peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/sentencepiece_unigram.py
| import json | |
| import os | |
| from typing import Iterator, List, Optional, Union, Tuple | |
| from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers | |
| from tokenizers.models import Unigram | |
| from .base_tokenizer import BaseTokenizer | |
| class SentencePieceUnigramTokenizer(BaseTokenizer): | |
| """SentencePiece Unigram Tokenizer | |
| Represents the Unigram algorithm, with the pretokenization used by SentencePiece | |
| """ | |
| def __init__( | |
| self, | |
| vocab: Optional[List[Tuple[str, float]]] = None, | |
| replacement: str = "▁", | |
| add_prefix_space: bool = True, | |
| ): | |
| if vocab is not None: | |
| # Let Unigram(..) fail if only one of them is None | |
| tokenizer = Tokenizer(Unigram(vocab)) | |
| else: | |
| tokenizer = Tokenizer(Unigram()) | |
| tokenizer.normalizer = normalizers.Sequence( | |
| [normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")] | |
| ) | |
| prepend_scheme = "always" if add_prefix_space else "never" | |
| tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
| tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
| parameters = { | |
| "model": "SentencePieceUnigram", | |
| "replacement": replacement, | |
| "add_prefix_space": add_prefix_space, | |
| } | |
| super().__init__(tokenizer, parameters) | |
| def train( | |
| self, | |
| files: Union[str, List[str]], | |
| vocab_size: int = 8000, | |
| show_progress: bool = True, | |
| special_tokens: Optional[List[Union[str, AddedToken]]] = None, | |
| initial_alphabet: Optional[List[str]] = None, | |
| unk_token: Optional[str] = None, | |
| ): | |
| """ | |
| Train the model using the given files | |
| Args: | |
| files (:obj:`List[str]`): | |
| A list of path to the files that we should use for training | |
| vocab_size (:obj:`int`): | |
| The size of the final vocabulary, including all tokens and alphabet. | |
| show_progress (:obj:`bool`): | |
| Whether to show progress bars while training. | |
| special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): | |
| A list of special tokens the model should know of. | |
| initial_alphabet (:obj:`List[str]`, `optional`): | |
| A list of characters to include in the initial alphabet, even | |
| if not seen in the training dataset. | |
| If the strings contain more than one character, only the first one | |
| is kept. | |
| unk_token (:obj:`str`, `optional`): | |
| The unknown token to be used by the model. | |
| """ | |
| if special_tokens is None: | |
| special_tokens = [] | |
| if initial_alphabet is None: | |
| initial_alphabet = [] | |
| trainer = trainers.UnigramTrainer( | |
| vocab_size=vocab_size, | |
| special_tokens=special_tokens, | |
| show_progress=show_progress, | |
| initial_alphabet=initial_alphabet, | |
| unk_token=unk_token, | |
| ) | |
| if isinstance(files, str): | |
| files = [files] | |
| self._tokenizer.train(files, trainer=trainer) | |
| def train_from_iterator( | |
| self, | |
| iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
| vocab_size: int = 8000, | |
| show_progress: bool = True, | |
| special_tokens: Optional[List[Union[str, AddedToken]]] = None, | |
| initial_alphabet: Optional[List[str]] = None, | |
| unk_token: Optional[str] = None, | |
| length: Optional[int] = None, | |
| ): | |
| """ | |
| Train the model using the given iterator | |
| Args: | |
| iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`): | |
| Any iterator over strings or list of strings | |
| vocab_size (:obj:`int`): | |
| The size of the final vocabulary, including all tokens and alphabet. | |
| show_progress (:obj:`bool`): | |
| Whether to show progress bars while training. | |
| special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): | |
| A list of special tokens the model should know of. | |
| initial_alphabet (:obj:`List[str]`, `optional`): | |
| A list of characters to include in the initial alphabet, even | |
| if not seen in the training dataset. | |
| If the strings contain more than one character, only the first one | |
| is kept. | |
| unk_token (:obj:`str`, `optional`): | |
| The unknown token to be used by the model. | |
| length (:obj:`int`, `optional`): | |
| The total number of sequences in the iterator. This is used to | |
| provide meaningful progress tracking | |
| """ | |
| if special_tokens is None: | |
| special_tokens = [] | |
| if initial_alphabet is None: | |
| initial_alphabet = [] | |
| trainer = trainers.UnigramTrainer( | |
| vocab_size=vocab_size, | |
| special_tokens=special_tokens, | |
| show_progress=show_progress, | |
| initial_alphabet=initial_alphabet, | |
| unk_token=unk_token, | |
| ) | |
| self._tokenizer.train_from_iterator( | |
| iterator, | |
| trainer=trainer, | |
| length=length, | |
| ) | |
| def from_spm(filename: str): | |
| try: | |
| import sys | |
| sys.path.append(".") | |
| import sentencepiece_model_pb2 as model | |
| except Exception: | |
| raise Exception( | |
| "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required." | |
| ) | |
| m = model.ModelProto() | |
| m.ParseFromString(open(filename, "rb").read()) | |
| precompiled_charsmap = m.normalizer_spec.precompiled_charsmap | |
| vocab = [(piece.piece, piece.score) for piece in m.pieces] | |
| unk_id = m.trainer_spec.unk_id | |
| model_type = m.trainer_spec.model_type | |
| byte_fallback = m.trainer_spec.byte_fallback | |
| if model_type != 1: | |
| raise Exception( | |
| "You're trying to run a `Unigram` model but you're file was trained with a different algorithm" | |
| ) | |
| replacement = "▁" | |
| add_prefix_space = True | |
| tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback)) | |
| if precompiled_charsmap: | |
| tokenizer.normalizer = normalizers.Sequence( | |
| [ | |
| normalizers.Precompiled(precompiled_charsmap), | |
| normalizers.Replace(Regex(" {2,}"), " "), | |
| ] | |
| ) | |
| else: | |
| tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")]) | |
| prepend_scheme = "always" if add_prefix_space else "never" | |
| tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
| tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
| parameters = { | |
| "model": "SentencePieceUnigram", | |
| } | |
| obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters) | |
| BaseTokenizer.__init__(obj, tokenizer, parameters) | |
| return obj | |