peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/svm
/_base.py
import warnings | |
from abc import ABCMeta, abstractmethod | |
from numbers import Integral, Real | |
import numpy as np | |
import scipy.sparse as sp | |
from ..base import BaseEstimator, ClassifierMixin, _fit_context | |
from ..exceptions import ConvergenceWarning, NotFittedError | |
from ..preprocessing import LabelEncoder | |
from ..utils import check_array, check_random_state, column_or_1d, compute_class_weight | |
from ..utils._param_validation import Interval, StrOptions | |
from ..utils.extmath import safe_sparse_dot | |
from ..utils.metaestimators import available_if | |
from ..utils.multiclass import _ovr_decision_function, check_classification_targets | |
from ..utils.validation import ( | |
_check_large_sparse, | |
_check_sample_weight, | |
_num_samples, | |
check_consistent_length, | |
check_is_fitted, | |
) | |
from . import _liblinear as liblinear # type: ignore | |
# mypy error: error: Module 'sklearn.svm' has no attribute '_libsvm' | |
# (and same for other imports) | |
from . import _libsvm as libsvm # type: ignore | |
from . import _libsvm_sparse as libsvm_sparse # type: ignore | |
LIBSVM_IMPL = ["c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr"] | |
def _one_vs_one_coef(dual_coef, n_support, support_vectors): | |
"""Generate primal coefficients from dual coefficients | |
for the one-vs-one multi class LibSVM in the case | |
of a linear kernel.""" | |
# get 1vs1 weights for all n*(n-1) classifiers. | |
# this is somewhat messy. | |
# shape of dual_coef_ is nSV * (n_classes -1) | |
# see docs for details | |
n_class = dual_coef.shape[0] + 1 | |
# XXX we could do preallocation of coef but | |
# would have to take care in the sparse case | |
coef = [] | |
sv_locs = np.cumsum(np.hstack([[0], n_support])) | |
for class1 in range(n_class): | |
# SVs for class1: | |
sv1 = support_vectors[sv_locs[class1] : sv_locs[class1 + 1], :] | |
for class2 in range(class1 + 1, n_class): | |
# SVs for class1: | |
sv2 = support_vectors[sv_locs[class2] : sv_locs[class2 + 1], :] | |
# dual coef for class1 SVs: | |
alpha1 = dual_coef[class2 - 1, sv_locs[class1] : sv_locs[class1 + 1]] | |
# dual coef for class2 SVs: | |
alpha2 = dual_coef[class1, sv_locs[class2] : sv_locs[class2 + 1]] | |
# build weight for class1 vs class2 | |
coef.append(safe_sparse_dot(alpha1, sv1) + safe_sparse_dot(alpha2, sv2)) | |
return coef | |
class BaseLibSVM(BaseEstimator, metaclass=ABCMeta): | |
"""Base class for estimators that use libsvm as backing library. | |
This implements support vector machine classification and regression. | |
Parameter documentation is in the derived `SVC` class. | |
""" | |
_parameter_constraints: dict = { | |
"kernel": [ | |
StrOptions({"linear", "poly", "rbf", "sigmoid", "precomputed"}), | |
callable, | |
], | |
"degree": [Interval(Integral, 0, None, closed="left")], | |
"gamma": [ | |
StrOptions({"scale", "auto"}), | |
Interval(Real, 0.0, None, closed="left"), | |
], | |
"coef0": [Interval(Real, None, None, closed="neither")], | |
"tol": [Interval(Real, 0.0, None, closed="neither")], | |
"C": [Interval(Real, 0.0, None, closed="neither")], | |
"nu": [Interval(Real, 0.0, 1.0, closed="right")], | |
"epsilon": [Interval(Real, 0.0, None, closed="left")], | |
"shrinking": ["boolean"], | |
"probability": ["boolean"], | |
"cache_size": [Interval(Real, 0, None, closed="neither")], | |
"class_weight": [StrOptions({"balanced"}), dict, None], | |
"verbose": ["verbose"], | |
"max_iter": [Interval(Integral, -1, None, closed="left")], | |
"random_state": ["random_state"], | |
} | |
# The order of these must match the integer values in LibSVM. | |
# XXX These are actually the same in the dense case. Need to factor | |
# this out. | |
_sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"] | |
def __init__( | |
self, | |
kernel, | |
degree, | |
gamma, | |
coef0, | |
tol, | |
C, | |
nu, | |
epsilon, | |
shrinking, | |
probability, | |
cache_size, | |
class_weight, | |
verbose, | |
max_iter, | |
random_state, | |
): | |
if self._impl not in LIBSVM_IMPL: | |
raise ValueError( | |
"impl should be one of %s, %s was given" % (LIBSVM_IMPL, self._impl) | |
) | |
self.kernel = kernel | |
self.degree = degree | |
self.gamma = gamma | |
self.coef0 = coef0 | |
self.tol = tol | |
self.C = C | |
self.nu = nu | |
self.epsilon = epsilon | |
self.shrinking = shrinking | |
self.probability = probability | |
self.cache_size = cache_size | |
self.class_weight = class_weight | |
