peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_optimize.py
| #__docformat__ = "restructuredtext en" | |
| # ******NOTICE*************** | |
| # optimize.py module by Travis E. Oliphant | |
| # | |
| # You may copy and use this module as you see fit with no | |
| # guarantee implied provided you keep this notice in all copies. | |
| # *****END NOTICE************ | |
| # A collection of optimization algorithms. Version 0.5 | |
| # CHANGES | |
| # Added fminbound (July 2001) | |
| # Added brute (Aug. 2002) | |
| # Finished line search satisfying strong Wolfe conditions (Mar. 2004) | |
| # Updated strong Wolfe conditions line search to use | |
| # cubic-interpolation (Mar. 2004) | |
| # Minimization routines | |
| __all__ = ['fmin', 'fmin_powell', 'fmin_bfgs', 'fmin_ncg', 'fmin_cg', | |
| 'fminbound', 'brent', 'golden', 'bracket', 'rosen', 'rosen_der', | |
| 'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime', | |
| 'line_search', 'check_grad', 'OptimizeResult', 'show_options', | |
| 'OptimizeWarning'] | |
| __docformat__ = "restructuredtext en" | |
| import math | |
| import warnings | |
| import sys | |
| import inspect | |
| from numpy import (atleast_1d, eye, argmin, zeros, shape, squeeze, | |
| asarray, sqrt) | |
| import numpy as np | |
| from scipy.linalg import cholesky, issymmetric, LinAlgError | |
| from scipy.sparse.linalg import LinearOperator | |
| from ._linesearch import (line_search_wolfe1, line_search_wolfe2, | |
| line_search_wolfe2 as line_search, | |
| LineSearchWarning) | |
| from ._numdiff import approx_derivative | |
| from scipy._lib._util import getfullargspec_no_self as _getfullargspec | |
| from scipy._lib._util import (MapWrapper, check_random_state, _RichResult, | |
| _call_callback_maybe_halt) | |
| from scipy.optimize._differentiable_functions import ScalarFunction, FD_METHODS | |
| # standard status messages of optimizers | |
| _status_message = {'success': 'Optimization terminated successfully.', | |
| 'maxfev': 'Maximum number of function evaluations has ' | |
| 'been exceeded.', | |
| 'maxiter': 'Maximum number of iterations has been ' | |
| 'exceeded.', | |
| 'pr_loss': 'Desired error not necessarily achieved due ' | |
| 'to precision loss.', | |
| 'nan': 'NaN result encountered.', | |
| 'out_of_bounds': 'The result is outside of the provided ' | |
| 'bounds.'} | |
| class MemoizeJac: | |
| """ Decorator that caches the return values of a function returning `(fun, grad)` | |
| each time it is called. """ | |
| def __init__(self, fun): | |
| self.fun = fun | |
| self.jac = None | |
| self._value = None | |
| self.x = None | |
| def _compute_if_needed(self, x, *args): | |
| if not np.all(x == self.x) or self._value is None or self.jac is None: | |
| self.x = np.asarray(x).copy() | |
| fg = self.fun(x, *args) | |
| self.jac = fg[1] | |
| self._value = fg[0] | |
| def __call__(self, x, *args): | |
| """ returns the function value """ | |
| self._compute_if_needed(x, *args) | |
| return self._value | |
| def derivative(self, x, *args): | |
| self._compute_if_needed(x, *args) | |
| return self.jac | |
| def _wrap_callback(callback, method=None): | |
| """Wrap a user-provided callback so that attributes can be attached.""" | |
| if callback is None or method in {'tnc', 'slsqp', 'cobyla'}: | |
| return callback # don't wrap | |
| sig = inspect.signature(callback) | |
| if set(sig.parameters) == {'intermediate_result'}: | |
| def wrapped_callback(res): | |
| return callback(intermediate_result=res) | |
| elif method == 'trust-constr': | |
| def wrapped_callback(res): | |
| return callback(np.copy(res.x), res) | |
| elif method == 'differential_evolution': | |
| def wrapped_callback(res): | |
| return callback(np.copy(res.x), res.convergence) | |
| else: | |
| def wrapped_callback(res): | |
| return callback(np.copy(res.x)) | |
| wrapped_callback.stop_iteration = False | |
| return wrapped_callback | |
| class OptimizeResult(_RichResult): | |
| """ | |
| Represents the optimization result. | |
| Attributes | |
| ---------- | |
| x : ndarray | |
| The solution of the optimization. | |
| success : bool | |
| Whether or not the optimizer exited successfully. | |
| status : int | |
| Termination status of the optimizer. Its value depends on the | |
| underlying solver. Refer to `message` for details. | |
| message : str | |
| Description of the cause of the termination. | |
| fun, jac, hess: ndarray | |
| Values of objective function, its Jacobian and its Hessian (if | |
| available). The Hessians may be approximations, see the documentation | |
| of the function in question. | |
