peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/mixture
/_bayesian_mixture.py
"""Bayesian Gaussian Mixture Model.""" | |
# Author: Wei Xue <[email protected]> | |
# Thierry Guillemot <[email protected]> | |
# License: BSD 3 clause | |
import math | |
from numbers import Real | |
import numpy as np | |
from scipy.special import betaln, digamma, gammaln | |
from ..utils import check_array | |
from ..utils._param_validation import Interval, StrOptions | |
from ._base import BaseMixture, _check_shape | |
from ._gaussian_mixture import ( | |
_check_precision_matrix, | |
_check_precision_positivity, | |
_compute_log_det_cholesky, | |
_compute_precision_cholesky, | |
_estimate_gaussian_parameters, | |
_estimate_log_gaussian_prob, | |
) | |
def _log_dirichlet_norm(dirichlet_concentration): | |
"""Compute the log of the Dirichlet distribution normalization term. | |
Parameters | |
---------- | |
dirichlet_concentration : array-like of shape (n_samples,) | |
The parameters values of the Dirichlet distribution. | |
Returns | |
------- | |
log_dirichlet_norm : float | |
The log normalization of the Dirichlet distribution. | |
""" | |
return gammaln(np.sum(dirichlet_concentration)) - np.sum( | |
gammaln(dirichlet_concentration) | |
) | |
def _log_wishart_norm(degrees_of_freedom, log_det_precisions_chol, n_features): | |
"""Compute the log of the Wishart distribution normalization term. | |
Parameters | |
---------- | |
degrees_of_freedom : array-like of shape (n_components,) | |
The number of degrees of freedom on the covariance Wishart | |
distributions. | |
log_det_precision_chol : array-like of shape (n_components,) | |
The determinant of the precision matrix for each component. | |
n_features : int | |
The number of features. | |
Return | |
------ | |
log_wishart_norm : array-like of shape (n_components,) | |
The log normalization of the Wishart distribution. | |
""" | |
# To simplify the computation we have removed the np.log(np.pi) term | |
return -( | |
degrees_of_freedom * log_det_precisions_chol | |
+ degrees_of_freedom * n_features * 0.5 * math.log(2.0) | |
+ np.sum( | |
gammaln(0.5 * (degrees_of_freedom - np.arange(n_features)[:, np.newaxis])), | |
0, | |
) | |
) | |
class BayesianGaussianMixture(BaseMixture): | |
"""Variational Bayesian estimation of a Gaussian mixture. | |
This class allows to infer an approximate posterior distribution over the | |
parameters of a Gaussian mixture distribution. The effective number of | |
components can be inferred from the data. | |
This class implements two types of prior for the weights distribution: a | |
finite mixture model with Dirichlet distribution and an infinite mixture | |
model with the Dirichlet Process. In practice Dirichlet Process inference | |
algorithm is approximated and uses a truncated distribution with a fixed | |
maximum number of components (called the Stick-breaking representation). | |
The number of components actually used almost always depends on the data. | |
.. versionadded:: 0.18 | |
Read more in the :ref:`User Guide <bgmm>`. | |
Parameters | |
---------- | |
n_components : int, default=1 | |
The number of mixture components. Depending on the data and the value | |
of the `weight_concentration_prior` the model can decide to not use | |
all the components by setting some component `weights_` to values very | |
close to zero. The number of effective components is therefore smaller | |
than n_components. | |
covariance_type : {'full', 'tied', 'diag', 'spherical'}, default='full' | |
String describing the type of covariance parameters to use. | |
Must be one of:: | |
'full' (each component has its own general covariance matrix), | |
'tied' (all components share the same general covariance matrix), | |
'diag' (each component has its own diagonal covariance matrix), | |
'spherical' (each component has its own single variance). | |
tol : float, default=1e-3 | |
The convergence threshold. EM iterations will stop when the | |
lower bound average gain on the likelihood (of the training data with | |
respect to the model) is below this threshold. | |
reg_covar : float, default=1e-6 | |