self.verbose = verbose | |
self.max_iter = max_iter | |
self.random_state = random_state | |
def _more_tags(self): | |
# Used by cross_val_score. | |
return {"pairwise": self.kernel == "precomputed"} | |
def fit(self, X, y, sample_weight=None): | |
"""Fit the SVM model according to the given training data. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) \ | |
or (n_samples, n_samples) | |
Training vectors, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
For kernel="precomputed", the expected shape of X is | |
(n_samples, n_samples). | |
y : array-like of shape (n_samples,) | |
Target values (class labels in classification, real numbers in | |
regression). | |
sample_weight : array-like of shape (n_samples,), default=None | |
Per-sample weights. Rescale C per sample. Higher weights | |
force the classifier to put more emphasis on these points. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
Notes | |
----- | |
If X and y are not C-ordered and contiguous arrays of np.float64 and | |
X is not a scipy.sparse.csr_matrix, X and/or y may be copied. | |
If X is a dense array, then the other methods will not support sparse | |
matrices as input. | |
""" | |
rnd = check_random_state(self.random_state) | |
sparse = sp.issparse(X) | |
if sparse and self.kernel == "precomputed": | |
raise TypeError("Sparse precomputed kernels are not supported.") | |
self._sparse = sparse and not callable(self.kernel) | |
if callable(self.kernel): | |
check_consistent_length(X, y) | |
else: | |
X, y = self._validate_data( | |
X, | |
y, | |
dtype=np.float64, | |
order="C", | |
accept_sparse="csr", | |
accept_large_sparse=False, | |
) | |
y = self._validate_targets(y) | |
sample_weight = np.asarray( | |
[] if sample_weight is None else sample_weight, dtype=np.float64 | |
) | |
solver_type = LIBSVM_IMPL.index(self._impl) | |
# input validation | |
n_samples = _num_samples(X) | |
if solver_type != 2 and n_samples != y.shape[0]: | |
raise ValueError( | |
"X and y have incompatible shapes.\n" | |
+ "X has %s samples, but y has %s." % (n_samples, y.shape[0]) | |
) | |
if self.kernel == "precomputed" and n_samples != X.shape[1]: | |
raise ValueError( | |
"Precomputed matrix must be a square matrix." | |
" Input is a {}x{} matrix.".format(X.shape[0], X.shape[1]) | |
) | |
if sample_weight.shape[0] > 0 and sample_weight.shape[0] != n_samples: | |
raise ValueError( | |
"sample_weight and X have incompatible shapes: " | |
"%r vs %r\n" | |
"Note: Sparse matrices cannot be indexed w/" | |
"boolean masks (use `indices=True` in CV)." | |
% (sample_weight.shape, X.shape) | |
) | |
kernel = "precomputed" if callable(self.kernel) else self.kernel | |
if kernel == "precomputed": | |
# unused but needs to be a float for cython code that ignores | |
# it anyway | |
self._gamma = 0.0 | |
elif isinstance(self.gamma, str): | |
if self.gamma == "scale": | |
# var = E[X^2] - E[X]^2 if sparse | |
X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var() | |
self._gamma = 1.0 / (X.shape[1] * X_var) if X_var != 0 else 1.0 | |
elif self.gamma == "auto": | |
self._gamma = 1.0 / X.shape[1] | |
elif isinstance(self.gamma, Real): | |
self._gamma = self.gamma | |
fit = self._sparse_fit if self._sparse else self._dense_fit | |
if self.verbose: | |
print("[LibSVM]", end="") | |
seed = rnd.randint(np.iinfo("i").max) | |
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed) | |
# see comment on the other call to np.iinfo in this file | |
self.shape_fit_ = X.shape if hasattr(X, "shape") else (n_samples,) | |
# In binary case, we need to flip the sign of coef, intercept and | |
# decision function. Use self._intercept_ and self._dual_coef_ | |
# internally. | |
self._intercept_ = self.intercept_.copy() | |
self._dual_coef_ = self.dual_coef_ | |
if self._impl in ["c_svc", "nu_svc"] and len(self.classes_) == 2: | |
self.intercept_ *= -1 | |
self.dual_coef_ = -self.dual_coef_ | |
dual_coef = self._dual_coef_.data if self._sparse else self._dual_coef_ | |
intercept_finiteness = np.isfinite(self._intercept_).all() | |
dual_coef_finiteness = np.isfinite(dual_coef).all() | |
if not (intercept_finiteness and dual_coef_finiteness): | |
raise ValueError( | |
"The dual coefficients or intercepts are not finite." | |
" The input data may contain large values and need to be" | |
" preprocessed." | |
) | |
# Since, in the case of SVC and NuSVC, the number of models optimized by | |
# libSVM could be greater than one (depending on the input), `n_iter_` | |
# stores an ndarray. | |
# For the other sub-classes (SVR, NuSVR, and OneClassSVM), the number of | |
# models optimized by libSVM is always one, so `n_iter_` stores an | |
# integer. | |
if self._impl in ["c_svc", "nu_svc"]: | |