| hess_inv : object | |
| Inverse of the objective function's Hessian; may be an approximation. | |
| Not available for all solvers. The type of this attribute may be | |
| either np.ndarray or scipy.sparse.linalg.LinearOperator. | |
| nfev, njev, nhev : int | |
| Number of evaluations of the objective functions and of its | |
| Jacobian and Hessian. | |
| nit : int | |
| Number of iterations performed by the optimizer. | |
| maxcv : float | |
| The maximum constraint violation. | |
| Notes | |
| ----- | |
| Depending on the specific solver being used, `OptimizeResult` may | |
| not have all attributes listed here, and they may have additional | |
| attributes not listed here. Since this class is essentially a | |
| subclass of dict with attribute accessors, one can see which | |
| attributes are available using the `OptimizeResult.keys` method. | |
| """ | |
| pass | |
| class OptimizeWarning(UserWarning): | |
| pass | |
| def _check_positive_definite(Hk): | |
| def is_pos_def(A): | |
| if issymmetric(A): | |
| try: | |
| cholesky(A) | |
| return True | |
| except LinAlgError: | |
| return False | |
| else: | |
| return False | |
| if Hk is not None: | |
| if not is_pos_def(Hk): | |
| raise ValueError("'hess_inv0' matrix isn't positive definite.") | |
| def _check_unknown_options(unknown_options): | |
| if unknown_options: | |
| msg = ", ".join(map(str, unknown_options.keys())) | |
| # Stack level 4: this is called from _minimize_*, which is | |
| # called from another function in SciPy. Level 4 is the first | |
| # level in user code. | |
| warnings.warn("Unknown solver options: %s" % msg, OptimizeWarning, stacklevel=4) | |
| def is_finite_scalar(x): | |
| """Test whether `x` is either a finite scalar or a finite array scalar. | |
| """ | |
| return np.size(x) == 1 and np.isfinite(x) | |
| _epsilon = sqrt(np.finfo(float).eps) | |
| def vecnorm(x, ord=2): | |
| if ord == np.inf: | |
| return np.amax(np.abs(x)) | |
| elif ord == -np.inf: | |
| return np.amin(np.abs(x)) | |
| else: | |
| return np.sum(np.abs(x)**ord, axis=0)**(1.0 / ord) | |
| def _prepare_scalar_function(fun, x0, jac=None, args=(), bounds=None, | |
| epsilon=None, finite_diff_rel_step=None, | |
| hess=None): | |
| """ | |
| Creates a ScalarFunction object for use with scalar minimizers | |
| (BFGS/LBFGSB/SLSQP/TNC/CG/etc). | |
| Parameters | |
| ---------- | |
| fun : callable | |
| The objective function to be minimized. | |
| ``fun(x, *args) -> float`` | |
| where ``x`` is an 1-D array with shape (n,) and ``args`` | |
| is a tuple of the fixed parameters needed to completely | |
| specify the function. | |
| x0 : ndarray, shape (n,) | |
| Initial guess. Array of real elements of size (n,), | |
| where 'n' is the number of independent variables. | |
| jac : {callable, '2-point', '3-point', 'cs', None}, optional | |
| Method for computing the gradient vector. If it is a callable, it | |
| should be a function that returns the gradient vector: | |
| ``jac(x, *args) -> array_like, shape (n,)`` | |
| If one of `{'2-point', '3-point', 'cs'}` is selected then the gradient | |
| is calculated with a relative step for finite differences. If `None`, | |
| then two-point finite differences with an absolute step is used. | |
| args : tuple, optional | |
| Extra arguments passed to the objective function and its | |
| derivatives (`fun`, `jac` functions). | |
| bounds : sequence, optional | |
| Bounds on variables. 'new-style' bounds are required. | |
| eps : float or ndarray | |
| If `jac is None` the absolute step size used for numerical | |
| approximation of the jacobian via forward differences. | |
| finite_diff_rel_step : None or array_like, optional | |
| If `jac in ['2-point', '3-point', 'cs']` the relative step size to | |
| use for numerical approximation of the jacobian. The absolute step | |
| size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, | |
| possibly adjusted to fit into the bounds. For ``jac='3-point'`` | |
| the sign of `h` is ignored. If None (default) then step is selected | |
| automatically. | |
| hess : {callable, '2-point', '3-point', 'cs', None} | |
| Computes the Hessian matrix. If it is callable, it should return the | |
| Hessian matrix: | |
| ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)`` | |
| Alternatively, the keywords {'2-point', '3-point', 'cs'} select a | |
| finite difference scheme for numerical estimation. | |
| Whenever the gradient is estimated via finite-differences, the Hessian | |
| cannot be estimated with options {'2-point', '3-point', 'cs'} and needs | |
| to be estimated using one of the quasi-Newton strategies. | |