Non-negative regularization added to the diagonal of covariance. | |
Allows to assure that the covariance matrices are all positive. | |
max_iter : int, default=100 | |
The number of EM iterations to perform. | |
n_init : int, default=1 | |
The number of initializations to perform. The result with the highest | |
lower bound value on the likelihood is kept. | |
init_params : {'kmeans', 'k-means++', 'random', 'random_from_data'}, \ | |
default='kmeans' | |
The method used to initialize the weights, the means and the | |
covariances. | |
String must be one of: | |
'kmeans' : responsibilities are initialized using kmeans. | |
'k-means++' : use the k-means++ method to initialize. | |
'random' : responsibilities are initialized randomly. | |
'random_from_data' : initial means are randomly selected data points. | |
.. versionchanged:: v1.1 | |
`init_params` now accepts 'random_from_data' and 'k-means++' as | |
initialization methods. | |
weight_concentration_prior_type : {'dirichlet_process', 'dirichlet_distribution'}, \ | |
default='dirichlet_process' | |
String describing the type of the weight concentration prior. | |
weight_concentration_prior : float or None, default=None | |
The dirichlet concentration of each component on the weight | |
distribution (Dirichlet). This is commonly called gamma in the | |
literature. The higher concentration puts more mass in | |
the center and will lead to more components being active, while a lower | |
concentration parameter will lead to more mass at the edge of the | |
mixture weights simplex. The value of the parameter must be greater | |
than 0. If it is None, it's set to ``1. / n_components``. | |
mean_precision_prior : float or None, default=None | |
The precision prior on the mean distribution (Gaussian). | |
Controls the extent of where means can be placed. Larger | |
values concentrate the cluster means around `mean_prior`. | |
The value of the parameter must be greater than 0. | |
If it is None, it is set to 1. | |
mean_prior : array-like, shape (n_features,), default=None | |
The prior on the mean distribution (Gaussian). | |
If it is None, it is set to the mean of X. | |
degrees_of_freedom_prior : float or None, default=None | |
The prior of the number of degrees of freedom on the covariance | |
distributions (Wishart). If it is None, it's set to `n_features`. | |
covariance_prior : float or array-like, default=None | |
The prior on the covariance distribution (Wishart). | |
If it is None, the emiprical covariance prior is initialized using the | |
covariance of X. The shape depends on `covariance_type`:: | |
(n_features, n_features) if 'full', | |
(n_features, n_features) if 'tied', | |
(n_features) if 'diag', | |
float if 'spherical' | |
random_state : int, RandomState instance or None, default=None | |
Controls the random seed given to the method chosen to initialize the | |
parameters (see `init_params`). | |
In addition, it controls the generation of random samples from the | |
fitted distribution (see the method `sample`). | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
warm_start : bool, default=False | |
If 'warm_start' is True, the solution of the last fitting is used as | |
initialization for the next call of fit(). This can speed up | |
convergence when fit is called several times on similar problems. | |
See :term:`the Glossary <warm_start>`. | |
verbose : int, default=0 | |
Enable verbose output. If 1 then it prints the current | |
initialization and each iteration step. If greater than 1 then | |
it prints also the log probability and the time needed | |
for each step. | |
verbose_interval : int, default=10 | |
Number of iteration done before the next print. | |
Attributes | |
---------- | |
weights_ : array-like of shape (n_components,) | |
The weights of each mixture components. | |
means_ : array-like of shape (n_components, n_features) | |
The mean of each mixture component. | |
covariances_ : array-like | |
The covariance of each mixture component. | |
The shape depends on `covariance_type`:: | |
(n_components,) if 'spherical', | |
(n_features, n_features) if 'tied', | |
(n_components, n_features) if 'diag', | |
