classifier_estimator_init(params, err_msg): | |
ensemble = VotingClassifier(**params) | |
with pytest.raises(ValueError, match=err_msg): | |
ensemble.fit(X, y) | |
def test_predictproba_hardvoting(): | |
eclf = VotingClassifier( | |
estimators=[("lr1", LogisticRegression()), ("lr2", LogisticRegression())], | |
voting="hard", | |
) | |
inner_msg = "predict_proba is not available when voting='hard'" | |
outer_msg = "'VotingClassifier' has no attribute 'predict_proba'" | |
with pytest.raises(AttributeError, match=outer_msg) as exec_info: | |
eclf.predict_proba | |
assert isinstance(exec_info.value.__cause__, AttributeError) | |
assert inner_msg in str(exec_info.value.__cause__) | |
assert not hasattr(eclf, "predict_proba") | |
eclf.fit(X_scaled, y) | |
assert not hasattr(eclf, "predict_proba") | |
def test_notfitted(): | |
eclf = VotingClassifier( | |
estimators=[("lr1", LogisticRegression()), ("lr2", LogisticRegression())], | |
voting="soft", | |
) | |
ereg = VotingRegressor([("dr", DummyRegressor())]) | |
msg = ( | |
"This %s instance is not fitted yet. Call 'fit'" | |
" with appropriate arguments before using this estimator." | |
) | |
with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): | |
eclf.predict(X) | |
with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): | |
eclf.predict_proba(X) | |
with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): | |
eclf.transform(X) | |
with pytest.raises(NotFittedError, match=msg % "VotingRegressor"): | |
ereg.predict(X_r) | |
with pytest.raises(NotFittedError, match=msg % "VotingRegressor"): | |
ereg.transform(X_r) | |
def test_majority_label_iris(global_random_seed): | |
"""Check classification by majority label on dataset iris.""" | |
clf1 = LogisticRegression(solver="liblinear", random_state=global_random_seed) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) | |
clf3 = GaussianNB() | |
eclf = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard" | |
) | |
scores = cross_val_score(eclf, X, y, scoring="accuracy") | |
assert scores.mean() >= 0.9 | |
def test_tie_situation(): | |
"""Check voting classifier selects smaller class label in tie situation.""" | |
clf1 = LogisticRegression(random_state=123, solver="liblinear") | |
clf2 = RandomForestClassifier(random_state=123) | |
eclf = VotingClassifier(estimators=[("lr", clf1), ("rf", clf2)], voting="hard") | |
assert clf1.fit(X, y).predict(X)[73] == 2 | |
assert clf2.fit(X, y).predict(X)[73] == 1 | |
assert eclf.fit(X, y).predict(X)[73] == 1 | |
def test_weights_iris(global_random_seed): | |
"""Check classification by average probabilities on dataset iris.""" | |
clf1 = LogisticRegression(random_state=global_random_seed) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) | |
clf3 = GaussianNB() | |
eclf = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], | |
voting="soft", | |
weights=[1, 2, 10], | |
) | |
scores = cross_val_score(eclf, X_scaled, y, scoring="accuracy") | |
assert scores.mean() >= 0.9 | |
def test_weights_regressor(): | |
"""Check weighted average regression prediction on diabetes dataset.""" | |
reg1 = DummyRegressor(strategy="mean") | |
reg2 = DummyRegressor(strategy="median") | |
reg3 = DummyRegressor(strategy="quantile", quantile=0.2) | |
ereg = VotingRegressor( | |
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 2, 10] | |
) | |
X_r_train, X_r_test, y_r_train, y_r_test = train_test_split( | |
X_r, y_r, test_size=0.25 | |
) | |
reg1_pred = reg1.fit(X_r_train, y_r_train).predict(X_r_test) | |
reg2_pred = reg2.fit(X_r_train, y_r_train).predict(X_r_test) | |
reg3_pred = reg3.fit(X_r_train, y_r_train).predict(X_r_test) | |
ereg_pred = ereg.fit(X_r_train, y_r_train).predict(X_r_test) | |
avg = np.average( | |
np.asarray([reg1_pred, reg2_pred, reg3_pred]), axis=0, weights=[1, 2, 10] | |