self.n_iter_ = self._num_iter | |
else: | |
self.n_iter_ = self._num_iter.item() | |
return self | |
def _validate_targets(self, y): | |
"""Validation of y and class_weight. | |
Default implementation for SVR and one-class; overridden in BaseSVC. | |
""" | |
return column_or_1d(y, warn=True).astype(np.float64, copy=False) | |
def _warn_from_fit_status(self): | |
assert self.fit_status_ in (0, 1) | |
if self.fit_status_ == 1: | |
warnings.warn( | |
"Solver terminated early (max_iter=%i)." | |
" Consider pre-processing your data with" | |
" StandardScaler or MinMaxScaler." | |
% self.max_iter, | |
ConvergenceWarning, | |
) | |
def _dense_fit(self, X, y, sample_weight, solver_type, kernel, random_seed): | |
if callable(self.kernel): | |
# you must store a reference to X to compute the kernel in predict | |
# TODO: add keyword copy to copy on demand | |
self.__Xfit = X | |
X = self._compute_kernel(X) | |
if X.shape[0] != X.shape[1]: | |
raise ValueError("X.shape[0] should be equal to X.shape[1]") | |
libsvm.set_verbosity_wrap(self.verbose) | |
# we don't pass **self.get_params() to allow subclasses to | |
# add other parameters to __init__ | |
( | |
self.support_, | |
self.support_vectors_, | |
self._n_support, | |
self.dual_coef_, | |
self.intercept_, | |
self._probA, | |
self._probB, | |
self.fit_status_, | |
self._num_iter, | |
) = libsvm.fit( | |
X, | |
y, | |
svm_type=solver_type, | |
sample_weight=sample_weight, | |
class_weight=getattr(self, "class_weight_", np.empty(0)), | |
kernel=kernel, | |
C=self.C, | |
nu=self.nu, | |
probability=self.probability, | |
degree=self.degree, | |
shrinking=self.shrinking, | |
tol=self.tol, | |
cache_size=self.cache_size, | |
coef0=self.coef0, | |
gamma=self._gamma, | |
epsilon=self.epsilon, | |
max_iter=self.max_iter, | |
random_seed=random_seed, | |
) | |
self._warn_from_fit_status() | |
def _sparse_fit(self, X, y, sample_weight, solver_type, kernel, random_seed): | |
X.data = np.asarray(X.data, dtype=np.float64, order="C") | |
X.sort_indices() | |
kernel_type = self._sparse_kernels.index(kernel) | |
libsvm_sparse.set_verbosity_wrap(self.verbose) | |
( | |
self.support_, | |
self.support_vectors_, | |
dual_coef_data, | |
self.intercept_, | |
self._n_support, | |
self._probA, | |
self._probB, | |
self.fit_status_, | |
self._num_iter, | |
) = libsvm_sparse.libsvm_sparse_train( | |
X.shape[1], | |
X.data, | |
X.indices, | |
X.indptr, | |
y, | |
solver_type, | |
kernel_type, | |
self.degree, | |
self._gamma, | |
self.coef0, | |
self.tol, | |
self.C, | |
getattr(self, "class_weight_", np.empty(0)), | |
sample_weight, | |
self.nu, | |
self.cache_size, | |
self.epsilon, | |
int(self.shrinking), | |
int(self.probability), | |
self.max_iter, | |
random_seed, | |
) | |
self._warn_from_fit_status() | |
if hasattr(self, "classes_"): | |
n_class = len(self.classes_) - 1 | |
else: # regression | |
n_class = 1 | |
n_SV = self.support_vectors_.shape[0] | |
dual_coef_indices = np.tile(np.arange(n_SV), n_class) | |
if not n_SV: | |
self.dual_coef_ = sp.csr_matrix([]) | |
else: | |
dual_coef_indptr = np.arange( | |
0, dual_coef_indices.size + 1, dual_coef_indices.size / n_class | |
) | |
self.dual_coef_ = sp.csr_matrix( | |
(dual_coef_data, dual_coef_indices, dual_coef_indptr), (n_class, n_SV) | |
) | |
def predict(self, X): | |
"""Perform regression on samples in X. | |
For an one-class model, +1 (inlier) or -1 (outlier) is returned. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
For kernel="precomputed", the expected shape of X is | |
(n_samples_test, n_samples_train). | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,) | |
The predicted values. | |
""" | |
X = self._validate_for_predict(X) | |
predict = self._sparse_predict if self._sparse else self._dense_predict | |
return predict(X) | |
def _dense_predict(self, X): | |
X = self._compute_kernel(X) | |
if X.ndim == 1: | |
X = check_array(X, order="C", accept_large_sparse=False) | |
kernel = self.kernel | |
if callable(self.kernel): | |
kernel = "precomputed" | |
if X.shape[1] != self.shape_fit_[0]: | |
raise ValueError( | |
"X.shape[1] = %d should be equal to %d, " | |
"the number of samples at training time" | |
% (X.shape[1], self.shape_fit_[0]) | |
) | |
svm_type = LIBSVM_IMPL.index(self._impl) | |
return libsvm.predict( | |
X, | |
self.support_, | |
self.support_vectors_, | |