(n_components, n_features, n_features) if 'full' | |
precisions_ : array-like | |
The precision matrices for each component in the mixture. A precision | |
matrix is the inverse of a covariance matrix. A covariance matrix is | |
symmetric positive definite so the mixture of Gaussian can be | |
equivalently parameterized by the precision matrices. Storing the | |
precision matrices instead of the covariance matrices makes it more | |
efficient to compute the log-likelihood of new samples at test time. | |
The shape depends on ``covariance_type``:: | |
(n_components,) if 'spherical', | |
(n_features, n_features) if 'tied', | |
(n_components, n_features) if 'diag', | |
(n_components, n_features, n_features) if 'full' | |
precisions_cholesky_ : array-like | |
The cholesky decomposition of the precision matrices of each mixture | |
component. A precision matrix is the inverse of a covariance matrix. | |
A covariance matrix is symmetric positive definite so the mixture of | |
Gaussian can be equivalently parameterized by the precision matrices. | |
Storing the precision matrices instead of the covariance matrices makes | |
it more efficient to compute the log-likelihood of new samples at test | |
time. The shape depends on ``covariance_type``:: | |
(n_components,) if 'spherical', | |
(n_features, n_features) if 'tied', | |
(n_components, n_features) if 'diag', | |
(n_components, n_features, n_features) if 'full' | |
converged_ : bool | |
True when convergence was reached in fit(), False otherwise. | |
n_iter_ : int | |
Number of step used by the best fit of inference to reach the | |
convergence. | |
lower_bound_ : float | |
Lower bound value on the model evidence (of the training data) of the | |
best fit of inference. | |
weight_concentration_prior_ : tuple or float | |
The dirichlet concentration of each component on the weight | |
distribution (Dirichlet). The type depends on | |
``weight_concentration_prior_type``:: | |
(float, float) if 'dirichlet_process' (Beta parameters), | |
float if 'dirichlet_distribution' (Dirichlet parameters). | |
The higher concentration puts more mass in | |
the center and will lead to more components being active, while a lower | |
concentration parameter will lead to more mass at the edge of the | |
simplex. | |
weight_concentration_ : array-like of shape (n_components,) | |
The dirichlet concentration of each component on the weight | |
distribution (Dirichlet). | |
mean_precision_prior_ : float | |
The precision prior on the mean distribution (Gaussian). | |
Controls the extent of where means can be placed. | |
Larger values concentrate the cluster means around `mean_prior`. | |
If mean_precision_prior is set to None, `mean_precision_prior_` is set | |
to 1. | |
mean_precision_ : array-like of shape (n_components,) | |
The precision of each components on the mean distribution (Gaussian). | |
mean_prior_ : array-like of shape (n_features,) | |
The prior on the mean distribution (Gaussian). | |
degrees_of_freedom_prior_ : float | |
The prior of the number of degrees of freedom on the covariance | |
distributions (Wishart). | |
degrees_of_freedom_ : array-like of shape (n_components,) | |
The number of degrees of freedom of each components in the model. | |
covariance_prior_ : float or array-like | |
The prior on the covariance distribution (Wishart). | |
The shape depends on `covariance_type`:: | |
(n_features, n_features) if 'full', | |
(n_features, n_features) if 'tied', | |
(n_features) if 'diag', | |
float if 'spherical' | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
GaussianMixture : Finite Gaussian mixture fit with EM. | |
References | |
---------- | |
.. [1] `Bishop, Christopher M. (2006). "Pattern recognition and machine | |
learning". Vol. 4 No. 4. New York: Springer. | |
<https://www.springer.com/kr/book/9780387310732>`_ | |
.. [2] `Hagai Attias. (2000). "A Variational Bayesian Framework for | |
Graphical Models". In Advances in Neural Information Processing | |
Systems 12. | |
<https://citeseerx.ist.psu.edu/doc_view/pid/ee844fd96db7041a9681b5a18bff008912052c7e>`_ | |
.. [3] `Blei, David M. and Michael I. Jordan. (2006). "Variational | |