) | |
assert_almost_equal(ereg_pred, avg, decimal=2) | |
ereg_weights_none = VotingRegressor( | |
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=None | |
) | |
ereg_weights_equal = VotingRegressor( | |
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 1, 1] | |
) | |
ereg_weights_none.fit(X_r_train, y_r_train) | |
ereg_weights_equal.fit(X_r_train, y_r_train) | |
ereg_none_pred = ereg_weights_none.predict(X_r_test) | |
ereg_equal_pred = ereg_weights_equal.predict(X_r_test) | |
assert_almost_equal(ereg_none_pred, ereg_equal_pred, decimal=2) | |
def test_predict_on_toy_problem(global_random_seed): | |
"""Manually check predicted class labels for toy dataset.""" | |
clf1 = LogisticRegression(random_state=global_random_seed) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) | |
clf3 = GaussianNB() | |
X = np.array( | |
[[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]] | |
) | |
y = np.array([1, 1, 1, 2, 2, 2]) | |
assert_array_equal(clf1.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) | |
assert_array_equal(clf2.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) | |
assert_array_equal(clf3.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) | |
eclf = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], | |
voting="hard", | |
weights=[1, 1, 1], | |
) | |
assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) | |
eclf = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], | |
voting="soft", | |
weights=[1, 1, 1], | |
) | |
assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) | |
def test_predict_proba_on_toy_problem(): | |
"""Calculate predicted probabilities on toy dataset.""" | |
clf1 = LogisticRegression(random_state=123) | |
clf2 = RandomForestClassifier(random_state=123) | |
clf3 = GaussianNB() | |
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) | |
y = np.array([1, 1, 2, 2]) | |
clf1_res = np.array( | |
[ | |
[0.59790391, 0.40209609], | |
[0.57622162, 0.42377838], | |
[0.50728456, 0.49271544], | |
[0.40241774, 0.59758226], | |
] | |
) | |
clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) | |
clf3_res = np.array( | |
[[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0.0, 1.0], [0.0, 1.0]] | |
) | |
t00 = (2 * clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 | |
t11 = (2 * clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 | |
t21 = (2 * clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 | |
t31 = (2 * clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 | |
eclf = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], | |
voting="soft", | |
weights=[2, 1, 1], | |
) | |
eclf_res = eclf.fit(X, y).predict_proba(X) | |
assert_almost_equal(t00, eclf_res[0][0], decimal=1) | |
assert_almost_equal(t11, eclf_res[1][1], decimal=1) | |
assert_almost_equal(t21, eclf_res[2][1], decimal=1) | |
assert_almost_equal(t31, eclf_res[3][1], decimal=1) | |
inner_msg = "predict_proba is not available when voting='hard'" | |
outer_msg = "'VotingClassifier' has no attribute 'predict_proba'" | |
with pytest.raises(AttributeError, match=outer_msg) as exec_info: | |
eclf = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard" | |
) | |
eclf.fit(X, y).predict_proba(X) | |
assert isinstance(exec_info.value.__cause__, AttributeError) | |
assert inner_msg in str(exec_info.value.__cause__) | |
def test_multilabel(container_type): | |
"""Check if error is raised for multilabel classification.""" | |
X, y = make_multilabel_classification( | |
n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123 | |
) | |
y = _convert_container(y, container_type) | |
clf = OneVsRestClassifier(SVC(kernel="linear")) | |
eclf = VotingClassifier(estimators=[("ovr", clf)], voting="hard") | |
err_msg = "only supports binary or multiclass classification" | |