self._n_support, | |
self._dual_coef_, | |
self._intercept_, | |
self._probA, | |
self._probB, | |
svm_type=svm_type, | |
kernel=kernel, | |
degree=self.degree, | |
coef0=self.coef0, | |
gamma=self._gamma, | |
cache_size=self.cache_size, | |
) | |
def _sparse_predict(self, X): | |
# Precondition: X is a csr_matrix of dtype np.float64. | |
kernel = self.kernel | |
if callable(kernel): | |
kernel = "precomputed" | |
kernel_type = self._sparse_kernels.index(kernel) | |
C = 0.0 # C is not useful here | |
return libsvm_sparse.libsvm_sparse_predict( | |
X.data, | |
X.indices, | |
X.indptr, | |
self.support_vectors_.data, | |
self.support_vectors_.indices, | |
self.support_vectors_.indptr, | |
self._dual_coef_.data, | |
self._intercept_, | |
LIBSVM_IMPL.index(self._impl), | |
kernel_type, | |
self.degree, | |
self._gamma, | |
self.coef0, | |
self.tol, | |
C, | |
getattr(self, "class_weight_", np.empty(0)), | |
self.nu, | |
self.epsilon, | |
self.shrinking, | |
self.probability, | |
self._n_support, | |
self._probA, | |
self._probB, | |
) | |
def _compute_kernel(self, X): | |
"""Return the data transformed by a callable kernel""" | |
if callable(self.kernel): | |
# in the case of precomputed kernel given as a function, we | |
# have to compute explicitly the kernel matrix | |
kernel = self.kernel(X, self.__Xfit) | |
if sp.issparse(kernel): | |
kernel = kernel.toarray() | |
X = np.asarray(kernel, dtype=np.float64, order="C") | |
return X | |
def _decision_function(self, X): | |
"""Evaluates the decision function for the samples in X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Returns | |
------- | |
X : array-like of shape (n_samples, n_class * (n_class-1) / 2) | |
Returns the decision function of the sample for each class | |
in the model. | |
""" | |
# NOTE: _validate_for_predict contains check for is_fitted | |
# hence must be placed before any other attributes are used. | |
X = self._validate_for_predict(X) | |
X = self._compute_kernel(X) | |
if self._sparse: | |
dec_func = self._sparse_decision_function(X) | |
else: | |
dec_func = self._dense_decision_function(X) | |
# In binary case, we need to flip the sign of coef, intercept and | |
# decision function. | |
if self._impl in ["c_svc", "nu_svc"] and len(self.classes_) == 2: | |
return -dec_func.ravel() | |
return dec_func | |
def _dense_decision_function(self, X): | |
X = check_array(X, dtype=np.float64, order="C", accept_large_sparse=False) | |
kernel = self.kernel | |
if callable(kernel): | |
kernel = "precomputed" | |
return libsvm.decision_function( | |
X, | |
self.support_, | |
self.support_vectors_, | |
self._n_support, | |
self._dual_coef_, | |
self._intercept_, | |
self._probA, | |
self._probB, | |
svm_type=LIBSVM_IMPL.index(self._impl), | |
kernel=kernel, | |
degree=self.degree, | |
cache_size=self.cache_size, | |
coef0=self.coef0, | |
gamma=self._gamma, | |
) | |
def _sparse_decision_function(self, X): | |
X.data = np.asarray(X.data, dtype=np.float64, order="C") | |
kernel = self.kernel | |
if hasattr(kernel, "__call__"): | |
kernel = "precomputed" | |
kernel_type = self._sparse_kernels.index(kernel) | |
return libsvm_sparse.libsvm_sparse_decision_function( | |
X.data, | |
X.indices, | |
X.indptr, | |
self.support_vectors_.data, | |
self.support_vectors_.indices, | |
self.support_vectors_.indptr, | |
self._dual_coef_.data, | |
self._intercept_, | |
LIBSVM_IMPL.index(self._impl), | |
kernel_type, | |
self.degree, | |
self._gamma, | |
self.coef0, | |
self.tol, | |
self.C, | |
getattr(self, "class_weight_", np.empty(0)), | |
self.nu, | |
self.epsilon, | |
self.shrinking, | |
self.probability, | |
self._n_support, | |
self._probA, | |
self._probB, | |
) | |
def _validate_for_predict(self, X): | |
check_is_fitted(self) | |
if not callable(self.kernel): | |
X = self._validate_data( | |
X, | |
accept_sparse="csr", | |
dtype=np.float64, | |
order="C", | |
accept_large_sparse=False, | |
reset=False, | |
) | |
if self._sparse and not sp.issparse(X): | |
X = sp.csr_matrix(X) | |
if self._sparse: | |
X.sort_indices() | |
if sp.issparse(X) and not self._sparse and not callable(self.kernel): | |
raise ValueError( | |
"cannot use sparse input in %r trained on dense data" | |
% type(self).__name__ | |
) | |
if self.kernel == "precomputed": | |
if X.shape[1] != self.shape_fit_[0]: | |
raise ValueError( | |
"X.shape[1] = %d should be equal to %d, " | |
"the number of samples at training time" | |
% (X.shape[1], self.shape_fit_[0]) | |
) | |