inference for Dirichlet process mixtures". Bayesian analysis 1.1 | |
<https://www.cs.princeton.edu/courses/archive/fall11/cos597C/reading/BleiJordan2005.pdf>`_ | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.mixture import BayesianGaussianMixture | |
>>> X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [12, 4], [10, 7]]) | |
>>> bgm = BayesianGaussianMixture(n_components=2, random_state=42).fit(X) | |
>>> bgm.means_ | |
array([[2.49... , 2.29...], | |
[8.45..., 4.52... ]]) | |
>>> bgm.predict([[0, 0], [9, 3]]) | |
array([0, 1]) | |
""" | |
_parameter_constraints: dict = { | |
**BaseMixture._parameter_constraints, | |
"covariance_type": [StrOptions({"spherical", "tied", "diag", "full"})], | |
"weight_concentration_prior_type": [ | |
StrOptions({"dirichlet_process", "dirichlet_distribution"}) | |
], | |
"weight_concentration_prior": [ | |
None, | |
Interval(Real, 0.0, None, closed="neither"), | |
], | |
"mean_precision_prior": [None, Interval(Real, 0.0, None, closed="neither")], | |
"mean_prior": [None, "array-like"], | |
"degrees_of_freedom_prior": [None, Interval(Real, 0.0, None, closed="neither")], | |
"covariance_prior": [ | |
None, | |
"array-like", | |
Interval(Real, 0.0, None, closed="neither"), | |
], | |
} | |
def __init__( | |
self, | |
*, | |
n_components=1, | |
covariance_type="full", | |
tol=1e-3, | |
reg_covar=1e-6, | |
max_iter=100, | |
n_init=1, | |
init_params="kmeans", | |
weight_concentration_prior_type="dirichlet_process", | |
weight_concentration_prior=None, | |
mean_precision_prior=None, | |
mean_prior=None, | |
degrees_of_freedom_prior=None, | |
covariance_prior=None, | |
random_state=None, | |
warm_start=False, | |
verbose=0, | |
verbose_interval=10, | |
): | |
super().__init__( | |
n_components=n_components, | |
tol=tol, | |
reg_covar=reg_covar, | |
max_iter=max_iter, | |
n_init=n_init, | |
init_params=init_params, | |
random_state=random_state, | |
warm_start=warm_start, | |
verbose=verbose, | |
verbose_interval=verbose_interval, | |
) | |
self.covariance_type = covariance_type | |
self.weight_concentration_prior_type = weight_concentration_prior_type | |
self.weight_concentration_prior = weight_concentration_prior | |
self.mean_precision_prior = mean_precision_prior | |
self.mean_prior = mean_prior | |
self.degrees_of_freedom_prior = degrees_of_freedom_prior | |
self.covariance_prior = covariance_prior | |
def _check_parameters(self, X): | |
"""Check that the parameters are well defined. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
""" | |
self._check_weights_parameters() | |
self._check_means_parameters(X) | |
self._check_precision_parameters(X) | |
self._checkcovariance_prior_parameter(X) | |
def _check_weights_parameters(self): | |
"""Check the parameter of the Dirichlet distribution.""" | |
if self.weight_concentration_prior is None: | |
self.weight_concentration_prior_ = 1.0 / self.n_components | |
else: | |
self.weight_concentration_prior_ = self.weight_concentration_prior | |
def _check_means_parameters(self, X): | |
"""Check the parameters of the Gaussian distribution. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
""" | |
_, n_features = X.shape | |
if self.mean_precision_prior is None: | |
self.mean_precision_prior_ = 1.0 | |
else: | |
self.mean_precision_prior_ = self.mean_precision_prior | |
if self.mean_prior is None: | |
self.mean_prior_ = X.mean(axis=0) | |
else: | |
self.mean_prior_ = check_array( | |
self.mean_prior, dtype=[np.float64, np.float32], ensure_2d=False | |
) | |
_check_shape(self.mean_prior_, (n_features,), "means") | |
def _check_precision_parameters(self, X): | |
"""Check the prior parameters of the precision distribution. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
""" | |
_, n_features = X.shape | |
if self.degrees_of_freedom_prior is None: | |
self.degrees_of_freedom_prior_ = n_features | |
elif self.degrees_of_freedom_prior > n_features - 1.0: | |
self.degrees_of_freedom_prior_ = self.degrees_of_freedom_prior | |
else: | |
raise ValueError( | |
"The parameter 'degrees_of_freedom_prior' " | |
"should be greater than %d, but got %.3f." | |
% (n_features - 1, self.degrees_of_freedom_prior) | |