with pytest.raises(NotImplementedError, match=err_msg): | |
eclf.fit(X, y) | |
def test_gridsearch(): | |
"""Check GridSearch support.""" | |
clf1 = LogisticRegression(random_state=1) | |
clf2 = RandomForestClassifier(random_state=1, n_estimators=3) | |
clf3 = GaussianNB() | |
eclf = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft" | |
) | |
params = { | |
"lr__C": [1.0, 100.0], | |
"voting": ["soft", "hard"], | |
"weights": [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]], | |
} | |
grid = GridSearchCV(estimator=eclf, param_grid=params, cv=2) | |
grid.fit(X_scaled, y) | |
def test_parallel_fit(global_random_seed): | |
"""Check parallel backend of VotingClassifier on toy dataset.""" | |
clf1 = LogisticRegression(random_state=global_random_seed) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) | |
clf3 = GaussianNB() | |
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) | |
y = np.array([1, 1, 2, 2]) | |
eclf1 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=1 | |
).fit(X, y) | |
eclf2 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=2 | |
).fit(X, y) | |
assert_array_equal(eclf1.predict(X), eclf2.predict(X)) | |
assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) | |
def test_sample_weight(global_random_seed): | |
"""Tests sample_weight parameter of VotingClassifier""" | |
clf1 = LogisticRegression(random_state=global_random_seed) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) | |
clf3 = SVC(probability=True, random_state=global_random_seed) | |
eclf1 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("svc", clf3)], voting="soft" | |
).fit(X_scaled, y, sample_weight=np.ones((len(y),))) | |
eclf2 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("svc", clf3)], voting="soft" | |
).fit(X_scaled, y) | |
assert_array_equal(eclf1.predict(X_scaled), eclf2.predict(X_scaled)) | |
assert_array_almost_equal( | |
eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) | |
) | |
sample_weight = np.random.RandomState(global_random_seed).uniform(size=(len(y),)) | |
eclf3 = VotingClassifier(estimators=[("lr", clf1)], voting="soft") | |
eclf3.fit(X_scaled, y, sample_weight) | |
clf1.fit(X_scaled, y, sample_weight) | |
assert_array_equal(eclf3.predict(X_scaled), clf1.predict(X_scaled)) | |
assert_array_almost_equal( | |
eclf3.predict_proba(X_scaled), clf1.predict_proba(X_scaled) | |
) | |
# check that an error is raised and indicative if sample_weight is not | |
# supported. | |
clf4 = KNeighborsClassifier() | |
eclf3 = VotingClassifier( | |
estimators=[("lr", clf1), ("svc", clf3), ("knn", clf4)], voting="soft" | |
) | |
msg = "Underlying estimator KNeighborsClassifier does not support sample weights." | |
with pytest.raises(TypeError, match=msg): | |
eclf3.fit(X_scaled, y, sample_weight) | |
# check that _fit_single_estimator will raise the right error | |
# it should raise the original error if this is not linked to sample_weight | |
class ClassifierErrorFit(ClassifierMixin, BaseEstimator): | |
def fit(self, X_scaled, y, sample_weight): | |
raise TypeError("Error unrelated to sample_weight.") | |
clf = ClassifierErrorFit() | |
with pytest.raises(TypeError, match="Error unrelated to sample_weight"): | |
clf.fit(X_scaled, y, sample_weight=sample_weight) | |
def test_sample_weight_kwargs(): | |
"""Check that VotingClassifier passes sample_weight as kwargs""" | |
class MockClassifier(ClassifierMixin, BaseEstimator): | |
"""Mock Classifier to check that sample_weight is received as kwargs""" | |
def fit(self, X, y, *args, **sample_weight): | |
assert "sample_weight" in sample_weight | |
clf = MockClassifier() | |
eclf = VotingClassifier(estimators=[("mock", clf)], voting="soft") | |
# Should not raise an error. | |
eclf.fit(X, y, sample_weight=np.ones((len(y),))) | |