# Fixes https://nvd.nist.gov/vuln/detail/CVE-2020-28975 | |
# Check that _n_support is consistent with support_vectors | |
sv = self.support_vectors_ | |
if not self._sparse and sv.size > 0 and self.n_support_.sum() != sv.shape[0]: | |
raise ValueError( | |
f"The internal representation of {self.__class__.__name__} was altered" | |
) | |
return X | |
def coef_(self): | |
"""Weights assigned to the features when `kernel="linear"`. | |
Returns | |
------- | |
ndarray of shape (n_features, n_classes) | |
""" | |
if self.kernel != "linear": | |
raise AttributeError("coef_ is only available when using a linear kernel") | |
coef = self._get_coef() | |
# coef_ being a read-only property, it's better to mark the value as | |
# immutable to avoid hiding potential bugs for the unsuspecting user. | |
if sp.issparse(coef): | |
# sparse matrix do not have global flags | |
coef.data.flags.writeable = False | |
else: | |
# regular dense array | |
coef.flags.writeable = False | |
return coef | |
def _get_coef(self): | |
return safe_sparse_dot(self._dual_coef_, self.support_vectors_) | |
def n_support_(self): | |
"""Number of support vectors for each class.""" | |
try: | |
check_is_fitted(self) | |
except NotFittedError: | |
raise AttributeError | |
svm_type = LIBSVM_IMPL.index(self._impl) | |
if svm_type in (0, 1): | |
return self._n_support | |
else: | |
# SVR and OneClass | |
# _n_support has size 2, we make it size 1 | |
return np.array([self._n_support[0]]) | |
class BaseSVC(ClassifierMixin, BaseLibSVM, metaclass=ABCMeta): | |
"""ABC for LibSVM-based classifiers.""" | |
_parameter_constraints: dict = { | |
**BaseLibSVM._parameter_constraints, | |
"decision_function_shape": [StrOptions({"ovr", "ovo"})], | |
"break_ties": ["boolean"], | |
} | |
for unused_param in ["epsilon", "nu"]: | |
_parameter_constraints.pop(unused_param) | |
def __init__( | |
self, | |
kernel, | |
degree, | |
gamma, | |
coef0, | |
tol, | |
C, | |
nu, | |
shrinking, | |
probability, | |
cache_size, | |
class_weight, | |
verbose, | |
max_iter, | |
decision_function_shape, | |
random_state, | |
break_ties, | |
): | |
self.decision_function_shape = decision_function_shape | |
self.break_ties = break_ties | |
super().__init__( | |
kernel=kernel, | |
degree=degree, | |
gamma=gamma, | |
coef0=coef0, | |
tol=tol, | |
C=C, | |
nu=nu, | |
epsilon=0.0, | |
shrinking=shrinking, | |
probability=probability, | |
cache_size=cache_size, | |
class_weight=class_weight, | |
verbose=verbose, | |
max_iter=max_iter, | |
random_state=random_state, | |
) | |
def _validate_targets(self, y): | |
y_ = column_or_1d(y, warn=True) | |
check_classification_targets(y) | |
cls, y = np.unique(y_, return_inverse=True) | |
self.class_weight_ = compute_class_weight(self.class_weight, classes=cls, y=y_) | |
if len(cls) < 2: | |
raise ValueError( | |
"The number of classes has to be greater than one; got %d class" | |
% len(cls) | |
) | |
self.classes_ = cls | |
return np.asarray(y, dtype=np.float64, order="C") | |
def decision_function(self, X): | |
"""Evaluate the decision function for the samples in X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input samples. | |
Returns | |
------- | |
X : ndarray of shape (n_samples, n_classes * (n_classes-1) / 2) | |
Returns the decision function of the sample for each class | |
in the model. | |
If decision_function_shape='ovr', the shape is (n_samples, | |
n_classes). | |
Notes | |
----- | |
If decision_function_shape='ovo', the function values are proportional | |
to the distance of the samples X to the separating hyperplane. If the | |
exact distances are required, divide the function values by the norm of | |
the weight vector (``coef_``). See also `this question | |
<https://stats.stackexchange.com/questions/14876/ | |
interpreting-distance-from-hyperplane-in-svm>`_ for further details. | |
If decision_function_shape='ovr', the decision function is a monotonic | |
transformation of ovo decision function. | |
""" | |
dec = self._decision_function(X) | |
if self.decision_function_shape == "ovr" and len(self.classes_) > 2: | |
return _ovr_decision_function(dec < 0, -dec, len(self.classes_)) | |
return dec | |
def predict(self, X): | |
"""Perform classification on samples in X. | |
For an one-class model, +1 or -1 is returned. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ | |
(n_samples_test, n_samples_train) | |
For kernel="precomputed", the expected shape of X is | |
(n_samples_test, n_samples_train). | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,) | |
Class labels for samples in X. | |
""" | |