| Returns | |
| ------- | |
| sf : ScalarFunction | |
| """ | |
| if callable(jac): | |
| grad = jac | |
| elif jac in FD_METHODS: | |
| # epsilon is set to None so that ScalarFunction is made to use | |
| # rel_step | |
| epsilon = None | |
| grad = jac | |
| else: | |
| # default (jac is None) is to do 2-point finite differences with | |
| # absolute step size. ScalarFunction has to be provided an | |
| # epsilon value that is not None to use absolute steps. This is | |
| # normally the case from most _minimize* methods. | |
| grad = '2-point' | |
| epsilon = epsilon | |
| if hess is None: | |
| # ScalarFunction requires something for hess, so we give a dummy | |
| # implementation here if nothing is provided, return a value of None | |
| # so that downstream minimisers halt. The results of `fun.hess` | |
| # should not be used. | |
| def hess(x, *args): | |
| return None | |
| if bounds is None: | |
| bounds = (-np.inf, np.inf) | |
| # ScalarFunction caches. Reuse of fun(x) during grad | |
| # calculation reduces overall function evaluations. | |
| sf = ScalarFunction(fun, x0, args, grad, hess, | |
| finite_diff_rel_step, bounds, epsilon=epsilon) | |
| return sf | |
| def _clip_x_for_func(func, bounds): | |
| # ensures that x values sent to func are clipped to bounds | |
| # this is used as a mitigation for gh11403, slsqp/tnc sometimes | |
| # suggest a move that is outside the limits by 1 or 2 ULP. This | |
| # unclean fix makes sure x is strictly within bounds. | |
| def eval(x): | |
| x = _check_clip_x(x, bounds) | |
| return func(x) | |
| return eval | |
| def _check_clip_x(x, bounds): | |
| if (x < bounds[0]).any() or (x > bounds[1]).any(): | |
| warnings.warn("Values in x were outside bounds during a " | |
| "minimize step, clipping to bounds", | |
| RuntimeWarning, stacklevel=3) | |
| x = np.clip(x, bounds[0], bounds[1]) | |
| return x | |
| return x | |
| def rosen(x): | |
| """ | |
| The Rosenbrock function. | |
| The function computed is:: | |
| sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0) | |
| Parameters | |
| ---------- | |
| x : array_like | |
| 1-D array of points at which the Rosenbrock function is to be computed. | |
| Returns | |
| ------- | |
| f : float | |
| The value of the Rosenbrock function. | |
| See Also | |
| -------- | |
| rosen_der, rosen_hess, rosen_hess_prod | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.optimize import rosen | |
| >>> X = 0.1 * np.arange(10) | |
| >>> rosen(X) | |
| 76.56 | |
| For higher-dimensional input ``rosen`` broadcasts. | |
| In the following example, we use this to plot a 2D landscape. | |
| Note that ``rosen_hess`` does not broadcast in this manner. | |
| >>> import matplotlib.pyplot as plt | |
| >>> from mpl_toolkits.mplot3d import Axes3D | |
| >>> x = np.linspace(-1, 1, 50) | |
| >>> X, Y = np.meshgrid(x, x) | |
| >>> ax = plt.subplot(111, projection='3d') | |
| >>> ax.plot_surface(X, Y, rosen([X, Y])) | |
| >>> plt.show() | |
| """ | |
| x = asarray(x) | |
| r = np.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0, | |
| axis=0) | |
| return r | |
| def rosen_der(x): | |
| """ | |
| The derivative (i.e. gradient) of the Rosenbrock function. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| 1-D array of points at which the derivative is to be computed. | |
| Returns | |
| ------- | |
| rosen_der : (N,) ndarray | |
| The gradient of the Rosenbrock function at `x`. | |
| See Also | |
| -------- | |
| rosen, rosen_hess, rosen_hess_prod | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.optimize import rosen_der | |
| >>> X = 0.1 * np.arange(9) | |
| >>> rosen_der(X) | |
| array([ -2. , 10.6, 15.6, 13.4, 6.4, -3. , -12.4, -19.4, 62. ]) | |
| """ | |
| x = asarray(x) | |
| xm = x[1:-1] | |
| xm_m1 = x[:-2] | |
| xm_p1 = x[2:] | |
| der = np.zeros_like(x) | |
| der[1:-1] = (200 * (xm - xm_m1**2) - | |
| 400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm)) | |
| der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0]) | |
| der[-1] = 200 * (x[-1] - x[-2]**2) | |
| return der | |
| def rosen_hess(x): | |
| """ | |
| The Hessian matrix of the Rosenbrock function. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| 1-D array of points at which the Hessian matrix is to be computed. | |
| Returns | |
| ------- | |
| rosen_hess : ndarray | |
| The Hessian matrix of the Rosenbrock function at `x`. | |
| See Also | |
| -------- | |
| rosen, rosen_der, rosen_hess_prod | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.optimize import rosen_hess | |
| >>> X = 0.1 * np.arange(4) | |
| >>> rosen_hess(X) | |