) | |
def _checkcovariance_prior_parameter(self, X): | |
"""Check the `covariance_prior_`. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
""" | |
_, n_features = X.shape | |
if self.covariance_prior is None: | |
self.covariance_prior_ = { | |
"full": np.atleast_2d(np.cov(X.T)), | |
"tied": np.atleast_2d(np.cov(X.T)), | |
"diag": np.var(X, axis=0, ddof=1), | |
"spherical": np.var(X, axis=0, ddof=1).mean(), | |
}[self.covariance_type] | |
elif self.covariance_type in ["full", "tied"]: | |
self.covariance_prior_ = check_array( | |
self.covariance_prior, dtype=[np.float64, np.float32], ensure_2d=False | |
) | |
_check_shape( | |
self.covariance_prior_, | |
(n_features, n_features), | |
"%s covariance_prior" % self.covariance_type, | |
) | |
_check_precision_matrix(self.covariance_prior_, self.covariance_type) | |
elif self.covariance_type == "diag": | |
self.covariance_prior_ = check_array( | |
self.covariance_prior, dtype=[np.float64, np.float32], ensure_2d=False | |
) | |
_check_shape( | |
self.covariance_prior_, | |
(n_features,), | |
"%s covariance_prior" % self.covariance_type, | |
) | |
_check_precision_positivity(self.covariance_prior_, self.covariance_type) | |
# spherical case | |
else: | |
self.covariance_prior_ = self.covariance_prior | |
def _initialize(self, X, resp): | |
"""Initialization of the mixture parameters. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
resp : array-like of shape (n_samples, n_components) | |
""" | |
nk, xk, sk = _estimate_gaussian_parameters( | |
X, resp, self.reg_covar, self.covariance_type | |
) | |
self._estimate_weights(nk) | |
self._estimate_means(nk, xk) | |
self._estimate_precisions(nk, xk, sk) | |
def _estimate_weights(self, nk): | |
"""Estimate the parameters of the Dirichlet distribution. | |
Parameters | |
---------- | |
nk : array-like of shape (n_components,) | |
""" | |
if self.weight_concentration_prior_type == "dirichlet_process": | |
# For dirichlet process weight_concentration will be a tuple | |
# containing the two parameters of the beta distribution | |
self.weight_concentration_ = ( | |
1.0 + nk, | |
( | |
self.weight_concentration_prior_ | |
+ np.hstack((np.cumsum(nk[::-1])[-2::-1], 0)) | |
), | |
) | |
else: | |
# case Variational Gaussian mixture with dirichlet distribution | |
self.weight_concentration_ = self.weight_concentration_prior_ + nk | |
def _estimate_means(self, nk, xk): | |
"""Estimate the parameters of the Gaussian distribution. | |
Parameters | |
---------- | |
nk : array-like of shape (n_components,) | |
xk : array-like of shape (n_components, n_features) | |
""" | |
self.mean_precision_ = self.mean_precision_prior_ + nk | |
self.means_ = ( | |
self.mean_precision_prior_ * self.mean_prior_ + nk[:, np.newaxis] * xk | |
) / self.mean_precision_[:, np.newaxis] | |
def _estimate_precisions(self, nk, xk, sk): | |
"""Estimate the precisions parameters of the precision distribution. | |
Parameters | |
---------- | |
nk : array-like of shape (n_components,) | |
xk : array-like of shape (n_components, n_features) | |
sk : array-like | |
The shape depends of `covariance_type`: | |
'full' : (n_components, n_features, n_features) | |
'tied' : (n_features, n_features) | |
'diag' : (n_components, n_features) | |
'spherical' : (n_components,) | |
""" | |
{ | |
"full": self._estimate_wishart_full, | |
"tied": self._estimate_wishart_tied, | |
"diag": self._estimate_wishart_diag, | |
"spherical": self._estimate_wishart_spherical, | |
}[self.covariance_type](nk, xk, sk) | |
self.precisions_cholesky_ = _compute_precision_cholesky( | |
self.covariances_, self.covariance_type | |
) | |
def _estimate_wishart_full(self, nk, xk, sk): | |
"""Estimate the full Wishart distribution parameters. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
nk : array-like of shape (n_components,) | |
xk : array-like of shape (n_components, n_features) | |
sk : array-like of shape (n_components, n_features, n_features) | |
""" | |
_, n_features = xk.shape | |
# Warning : in some Bishop book, there is a typo on the formula 10.63 | |
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk` is | |
