peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/char_level_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union | |
from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers | |
from ..models import BPE | |
from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str | |
from .base_tokenizer import BaseTokenizer | |
class CharBPETokenizer(BaseTokenizer): | |
"""Original BPE Tokenizer | |
Represents the BPE algorithm, as introduced by Rico Sennrich | |
(https://arxiv.org/abs/1508.07909) | |
The defaults settings corresponds to OpenAI GPT BPE tokenizers and differs from the original | |
Sennrich subword-nmt implementation by the following options that you can deactivate: | |
- adding a normalizer to clean up the text (deactivate with `bert_normalizer=False`) by: | |
* removing any control characters and replacing all whitespaces by the classic one. | |
* handle chinese chars by putting spaces around them. | |
* strip all accents. | |
- spitting on punctuation in addition to whitespaces (deactivate it with | |
`split_on_whitespace_only=True`) | |
""" | |
def __init__( | |
self, | |
vocab: Optional[Union[str, Dict[str, int]]] = None, | |
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None, | |
unk_token: Union[str, AddedToken] = "<unk>", | |
suffix: str = "</w>", | |
dropout: Optional[float] = None, | |
lowercase: bool = False, | |
unicode_normalizer: Optional[str] = None, | |
bert_normalizer: bool = True, | |
split_on_whitespace_only: bool = False, | |
): | |
if vocab is not None and merges is not None: | |
tokenizer = Tokenizer( | |
BPE( | |
vocab, | |
merges, | |
dropout=dropout, | |
unk_token=str(unk_token), | |
end_of_word_suffix=suffix, | |
) | |
) | |
else: | |
tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix)) | |
if tokenizer.token_to_id(str(unk_token)) is not None: | |
tokenizer.add_special_tokens([str(unk_token)]) | |
# Check for Unicode normalization first (before everything else) | |
normalizers = [] | |
if unicode_normalizer: | |
normalizers += [unicode_normalizer_from_str(unicode_normalizer)] | |
if bert_normalizer: | |
normalizers += [BertNormalizer(lowercase=False)] | |
if lowercase: | |
normalizers += [Lowercase()] | |
# Create the normalizer structure | |
if len(normalizers) > 0: | |
if len(normalizers) > 1: | |
tokenizer.normalizer = Sequence(normalizers) | |
else: | |
tokenizer.normalizer = normalizers[0] | |
if split_on_whitespace_only: | |
tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit() | |
else: | |
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() | |
tokenizer.decoder = decoders.BPEDecoder(suffix=suffix) | |
parameters = { | |
"model": "BPE", | |
"unk_token": unk_token, | |
"suffix": suffix, | |
"dropout": dropout, | |
"lowercase": lowercase, | |
"unicode_normalizer": unicode_normalizer, | |
"bert_normalizer": bert_normalizer, | |
"split_on_whitespace_only": split_on_whitespace_only, | |
} | |
super().__init__(tokenizer, parameters) | |
def from_file(vocab_filename: str, merges_filename: str, **kwargs): | |
vocab, merges = BPE.read_file(vocab_filename, merges_filename) | |
return CharBPETokenizer(vocab, merges, **kwargs) | |
def train( | |
self, | |
files: Union[str, List[str]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
special_tokens: List[Union[str, AddedToken]] = ["<unk>"], | |
limit_alphabet: int = 1000, | |
initial_alphabet: List[str] = [], | |
suffix: Optional[str] = "</w>", | |
show_progress: bool = True, | |
): | |
"""Train the model using the given files""" | |
trainer = trainers.BpeTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
special_tokens=special_tokens, | |
limit_alphabet=limit_alphabet, | |
initial_alphabet=initial_alphabet, | |
end_of_word_suffix=suffix, | |
show_progress=show_progress, | |
) | |
if isinstance(files, str): | |
files = [files] | |
self._tokenizer.train(files, trainer=trainer) | |
def train_from_iterator( | |
self, | |
iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
special_tokens: List[Union[str, AddedToken]] = ["<unk>"], | |
limit_alphabet: int = 1000, | |
initial_alphabet: List[str] = [], | |
suffix: Optional[str] = "</w>", | |
show_progress: bool = True, | |
length: Optional[int] = None, | |
): | |
"""Train the model using the given iterator""" | |
trainer = trainers.BpeTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
special_tokens=special_tokens, | |
limit_alphabet=limit_alphabet, | |
initial_alphabet=initial_alphabet, | |
end_of_word_suffix=suffix, | |
show_progress=show_progress, | |
) | |
self._tokenizer.train_from_iterator( | |
iterator, | |
trainer=trainer, | |
length=length, | |
) | |