| array([[-38., 0., 0., 0.], | |
| [ 0., 134., -40., 0.], | |
| [ 0., -40., 130., -80.], | |
| [ 0., 0., -80., 200.]]) | |
| """ | |
| x = atleast_1d(x) | |
| H = np.diag(-400 * x[:-1], 1) - np.diag(400 * x[:-1], -1) | |
| diagonal = np.zeros(len(x), dtype=x.dtype) | |
| diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2 | |
| diagonal[-1] = 200 | |
| diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:] | |
| H = H + np.diag(diagonal) | |
| return H | |
| def rosen_hess_prod(x, p): | |
| """ | |
| Product of the Hessian matrix of the Rosenbrock function with a vector. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| 1-D array of points at which the Hessian matrix is to be computed. | |
| p : array_like | |
| 1-D array, the vector to be multiplied by the Hessian matrix. | |
| Returns | |
| ------- | |
| rosen_hess_prod : ndarray | |
| The Hessian matrix of the Rosenbrock function at `x` multiplied | |
| by the vector `p`. | |
| See Also | |
| -------- | |
| rosen, rosen_der, rosen_hess | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.optimize import rosen_hess_prod | |
| >>> X = 0.1 * np.arange(9) | |
| >>> p = 0.5 * np.arange(9) | |
| >>> rosen_hess_prod(X, p) | |
| array([ -0., 27., -10., -95., -192., -265., -278., -195., -180.]) | |
| """ | |
| x = atleast_1d(x) | |
| Hp = np.zeros(len(x), dtype=x.dtype) | |
| Hp[0] = (1200 * x[0]**2 - 400 * x[1] + 2) * p[0] - 400 * x[0] * p[1] | |
| Hp[1:-1] = (-400 * x[:-2] * p[:-2] + | |
| (202 + 1200 * x[1:-1]**2 - 400 * x[2:]) * p[1:-1] - | |
| 400 * x[1:-1] * p[2:]) | |
| Hp[-1] = -400 * x[-2] * p[-2] + 200*p[-1] | |
| return Hp | |
| def _wrap_scalar_function(function, args): | |
| # wraps a minimizer function to count number of evaluations | |
| # and to easily provide an args kwd. | |
| ncalls = [0] | |
| if function is None: | |
| return ncalls, None | |
| def function_wrapper(x, *wrapper_args): | |
| ncalls[0] += 1 | |
| # A copy of x is sent to the user function (gh13740) | |
| fx = function(np.copy(x), *(wrapper_args + args)) | |
| # Ideally, we'd like to a have a true scalar returned from f(x). For | |
| # backwards-compatibility, also allow np.array([1.3]), np.array([[1.3]]) etc. | |
| if not np.isscalar(fx): | |
| try: | |
| fx = np.asarray(fx).item() | |
| except (TypeError, ValueError) as e: | |
| raise ValueError("The user-provided objective function " | |
| "must return a scalar value.") from e | |
| return fx | |
| return ncalls, function_wrapper | |
| class _MaxFuncCallError(RuntimeError): | |
| pass | |
| def _wrap_scalar_function_maxfun_validation(function, args, maxfun): | |
| # wraps a minimizer function to count number of evaluations | |
| # and to easily provide an args kwd. | |
| ncalls = [0] | |
| if function is None: | |
| return ncalls, None | |
| def function_wrapper(x, *wrapper_args): | |
| if ncalls[0] >= maxfun: | |
| raise _MaxFuncCallError("Too many function calls") | |
| ncalls[0] += 1 | |
| # A copy of x is sent to the user function (gh13740) | |
| fx = function(np.copy(x), *(wrapper_args + args)) | |
| # Ideally, we'd like to a have a true scalar returned from f(x). For | |
| # backwards-compatibility, also allow np.array([1.3]), | |
| # np.array([[1.3]]) etc. | |
| if not np.isscalar(fx): | |
| try: | |
| fx = np.asarray(fx).item() | |
| except (TypeError, ValueError) as e: | |
| raise ValueError("The user-provided objective function " | |
| "must return a scalar value.") from e | |
| return fx | |
| return ncalls, function_wrapper | |
| def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None, | |
| full_output=0, disp=1, retall=0, callback=None, initial_simplex=None): | |
| """ | |
| Minimize a function using the downhill simplex algorithm. | |
| This algorithm only uses function values, not derivatives or second | |
| derivatives. | |
| Parameters | |
| ---------- | |
| func : callable func(x,*args) | |
| The objective function to be minimized. | |
| x0 : ndarray | |
| Initial guess. | |
| args : tuple, optional | |
| Extra arguments passed to func, i.e., ``f(x,*args)``. | |
| xtol : float, optional | |
| Absolute error in xopt between iterations that is acceptable for | |
| convergence. | |
| ftol : number, optional | |
| Absolute error in func(xopt) between iterations that is acceptable for | |
| convergence. | |
| maxiter : int, optional | |
| Maximum number of iterations to perform. | |
| maxfun : number, optional | |
| Maximum number of function evaluations to make. | |
| full_output : bool, optional | |
| Set to True if fopt and warnflag outputs are desired. | |
| disp : bool, optional | |
| Set to True to print convergence messages. | |