def test_voting_classifier_set_params(global_random_seed): | |
# check equivalence in the output when setting underlying estimators | |
clf1 = LogisticRegression(random_state=global_random_seed) | |
clf2 = RandomForestClassifier( | |
n_estimators=10, random_state=global_random_seed, max_depth=None | |
) | |
clf3 = GaussianNB() | |
eclf1 = VotingClassifier( | |
[("lr", clf1), ("rf", clf2)], voting="soft", weights=[1, 2] | |
).fit(X_scaled, y) | |
eclf2 = VotingClassifier( | |
[("lr", clf1), ("nb", clf3)], voting="soft", weights=[1, 2] | |
) | |
eclf2.set_params(nb=clf2).fit(X_scaled, y) | |
assert_array_equal(eclf1.predict(X_scaled), eclf2.predict(X_scaled)) | |
assert_array_almost_equal( | |
eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) | |
) | |
assert eclf2.estimators[0][1].get_params() == clf1.get_params() | |
assert eclf2.estimators[1][1].get_params() == clf2.get_params() | |
def test_set_estimator_drop(): | |
# VotingClassifier set_params should be able to set estimators as drop | |
# Test predict | |
clf1 = LogisticRegression(random_state=123) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=123) | |
clf3 = GaussianNB() | |
eclf1 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("nb", clf3)], | |
voting="hard", | |
weights=[1, 0, 0.5], | |
).fit(X, y) | |
eclf2 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("nb", clf3)], | |
voting="hard", | |
weights=[1, 1, 0.5], | |
) | |
eclf2.set_params(rf="drop").fit(X, y) | |
assert_array_equal(eclf1.predict(X), eclf2.predict(X)) | |
assert dict(eclf2.estimators)["rf"] == "drop" | |
assert len(eclf2.estimators_) == 2 | |
assert all( | |
isinstance(est, (LogisticRegression, GaussianNB)) for est in eclf2.estimators_ | |
) | |
assert eclf2.get_params()["rf"] == "drop" | |
eclf1.set_params(voting="soft").fit(X, y) | |
eclf2.set_params(voting="soft").fit(X, y) | |
assert_array_equal(eclf1.predict(X), eclf2.predict(X)) | |
assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) | |
msg = "All estimators are dropped. At least one is required" | |
with pytest.raises(ValueError, match=msg): | |
eclf2.set_params(lr="drop", rf="drop", nb="drop").fit(X, y) | |
# Test soft voting transform | |
X1 = np.array([[1], [2]]) | |
y1 = np.array([1, 2]) | |
eclf1 = VotingClassifier( | |
estimators=[("rf", clf2), ("nb", clf3)], | |
voting="soft", | |
weights=[0, 0.5], | |
flatten_transform=False, | |
).fit(X1, y1) | |
eclf2 = VotingClassifier( | |
estimators=[("rf", clf2), ("nb", clf3)], | |
voting="soft", | |
weights=[1, 0.5], | |
flatten_transform=False, | |
) | |
eclf2.set_params(rf="drop").fit(X1, y1) | |
assert_array_almost_equal( | |
eclf1.transform(X1), | |
np.array([[[0.7, 0.3], [0.3, 0.7]], [[1.0, 0.0], [0.0, 1.0]]]), | |
) | |
assert_array_almost_equal(eclf2.transform(X1), np.array([[[1.0, 0.0], [0.0, 1.0]]])) | |
eclf1.set_params(voting="hard") | |
eclf2.set_params(voting="hard") | |
assert_array_equal(eclf1.transform(X1), np.array([[0, 0], [1, 1]])) | |
assert_array_equal(eclf2.transform(X1), np.array([[0], [1]])) | |
def test_estimator_weights_format(global_random_seed): | |
# Test estimator weights inputs as list and array | |
clf1 = LogisticRegression(random_state=global_random_seed) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) | |
eclf1 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2)], weights=[1, 2], voting="soft" | |
) | |
eclf2 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2)], weights=np.array((1, 2)), voting="soft" | |
) | |
eclf1.fit(X_scaled, y) | |
eclf2.fit(X_scaled, y) | |
assert_array_almost_equal( | |
eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) | |
) | |
def test_transform(global_random_seed): | |
"""Check transform method of VotingClassifier on toy dataset.""" | |
clf1 = LogisticRegression(random_state=global_random_seed) | |