check_is_fitted(self) | |
if self.break_ties and self.decision_function_shape == "ovo": | |
raise ValueError( | |
"break_ties must be False when decision_function_shape is 'ovo'" | |
) | |
if ( | |
self.break_ties | |
and self.decision_function_shape == "ovr" | |
and len(self.classes_) > 2 | |
): | |
y = np.argmax(self.decision_function(X), axis=1) | |
else: | |
y = super().predict(X) | |
return self.classes_.take(np.asarray(y, dtype=np.intp)) | |
# Hacky way of getting predict_proba to raise an AttributeError when | |
# probability=False using properties. Do not use this in new code; when | |
# probabilities are not available depending on a setting, introduce two | |
# estimators. | |
def _check_proba(self): | |
if not self.probability: | |
raise AttributeError( | |
"predict_proba is not available when probability=False" | |
) | |
if self._impl not in ("c_svc", "nu_svc"): | |
raise AttributeError("predict_proba only implemented for SVC and NuSVC") | |
return True | |
def predict_proba(self, X): | |
"""Compute probabilities of possible outcomes for samples in X. | |
The model needs to have probability information computed at training | |
time: fit with attribute `probability` set to True. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
For kernel="precomputed", the expected shape of X is | |
(n_samples_test, n_samples_train). | |
Returns | |
------- | |
T : ndarray of shape (n_samples, n_classes) | |
Returns the probability of the sample for each class in | |
the model. The columns correspond to the classes in sorted | |
order, as they appear in the attribute :term:`classes_`. | |
Notes | |
----- | |
The probability model is created using cross validation, so | |
the results can be slightly different than those obtained by | |
predict. Also, it will produce meaningless results on very small | |
datasets. | |
""" | |
X = self._validate_for_predict(X) | |
if self.probA_.size == 0 or self.probB_.size == 0: | |
raise NotFittedError( | |
"predict_proba is not available when fitted with probability=False" | |
) | |
pred_proba = ( | |
self._sparse_predict_proba if self._sparse else self._dense_predict_proba | |
) | |
return pred_proba(X) | |
def predict_log_proba(self, X): | |
"""Compute log probabilities of possible outcomes for samples in X. | |
The model need to have probability information computed at training | |
time: fit with attribute `probability` set to True. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) or \ | |
(n_samples_test, n_samples_train) | |
For kernel="precomputed", the expected shape of X is | |
(n_samples_test, n_samples_train). | |
Returns | |
------- | |
T : ndarray of shape (n_samples, n_classes) | |
Returns the log-probabilities of the sample for each class in | |
the model. The columns correspond to the classes in sorted | |
order, as they appear in the attribute :term:`classes_`. | |
Notes | |
----- | |
The probability model is created using cross validation, so | |
the results can be slightly different than those obtained by | |
predict. Also, it will produce meaningless results on very small | |
datasets. | |
""" | |
return np.log(self.predict_proba(X)) | |
def _dense_predict_proba(self, X): | |
X = self._compute_kernel(X) | |
kernel = self.kernel | |
if callable(kernel): | |
kernel = "precomputed" | |
svm_type = LIBSVM_IMPL.index(self._impl) | |
pprob = libsvm.predict_proba( | |
X, | |
self.support_, | |
self.support_vectors_, | |
self._n_support, | |
self._dual_coef_, | |
self._intercept_, | |
self._probA, | |
self._probB, | |
svm_type=svm_type, | |
kernel=kernel, | |
degree=self.degree, | |
cache_size=self.cache_size, | |
coef0=self.coef0, | |
gamma=self._gamma, | |
) | |
return pprob | |
def _sparse_predict_proba(self, X): | |
X.data = np.asarray(X.data, dtype=np.float64, order="C") | |
kernel = self.kernel | |
if callable(kernel): | |
kernel = "precomputed" | |
kernel_type = self._sparse_kernels.index(kernel) | |
return libsvm_sparse.libsvm_sparse_predict_proba( | |
X.data, | |
X.indices, | |
X.indptr, | |
self.support_vectors_.data, | |
self.support_vectors_.indices, | |
self.support_vectors_.indptr, | |
self._dual_coef_.data, | |
self._intercept_, | |
LIBSVM_IMPL.index(self._impl), | |
kernel_type, | |
self.degree, | |
self._gamma, | |
self.coef0, | |
self.tol, | |
self.C, | |
getattr(self, "class_weight_", np.empty(0)), | |
self.nu, | |
self.epsilon, | |
self.shrinking, | |
self.probability, | |
self._n_support, | |
self._probA, | |
self._probB, | |
) | |
def _get_coef(self): | |