| retall : bool, optional | |
| Set to True to return list of solutions at each iteration. | |
| callback : callable, optional | |
| Called after each iteration, as callback(xk), where xk is the | |
| current parameter vector. | |
| initial_simplex : array_like of shape (N + 1, N), optional | |
| Initial simplex. If given, overrides `x0`. | |
| ``initial_simplex[j,:]`` should contain the coordinates of | |
| the jth vertex of the ``N+1`` vertices in the simplex, where | |
| ``N`` is the dimension. | |
| Returns | |
| ------- | |
| xopt : ndarray | |
| Parameter that minimizes function. | |
| fopt : float | |
| Value of function at minimum: ``fopt = func(xopt)``. | |
| iter : int | |
| Number of iterations performed. | |
| funcalls : int | |
| Number of function calls made. | |
| warnflag : int | |
| 1 : Maximum number of function evaluations made. | |
| 2 : Maximum number of iterations reached. | |
| allvecs : list | |
| Solution at each iteration. | |
| See also | |
| -------- | |
| minimize: Interface to minimization algorithms for multivariate | |
| functions. See the 'Nelder-Mead' `method` in particular. | |
| Notes | |
| ----- | |
| Uses a Nelder-Mead simplex algorithm to find the minimum of function of | |
| one or more variables. | |
| This algorithm has a long history of successful use in applications. | |
| But it will usually be slower than an algorithm that uses first or | |
| second derivative information. In practice, it can have poor | |
| performance in high-dimensional problems and is not robust to | |
| minimizing complicated functions. Additionally, there currently is no | |
| complete theory describing when the algorithm will successfully | |
| converge to the minimum, or how fast it will if it does. Both the ftol and | |
| xtol criteria must be met for convergence. | |
| Examples | |
| -------- | |
| >>> def f(x): | |
| ... return x**2 | |
| >>> from scipy import optimize | |
| >>> minimum = optimize.fmin(f, 1) | |
| Optimization terminated successfully. | |
| Current function value: 0.000000 | |
| Iterations: 17 | |
| Function evaluations: 34 | |
| >>> minimum[0] | |
| -8.8817841970012523e-16 | |
| References | |
| ---------- | |
| .. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function | |
| minimization", The Computer Journal, 7, pp. 308-313 | |
| .. [2] Wright, M.H. (1996), "Direct Search Methods: Once Scorned, Now | |
| Respectable", in Numerical Analysis 1995, Proceedings of the | |
| 1995 Dundee Biennial Conference in Numerical Analysis, D.F. | |
| Griffiths and G.A. Watson (Eds.), Addison Wesley Longman, | |
| Harlow, UK, pp. 191-208. | |
| """ | |
| opts = {'xatol': xtol, | |
| 'fatol': ftol, | |
| 'maxiter': maxiter, | |
| 'maxfev': maxfun, | |
| 'disp': disp, | |
| 'return_all': retall, | |
| 'initial_simplex': initial_simplex} | |
| callback = _wrap_callback(callback) | |
| res = _minimize_neldermead(func, x0, args, callback=callback, **opts) | |
| if full_output: | |
| retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status'] | |
| if retall: | |
| retlist += (res['allvecs'], ) | |
| return retlist | |
| else: | |
| if retall: | |
| return res['x'], res['allvecs'] | |
| else: | |
| return res['x'] | |
| def _minimize_neldermead(func, x0, args=(), callback=None, | |
| maxiter=None, maxfev=None, disp=False, | |
| return_all=False, initial_simplex=None, | |
| xatol=1e-4, fatol=1e-4, adaptive=False, bounds=None, | |
| **unknown_options): | |
| """ | |
| Minimization of scalar function of one or more variables using the | |
| Nelder-Mead algorithm. | |
| Options | |
| ------- | |
| disp : bool | |
| Set to True to print convergence messages. | |
| maxiter, maxfev : int | |
| Maximum allowed number of iterations and function evaluations. | |
| Will default to ``N*200``, where ``N`` is the number of | |
| variables, if neither `maxiter` or `maxfev` is set. If both | |
| `maxiter` and `maxfev` are set, minimization will stop at the | |
| first reached. | |
| return_all : bool, optional | |
| Set to True to return a list of the best solution at each of the | |
| iterations. | |
| initial_simplex : array_like of shape (N + 1, N) | |
| Initial simplex. If given, overrides `x0`. | |
| ``initial_simplex[j,:]`` should contain the coordinates of | |
| the jth vertex of the ``N+1`` vertices in the simplex, where | |
| ``N`` is the dimension. | |
| xatol : float, optional | |
| Absolute error in xopt between iterations that is acceptable for | |
| convergence. | |
| fatol : number, optional | |
| Absolute error in func(xopt) between iterations that is acceptable for | |