# the correct formula | |
self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk | |
self.covariances_ = np.empty((self.n_components, n_features, n_features)) | |
for k in range(self.n_components): | |
diff = xk[k] - self.mean_prior_ | |
self.covariances_[k] = ( | |
self.covariance_prior_ | |
+ nk[k] * sk[k] | |
+ nk[k] | |
* self.mean_precision_prior_ | |
/ self.mean_precision_[k] | |
* np.outer(diff, diff) | |
) | |
# Contrary to the original bishop book, we normalize the covariances | |
self.covariances_ /= self.degrees_of_freedom_[:, np.newaxis, np.newaxis] | |
def _estimate_wishart_tied(self, nk, xk, sk): | |
"""Estimate the tied Wishart distribution parameters. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
nk : array-like of shape (n_components,) | |
xk : array-like of shape (n_components, n_features) | |
sk : array-like of shape (n_features, n_features) | |
""" | |
_, n_features = xk.shape | |
# Warning : in some Bishop book, there is a typo on the formula 10.63 | |
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk` | |
# is the correct formula | |
self.degrees_of_freedom_ = ( | |
self.degrees_of_freedom_prior_ + nk.sum() / self.n_components | |
) | |
diff = xk - self.mean_prior_ | |
self.covariances_ = ( | |
self.covariance_prior_ | |
+ sk * nk.sum() / self.n_components | |
+ self.mean_precision_prior_ | |
/ self.n_components | |
* np.dot((nk / self.mean_precision_) * diff.T, diff) | |
) | |
# Contrary to the original bishop book, we normalize the covariances | |
self.covariances_ /= self.degrees_of_freedom_ | |
def _estimate_wishart_diag(self, nk, xk, sk): | |
"""Estimate the diag Wishart distribution parameters. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
nk : array-like of shape (n_components,) | |
xk : array-like of shape (n_components, n_features) | |
sk : array-like of shape (n_components, n_features) | |
""" | |
_, n_features = xk.shape | |
# Warning : in some Bishop book, there is a typo on the formula 10.63 | |
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk` | |
# is the correct formula | |
self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk | |
diff = xk - self.mean_prior_ | |
self.covariances_ = self.covariance_prior_ + nk[:, np.newaxis] * ( | |
sk | |
+ (self.mean_precision_prior_ / self.mean_precision_)[:, np.newaxis] | |
* np.square(diff) | |
) | |
# Contrary to the original bishop book, we normalize the covariances | |
self.covariances_ /= self.degrees_of_freedom_[:, np.newaxis] | |
def _estimate_wishart_spherical(self, nk, xk, sk): | |
"""Estimate the spherical Wishart distribution parameters. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
nk : array-like of shape (n_components,) | |
xk : array-like of shape (n_components, n_features) | |
sk : array-like of shape (n_components,) | |
""" | |
_, n_features = xk.shape | |
# Warning : in some Bishop book, there is a typo on the formula 10.63 | |
# `degrees_of_freedom_k = degrees_of_freedom_0 + Nk` | |
# is the correct formula | |
self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk | |
diff = xk - self.mean_prior_ | |
self.covariances_ = self.covariance_prior_ + nk * ( | |
sk | |
+ self.mean_precision_prior_ | |
/ self.mean_precision_ | |
* np.mean(np.square(diff), 1) | |
) | |
# Contrary to the original bishop book, we normalize the covariances | |
self.covariances_ /= self.degrees_of_freedom_ | |
def _m_step(self, X, log_resp): | |
"""M step. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
log_resp : array-like of shape (n_samples, n_components) | |
Logarithm of the posterior probabilities (or responsibilities) of | |
the point of each sample in X. | |
""" | |
n_samples, _ = X.shape | |
nk, xk, sk = _estimate_gaussian_parameters( | |
X, np.exp(log_resp), self.reg_covar, self.covariance_type | |
) | |
self._estimate_weights(nk) | |
self._estimate_means(nk, xk) | |
self._estimate_precisions(nk, xk, sk) | |
def _estimate_log_weights(self): | |
if self.weight_concentration_prior_type == "dirichlet_process": | |
digamma_sum = digamma( | |
self.weight_concentration_[0] + self.weight_concentration_[1] | |
) | |
digamma_a = digamma(self.weight_concentration_[0]) | |