if self.dual_coef_.shape[0] == 1: | |
# binary classifier | |
coef = safe_sparse_dot(self.dual_coef_, self.support_vectors_) | |
else: | |
# 1vs1 classifier | |
coef = _one_vs_one_coef( | |
self.dual_coef_, self._n_support, self.support_vectors_ | |
) | |
if sp.issparse(coef[0]): | |
coef = sp.vstack(coef).tocsr() | |
else: | |
coef = np.vstack(coef) | |
return coef | |
def probA_(self): | |
"""Parameter learned in Platt scaling when `probability=True`. | |
Returns | |
------- | |
ndarray of shape (n_classes * (n_classes - 1) / 2) | |
""" | |
return self._probA | |
def probB_(self): | |
"""Parameter learned in Platt scaling when `probability=True`. | |
Returns | |
------- | |
ndarray of shape (n_classes * (n_classes - 1) / 2) | |
""" | |
return self._probB | |
def _get_liblinear_solver_type(multi_class, penalty, loss, dual): | |
"""Find the liblinear magic number for the solver. | |
This number depends on the values of the following attributes: | |
- multi_class | |
- penalty | |
- loss | |
- dual | |
The same number is also internally used by LibLinear to determine | |
which solver to use. | |
""" | |
# nested dicts containing level 1: available loss functions, | |
# level2: available penalties for the given loss function, | |
# level3: whether the dual solver is available for the specified | |
# combination of loss function and penalty | |
_solver_type_dict = { | |
"logistic_regression": {"l1": {False: 6}, "l2": {False: 0, True: 7}}, | |
"hinge": {"l2": {True: 3}}, | |
"squared_hinge": {"l1": {False: 5}, "l2": {False: 2, True: 1}}, | |
"epsilon_insensitive": {"l2": {True: 13}}, | |
"squared_epsilon_insensitive": {"l2": {False: 11, True: 12}}, | |
"crammer_singer": 4, | |
} | |
if multi_class == "crammer_singer": | |
return _solver_type_dict[multi_class] | |
elif multi_class != "ovr": | |
raise ValueError( | |
"`multi_class` must be one of `ovr`, `crammer_singer`, got %r" % multi_class | |
) | |
_solver_pen = _solver_type_dict.get(loss, None) | |
if _solver_pen is None: | |
error_string = "loss='%s' is not supported" % loss | |
else: | |
_solver_dual = _solver_pen.get(penalty, None) | |
if _solver_dual is None: | |
error_string = ( | |
"The combination of penalty='%s' and loss='%s' is not supported" | |
% (penalty, loss) | |
) | |
else: | |
solver_num = _solver_dual.get(dual, None) | |
if solver_num is None: | |
error_string = ( | |
"The combination of penalty='%s' and " | |
"loss='%s' are not supported when dual=%s" % (penalty, loss, dual) | |
) | |
else: | |
return solver_num | |
raise ValueError( | |
"Unsupported set of arguments: %s, Parameters: penalty=%r, loss=%r, dual=%r" | |
% (error_string, penalty, loss, dual) | |
) | |
def _fit_liblinear( | |
X, | |
y, | |
C, | |
fit_intercept, | |
intercept_scaling, | |
class_weight, | |
penalty, | |
dual, | |
verbose, | |
max_iter, | |
tol, | |
random_state=None, | |
multi_class="ovr", | |
loss="logistic_regression", | |
epsilon=0.1, | |
sample_weight=None, | |
): | |
"""Used by Logistic Regression (and CV) and LinearSVC/LinearSVR. | |
Preprocessing is done in this function before supplying it to liblinear. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Training vector, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : array-like of shape (n_samples,) | |
Target vector relative to X | |
C : float | |
Inverse of cross-validation parameter. The lower the C, the higher | |
the penalization. | |
fit_intercept : bool | |
Whether or not to fit an intercept. If set to True, the feature vector | |
is extended to include an intercept term: ``[x_1, ..., x_n, 1]``, where | |
1 corresponds to the intercept. If set to False, no intercept will be | |
used in calculations (i.e. data is expected to be already centered). | |
intercept_scaling : float | |
Liblinear internally penalizes the intercept, treating it like any | |
other term in the feature vector. To reduce the impact of the | |
regularization on the intercept, the `intercept_scaling` parameter can | |
be set to a value greater than 1; the higher the value of | |
`intercept_scaling`, the lower the impact of regularization on it. | |
Then, the weights become `[w_x_1, ..., w_x_n, | |
w_intercept*intercept_scaling]`, where `w_x_1, ..., w_x_n` represent | |
the feature weights and the intercept weight is scaled by | |
`intercept_scaling`. This scaling allows the intercept term to have a | |
different regularization behavior compared to the other features. | |
class_weight : dict or 'balanced', default=None | |
Weights associated with classes in the form ``{class_label: weight}``. | |