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) | |
clf3 = GaussianNB() | |
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) | |
y = np.array([1, 1, 2, 2]) | |
eclf1 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft" | |
).fit(X, y) | |
eclf2 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], | |
voting="soft", | |
flatten_transform=True, | |
).fit(X, y) | |
eclf3 = VotingClassifier( | |
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], | |
voting="soft", | |
flatten_transform=False, | |
).fit(X, y) | |
assert_array_equal(eclf1.transform(X).shape, (4, 6)) | |
assert_array_equal(eclf2.transform(X).shape, (4, 6)) | |
assert_array_equal(eclf3.transform(X).shape, (3, 4, 2)) | |
assert_array_almost_equal(eclf1.transform(X), eclf2.transform(X)) | |
assert_array_almost_equal( | |
eclf3.transform(X).swapaxes(0, 1).reshape((4, 6)), eclf2.transform(X) | |
) | |
def test_none_estimator_with_weights(X, y, voter): | |
# check that an estimator can be set to 'drop' and passing some weight | |
# regression test for | |
# https://github.com/scikit-learn/scikit-learn/issues/13777 | |
voter = clone(voter) | |
# Scaled to solve ConvergenceWarning throw by Logistic Regression | |
X_scaled = StandardScaler().fit_transform(X) | |
voter.fit(X_scaled, y, sample_weight=np.ones(y.shape)) | |
voter.set_params(lr="drop") | |
voter.fit(X_scaled, y, sample_weight=np.ones(y.shape)) | |
y_pred = voter.predict(X_scaled) | |
assert y_pred.shape == y.shape | |
def test_n_features_in(est): | |
X = [[1, 2], [3, 4], [5, 6]] | |
y = [0, 1, 2] | |
assert not hasattr(est, "n_features_in_") | |
est.fit(X, y) | |
assert est.n_features_in_ == 2 | |
def test_voting_verbose(estimator, capsys): | |
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) | |
y = np.array([1, 1, 2, 2]) | |
pattern = ( | |
r"\[Voting\].*\(1 of 2\) Processing lr, total=.*\n" | |
r"\[Voting\].*\(2 of 2\) Processing rf, total=.*\n$" | |
) | |
estimator.fit(X, y) | |
assert re.match(pattern, capsys.readouterr()[0]) | |
def test_get_features_names_out_regressor(): | |
"""Check get_feature_names_out output for regressor.""" | |
X = [[1, 2], [3, 4], [5, 6]] | |
y = [0, 1, 2] | |
voting = VotingRegressor( | |
estimators=[ | |
("lr", LinearRegression()), | |
("tree", DecisionTreeRegressor(random_state=0)), | |
("ignore", "drop"), | |
] | |
) | |
voting.fit(X, y) | |
names_out = voting.get_feature_names_out() | |
expected_names = ["votingregressor_lr", "votingregressor_tree"] | |
assert_array_equal(names_out, expected_names) | |
def test_get_features_names_out_classifier(kwargs, expected_names): | |
"""Check get_feature_names_out for classifier for different settings.""" | |
X = [[1, 2], [3, 4], [5, 6], [1, 1.2]] | |
y = [0, 1, 2, 0] | |
voting = VotingClassifier( | |
estimators=[ | |
("lr", LogisticRegression(random_state=0)), | |
("tree", DecisionTreeClassifier(random_state=0)), | |
], | |
**kwargs, | |
) | |
voting.fit(X, y) | |
X_trans = voting.transform(X) | |
names_out = voting.get_feature_names_out() | |
assert X_trans.shape[1] == len(expected_names) | |
assert_array_equal(names_out, expected_names) | |
def test_get_features_names_out_classifier_error(): | |
"""Check that error is raised when voting="soft" and flatten_transform=False.""" | |
X = [[1, 2], [3, 4], [5, 6]] | |
y = [0, 1, 2] | |
voting = VotingClassifier( | |
estimators=[ | |
("lr", LogisticRegression(random_state=0)), | |
("tree", DecisionTreeClassifier(random_state=0)), | |
], | |
voting="soft", | |
flatten_transform=False, | |
) | |
voting.fit(X, y) | |
msg = ( | |
"get_feature_names_out is not supported when `voting='soft'` and " | |
"`flatten_transform=False`" | |
) | |
with pytest.raises(ValueError, match=msg): | |
voting.get_feature_names_out() | |