| convergence. | |
| adaptive : bool, optional | |
| Adapt algorithm parameters to dimensionality of problem. Useful for | |
| high-dimensional minimization [1]_. | |
| bounds : sequence or `Bounds`, optional | |
| Bounds on variables. There are two ways to specify the bounds: | |
| 1. Instance of `Bounds` class. | |
| 2. Sequence of ``(min, max)`` pairs for each element in `x`. None | |
| is used to specify no bound. | |
| Note that this just clips all vertices in simplex based on | |
| the bounds. | |
| References | |
| ---------- | |
| .. [1] Gao, F. and Han, L. | |
| Implementing the Nelder-Mead simplex algorithm with adaptive | |
| parameters. 2012. Computational Optimization and Applications. | |
| 51:1, pp. 259-277 | |
| """ | |
| _check_unknown_options(unknown_options) | |
| maxfun = maxfev | |
| retall = return_all | |
| x0 = np.atleast_1d(x0).flatten() | |
| dtype = x0.dtype if np.issubdtype(x0.dtype, np.inexact) else np.float64 | |
| x0 = np.asarray(x0, dtype=dtype) | |
| if adaptive: | |
| dim = float(len(x0)) | |
| rho = 1 | |
| chi = 1 + 2/dim | |
| psi = 0.75 - 1/(2*dim) | |
| sigma = 1 - 1/dim | |
| else: | |
| rho = 1 | |
| chi = 2 | |
| psi = 0.5 | |
| sigma = 0.5 | |
| nonzdelt = 0.05 | |
| zdelt = 0.00025 | |
| if bounds is not None: | |
| lower_bound, upper_bound = bounds.lb, bounds.ub | |
| # check bounds | |
| if (lower_bound > upper_bound).any(): | |
| raise ValueError("Nelder Mead - one of the lower bounds " | |
| "is greater than an upper bound.", | |
| stacklevel=3) | |
| if np.any(lower_bound > x0) or np.any(x0 > upper_bound): | |
| warnings.warn("Initial guess is not within the specified bounds", | |
| OptimizeWarning, stacklevel=3) | |
| if bounds is not None: | |
| x0 = np.clip(x0, lower_bound, upper_bound) | |
| if initial_simplex is None: | |
| N = len(x0) | |
| sim = np.empty((N + 1, N), dtype=x0.dtype) | |
| sim[0] = x0 | |
| for k in range(N): | |
| y = np.array(x0, copy=True) | |
| if y[k] != 0: | |
| y[k] = (1 + nonzdelt)*y[k] | |
| else: | |
| y[k] = zdelt | |
| sim[k + 1] = y | |
| else: | |
| sim = np.atleast_2d(initial_simplex).copy() | |
| dtype = sim.dtype if np.issubdtype(sim.dtype, np.inexact) else np.float64 | |
| sim = np.asarray(sim, dtype=dtype) | |
| if sim.ndim != 2 or sim.shape[0] != sim.shape[1] + 1: | |
| raise ValueError("`initial_simplex` should be an array of shape (N+1,N)") | |
| if len(x0) != sim.shape[1]: | |
| raise ValueError("Size of `initial_simplex` is not consistent with `x0`") | |
| N = sim.shape[1] | |
| if retall: | |
| allvecs = [sim[0]] | |
| # If neither are set, then set both to default | |
| if maxiter is None and maxfun is None: | |
| maxiter = N * 200 | |
| maxfun = N * 200 | |
| elif maxiter is None: | |
| # Convert remaining Nones, to np.inf, unless the other is np.inf, in | |
| # which case use the default to avoid unbounded iteration | |
| if maxfun == np.inf: | |
| maxiter = N * 200 | |
| else: | |
| maxiter = np.inf | |
| elif maxfun is None: | |
| if maxiter == np.inf: | |
| maxfun = N * 200 | |
| else: | |
| maxfun = np.inf | |
| if bounds is not None: | |
| # The default simplex construction may make all entries (for a given | |
| # parameter) greater than an upper bound if x0 is very close to the | |
| # upper bound. If one simply clips the simplex to the bounds this could | |
| # make the simplex entries degenerate. If that occurs reflect into the | |
| # interior. | |
| msk = sim > upper_bound | |
| # reflect into the interior | |
| sim = np.where(msk, 2*upper_bound - sim, sim) | |
| # but make sure the reflection is no less than the lower_bound | |
| sim = np.clip(sim, lower_bound, upper_bound) | |
| one2np1 = list(range(1, N + 1)) | |
| fsim = np.full((N + 1,), np.inf, dtype=float) | |
| fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun) | |
| try: | |
| for k in range(N + 1): | |
| fsim[k] = func(sim[k]) | |
| except _MaxFuncCallError: | |
| pass | |
| finally: | |
| ind = np.argsort(fsim) | |
| sim = np.take(sim, ind, 0) | |
| fsim = np.take(fsim, ind, 0) | |
| ind = np.argsort(fsim) | |
| fsim = np.take(fsim, ind, 0) | |
| # sort so sim[0,:] has the lowest function value | |
| sim = np.take(sim, ind, 0) | |
| iterations = 1 | |
| while (fcalls[0] < maxfun and iterations < maxiter): | |
| try: | |
| if (np.max(np.ravel(np.abs(sim[1:] - sim[0]))) <= xatol and | |
| np.max(np.abs(fsim[0] - fsim[1:])) <= fatol): | |
| break | |
| xbar = np.add.reduce(sim[:-1], 0) / N | |
| xr = (1 + rho) * xbar - rho * sim[-1] | |
| if bounds is not None: | |
| xr = np.clip(xr, lower_bound, upper_bound) | |
| fxr = func(xr) | |
| doshrink = 0 | |