digamma_b = digamma(self.weight_concentration_[1]) | |
return ( | |
digamma_a | |
- digamma_sum | |
+ np.hstack((0, np.cumsum(digamma_b - digamma_sum)[:-1])) | |
) | |
else: | |
# case Variational Gaussian mixture with dirichlet distribution | |
return digamma(self.weight_concentration_) - digamma( | |
np.sum(self.weight_concentration_) | |
) | |
def _estimate_log_prob(self, X): | |
_, n_features = X.shape | |
# We remove `n_features * np.log(self.degrees_of_freedom_)` because | |
# the precision matrix is normalized | |
log_gauss = _estimate_log_gaussian_prob( | |
X, self.means_, self.precisions_cholesky_, self.covariance_type | |
) - 0.5 * n_features * np.log(self.degrees_of_freedom_) | |
log_lambda = n_features * np.log(2.0) + np.sum( | |
digamma( | |
0.5 | |
* (self.degrees_of_freedom_ - np.arange(0, n_features)[:, np.newaxis]) | |
), | |
0, | |
) | |
return log_gauss + 0.5 * (log_lambda - n_features / self.mean_precision_) | |
def _compute_lower_bound(self, log_resp, log_prob_norm): | |
"""Estimate the lower bound of the model. | |
The lower bound on the likelihood (of the training data with respect to | |
the model) is used to detect the convergence and has to increase at | |
each iteration. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
log_resp : array, shape (n_samples, n_components) | |
Logarithm of the posterior probabilities (or responsibilities) of | |
the point of each sample in X. | |
log_prob_norm : float | |
Logarithm of the probability of each sample in X. | |
Returns | |
------- | |
lower_bound : float | |
""" | |
# Contrary to the original formula, we have done some simplification | |
# and removed all the constant terms. | |
(n_features,) = self.mean_prior_.shape | |
# We removed `.5 * n_features * np.log(self.degrees_of_freedom_)` | |
# because the precision matrix is normalized. | |
log_det_precisions_chol = _compute_log_det_cholesky( | |
self.precisions_cholesky_, self.covariance_type, n_features | |
) - 0.5 * n_features * np.log(self.degrees_of_freedom_) | |
if self.covariance_type == "tied": | |
log_wishart = self.n_components * np.float64( | |
_log_wishart_norm( | |
self.degrees_of_freedom_, log_det_precisions_chol, n_features | |
) | |
) | |
else: | |
log_wishart = np.sum( | |
_log_wishart_norm( | |
self.degrees_of_freedom_, log_det_precisions_chol, n_features | |
) | |
) | |
if self.weight_concentration_prior_type == "dirichlet_process": | |
log_norm_weight = -np.sum( | |
betaln(self.weight_concentration_[0], self.weight_concentration_[1]) | |
) | |
else: | |
log_norm_weight = _log_dirichlet_norm(self.weight_concentration_) | |
return ( | |
-np.sum(np.exp(log_resp) * log_resp) | |
- log_wishart | |
- log_norm_weight | |
- 0.5 * n_features * np.sum(np.log(self.mean_precision_)) | |
) | |
def _get_parameters(self): | |
return ( | |
self.weight_concentration_, | |
self.mean_precision_, | |
self.means_, | |
self.degrees_of_freedom_, | |
self.covariances_, | |
self.precisions_cholesky_, | |
) | |
def _set_parameters(self, params): | |
( | |
self.weight_concentration_, | |
self.mean_precision_, | |
self.means_, | |
self.degrees_of_freedom_, | |
self.covariances_, | |
self.precisions_cholesky_, | |
) = params | |
# Weights computation | |
if self.weight_concentration_prior_type == "dirichlet_process": | |
weight_dirichlet_sum = ( | |
self.weight_concentration_[0] + self.weight_concentration_[1] | |
) | |
tmp = self.weight_concentration_[1] / weight_dirichlet_sum | |
self.weights_ = ( | |
self.weight_concentration_[0] | |
/ weight_dirichlet_sum | |
* np.hstack((1, np.cumprod(tmp[:-1]))) | |
) | |
self.weights_ /= np.sum(self.weights_) | |
else: | |
self.weights_ = self.weight_concentration_ / np.sum( | |
self.weight_concentration_ | |
) | |
# Precisions matrices computation | |
if self.covariance_type == "full": | |
self.precisions_ = np.array( | |
[ | |
np.dot(prec_chol, prec_chol.T) | |
for prec_chol in self.precisions_cholesky_ | |
] | |
) | |
elif self.covariance_type == "tied": | |
self.precisions_ = np.dot( | |
self.precisions_cholesky_, self.precisions_cholesky_.T | |
) | |
else: | |
self.precisions_ = self.precisions_cholesky_**2 | |