If not given, all classes are supposed to have weight one. For | |
multi-output problems, a list of dicts can be provided in the same | |
order as the columns of y. | |
The "balanced" mode uses the values of y to automatically adjust | |
weights inversely proportional to class frequencies in the input data | |
as ``n_samples / (n_classes * np.bincount(y))`` | |
penalty : {'l1', 'l2'} | |
The norm of the penalty used in regularization. | |
dual : bool | |
Dual or primal formulation, | |
verbose : int | |
Set verbose to any positive number for verbosity. | |
max_iter : int | |
Number of iterations. | |
tol : float | |
Stopping condition. | |
random_state : int, RandomState instance or None, default=None | |
Controls the pseudo random number generation for shuffling the data. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
multi_class : {'ovr', 'crammer_singer'}, default='ovr' | |
`ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` | |
optimizes a joint objective over all classes. | |
While `crammer_singer` is interesting from an theoretical perspective | |
as it is consistent it is seldom used in practice and rarely leads to | |
better accuracy and is more expensive to compute. | |
If `crammer_singer` is chosen, the options loss, penalty and dual will | |
be ignored. | |
loss : {'logistic_regression', 'hinge', 'squared_hinge', \ | |
'epsilon_insensitive', 'squared_epsilon_insensitive}, \ | |
default='logistic_regression' | |
The loss function used to fit the model. | |
epsilon : float, default=0.1 | |
Epsilon parameter in the epsilon-insensitive loss function. Note | |
that the value of this parameter depends on the scale of the target | |
variable y. If unsure, set epsilon=0. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Weights assigned to each sample. | |
Returns | |
------- | |
coef_ : ndarray of shape (n_features, n_features + 1) | |
The coefficient vector got by minimizing the objective function. | |
intercept_ : float | |
The intercept term added to the vector. | |
n_iter_ : array of int | |
Number of iterations run across for each class. | |
""" | |
if loss not in ["epsilon_insensitive", "squared_epsilon_insensitive"]: | |
enc = LabelEncoder() | |
y_ind = enc.fit_transform(y) | |
classes_ = enc.classes_ | |
if len(classes_) < 2: | |
raise ValueError( | |
"This solver needs samples of at least 2 classes" | |
" in the data, but the data contains only one" | |
" class: %r" | |
% classes_[0] | |
) | |
class_weight_ = compute_class_weight(class_weight, classes=classes_, y=y) | |
else: | |
class_weight_ = np.empty(0, dtype=np.float64) | |
y_ind = y | |
liblinear.set_verbosity_wrap(verbose) | |
rnd = check_random_state(random_state) | |
if verbose: | |
print("[LibLinear]", end="") | |
# LinearSVC breaks when intercept_scaling is <= 0 | |
bias = -1.0 | |
if fit_intercept: | |
if intercept_scaling <= 0: | |
raise ValueError( | |
"Intercept scaling is %r but needs to be greater " | |
"than 0. To disable fitting an intercept," | |
" set fit_intercept=False." % intercept_scaling | |
) | |
else: | |
bias = intercept_scaling | |
libsvm.set_verbosity_wrap(verbose) | |
libsvm_sparse.set_verbosity_wrap(verbose) | |
liblinear.set_verbosity_wrap(verbose) | |
# Liblinear doesn't support 64bit sparse matrix indices yet | |
if sp.issparse(X): | |
_check_large_sparse(X) | |
# LibLinear wants targets as doubles, even for classification | |
y_ind = np.asarray(y_ind, dtype=np.float64).ravel() | |
y_ind = np.require(y_ind, requirements="W") | |
sample_weight = _check_sample_weight(sample_weight, X, dtype=np.float64) | |
solver_type = _get_liblinear_solver_type(multi_class, penalty, loss, dual) | |
raw_coef_, n_iter_ = liblinear.train_wrap( | |
X, | |
y_ind, | |
sp.issparse(X), | |
solver_type, | |
tol, | |
bias, | |
C, | |
class_weight_, | |
max_iter, | |
rnd.randint(np.iinfo("i").max), | |
epsilon, | |
sample_weight, | |
) | |
# Regarding rnd.randint(..) in the above signature: | |
# seed for srand in range [0..INT_MAX); due to limitations in Numpy | |
# on 32-bit platforms, we can't get to the UINT_MAX limit that | |
# srand supports | |
n_iter_max = max(n_iter_) | |
if n_iter_max >= max_iter: | |
warnings.warn( | |
"Liblinear failed to converge, increase the number of iterations.", | |
ConvergenceWarning, | |
) | |
if fit_intercept: | |
coef_ = raw_coef_[:, :-1] | |
intercept_ = intercept_scaling * raw_coef_[:, -1] | |
else: | |
coef_ = raw_coef_ | |
intercept_ = 0.0 | |
return coef_, intercept_, n_iter_ | |