| if fxr < fsim[0]: | |
| xe = (1 + rho * chi) * xbar - rho * chi * sim[-1] | |
| if bounds is not None: | |
| xe = np.clip(xe, lower_bound, upper_bound) | |
| fxe = func(xe) | |
| if fxe < fxr: | |
| sim[-1] = xe | |
| fsim[-1] = fxe | |
| else: | |
| sim[-1] = xr | |
| fsim[-1] = fxr | |
| else: # fsim[0] <= fxr | |
| if fxr < fsim[-2]: | |
| sim[-1] = xr | |
| fsim[-1] = fxr | |
| else: # fxr >= fsim[-2] | |
| # Perform contraction | |
| if fxr < fsim[-1]: | |
| xc = (1 + psi * rho) * xbar - psi * rho * sim[-1] | |
| if bounds is not None: | |
| xc = np.clip(xc, lower_bound, upper_bound) | |
| fxc = func(xc) | |
| if fxc <= fxr: | |
| sim[-1] = xc | |
| fsim[-1] = fxc | |
| else: | |
| doshrink = 1 | |
| else: | |
| # Perform an inside contraction | |
| xcc = (1 - psi) * xbar + psi * sim[-1] | |
| if bounds is not None: | |
| xcc = np.clip(xcc, lower_bound, upper_bound) | |
| fxcc = func(xcc) | |
| if fxcc < fsim[-1]: | |
| sim[-1] = xcc | |
| fsim[-1] = fxcc | |
| else: | |
| doshrink = 1 | |
| if doshrink: | |
| for j in one2np1: | |
| sim[j] = sim[0] + sigma * (sim[j] - sim[0]) | |
| if bounds is not None: | |
| sim[j] = np.clip( | |
| sim[j], lower_bound, upper_bound) | |
| fsim[j] = func(sim[j]) | |
| iterations += 1 | |
| except _MaxFuncCallError: | |
| pass | |
| finally: | |
| ind = np.argsort(fsim) | |
| sim = np.take(sim, ind, 0) | |
| fsim = np.take(fsim, ind, 0) | |
| if retall: | |
| allvecs.append(sim[0]) | |
| intermediate_result = OptimizeResult(x=sim[0], fun=fsim[0]) | |
| if _call_callback_maybe_halt(callback, intermediate_result): | |
| break | |
| x = sim[0] | |
| fval = np.min(fsim) | |
| warnflag = 0 | |
| if fcalls[0] >= maxfun: | |
| warnflag = 1 | |
| msg = _status_message['maxfev'] | |
| if disp: | |
| warnings.warn(msg, RuntimeWarning, stacklevel=3) | |
| elif iterations >= maxiter: | |
| warnflag = 2 | |
| msg = _status_message['maxiter'] | |
| if disp: | |
| warnings.warn(msg, RuntimeWarning, stacklevel=3) | |
| else: | |
| msg = _status_message['success'] | |
| if disp: | |
| print(msg) | |
| print(" Current function value: %f" % fval) | |
| print(" Iterations: %d" % iterations) | |
| print(" Function evaluations: %d" % fcalls[0]) | |
| result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0], | |
| status=warnflag, success=(warnflag == 0), | |
| message=msg, x=x, final_simplex=(sim, fsim)) | |
| if retall: | |
| result['allvecs'] = allvecs | |
| return result | |
| def approx_fprime(xk, f, epsilon=_epsilon, *args): | |
| """Finite difference approximation of the derivatives of a | |
| scalar or vector-valued function. | |
| If a function maps from :math:`R^n` to :math:`R^m`, its derivatives form | |
| an m-by-n matrix | |
| called the Jacobian, where an element :math:`(i, j)` is a partial | |
| derivative of f[i] with respect to ``xk[j]``. | |
| Parameters | |
| ---------- | |
| xk : array_like | |
| The coordinate vector at which to determine the gradient of `f`. | |
| f : callable | |
| Function of which to estimate the derivatives of. Has the signature | |
| ``f(xk, *args)`` where `xk` is the argument in the form of a 1-D array | |
| and `args` is a tuple of any additional fixed parameters needed to | |
| completely specify the function. The argument `xk` passed to this | |
| function is an ndarray of shape (n,) (never a scalar even if n=1). | |
| It must return a 1-D array_like of shape (m,) or a scalar. | |
| .. versionchanged:: 1.9.0 | |
| `f` is now able to return a 1-D array-like, with the :math:`(m, n)` | |
| Jacobian being estimated. | |
| epsilon : {float, array_like}, optional | |
| Increment to `xk` to use for determining the function gradient. | |
| If a scalar, uses the same finite difference delta for all partial | |
| derivatives. If an array, should contain one value per element of | |
| `xk`. Defaults to ``sqrt(np.finfo(float).eps)``, which is approximately | |
| 1.49e-08. | |
| \\*args : args, optional | |
| Any other arguments that are to be passed to `f`. | |
| Returns | |
| ------- | |
| jac : ndarray | |
| The partial derivatives of `f` to `xk`. | |
| See Also | |
| -------- | |
| check_grad : Check correctness of gradient function against approx_fprime. | |
| Notes | |
| ----- | |
| The function gradient is determined by the forward finite difference | |
| formula:: | |
| f(xk[i] + epsilon[i]) - f(xk[i]) | |
| f'[i] = --------------------------------- | |
| epsilon[i] | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy import optimize | |
| >>> def func(x, c0, c1): | |
| ... "Coordinate vector `x` should be an array of size two." | |
| ... return c0 * x[0]**2 + c1*x[1]**2 | |
| >>> x = np.ones(2) | |
| >>> c0, c1 = (1, 200) | |
| >>> eps = np.sqrt(np.finfo(float).eps) | |
| >>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1) | |
| array([ 2. , 400.00004198]) | |
| """ | |
| xk = np.asarray(xk, float) | |
| f0 = f(xk, *args) | |
| return approx_derivative(f, xk, method='2-point', abs_step=epsilon, | |
| args=args, f0=f0) | |
| def check_grad(func, grad, x0, *args, epsilon=_epsilon, | |
| direction='all', seed=None): | |
| """Check the correctness of a gradient function by comparing it against a | |
| (forward) finite-difference approximation of the gradient. | |
| Parameters | |
| ---------- | |
| func : callable ``func(x0, *args)`` | |
| Function whose derivative is to be checked. | |
| grad : callable ``grad(x0, *args)`` | |
| Jacobian of `func`. | |
| x0 : ndarray | |
| Points to check `grad` against forward difference approximation of grad | |
| using `func`. | |
| args : \\*args, optional | |
| Extra arguments passed to `func` and `grad`. | |
| epsilon : float, optional | |
| Step size used for the finite difference approximation. It defaults to | |
| ``sqrt(np.finfo(float).eps)``, which is approximately 1.49e-08. | |
| direction : str, optional | |
| If set to ``'random'``, then gradients along a random vector | |
| are used to check `grad` against forward difference approximation | |
| using `func`. By default it is ``'all'``, in which case, all | |
| the one hot direction vectors are considered to check `grad`. | |
| If `func` is a vector valued function then only ``'all'`` can be used. | |
| seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional | |
| If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
| singleton is used. | |
| If `seed` is an int, a new ``RandomState`` instance is used, | |
| seeded with `seed`. | |
| If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
| that instance is used. | |
| Specify `seed` for reproducing the return value from this function. | |
| The random numbers generated with this seed affect the random vector | |
| along which gradients are computed to check ``grad``. Note that `seed` | |
| is only used when `direction` argument is set to `'random'`. | |
| Returns | |
| ------- | |
| err : float | |
| The square root of the sum of squares (i.e., the 2-norm) of the | |
| difference between ``grad(x0, *args)`` and the finite difference | |
| approximation of `grad` using func at the points `x0`. | |
| See Also | |
| -------- | |
| approx_fprime | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> def func(x): | |
| ... return x[0]**2 - 0.5 * x[1]**3 | |
| >>> def grad(x): | |
| ... return [2 * x[0], -1.5 * x[1]**2] | |
| >>> from scipy.optimize import check_grad | |
| >>> check_grad(func, grad, [1.5, -1.5]) | |
| 2.9802322387695312e-08 # may vary | |
| >>> rng = np.random.default_rng() | |
| >>> check_grad(func, grad, [1.5, -1.5], | |
| ... direction='random', seed=rng) | |
| 2.9802322387695312e-08 | |
| """ | |
| step = epsilon | |
| x0 = np.asarray(x0) | |
| def g(w, func, x0, v, *args): | |
| return func(x0 + w*v, *args) | |
| if direction == 'random': | |
| _grad = np.asanyarray(grad(x0, *args)) | |
| if _grad.ndim > 1: | |
| raise ValueError("'random' can only be used with scalar valued" | |
| " func") | |
| random_state = check_random_state(seed) | |
| v = random_state.normal(0, 1, size=(x0.shape)) | |
| _args = (func, x0, v) + args | |
| _func = g | |
| vars = np.zeros((1,)) | |
| analytical_grad = np.dot(_grad, v) | |
| elif direction == 'all': | |
| _args = args | |
| _func = func | |
| vars = x0 | |
| analytical_grad = grad(x0, *args) | |
| else: | |
| raise ValueError(f"{direction} is not a valid string for " | |
| "``direction`` argument") | |
| return np.sqrt(np.sum(np.abs( | |
| (analytical_grad - approx_fprime(vars, _func, step, *_args))**2 | |
| ))) | |
| def approx_fhess_p(x0, p, fprime, epsilon, *args): | |
| # calculate fprime(x0) first, as this may be cached by ScalarFunction | |
| f1 = fprime(*((x0,) + args)) | |
| f2 = fprime(*((x0 + epsilon*p,) + args)) | |
| return (f2 - f1) / epsilon | |
| class _LineSearchError(RuntimeError): | |
| pass | |
| def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, | |
| **kwargs): | |
| """ | |
| Same as line_search_wolfe1, but fall back to line_search_wolfe2 if | |
| suitable step length is not found, and raise an exception if a | |
| suitable step length is not found. | |
| Raises | |
| ------ | |
| _LineSearchError | |
| If no suitable step size is found | |
| """ | |
| extra_condition = kwargs.pop('extra_condition', None) | |
| ret = line_search_wolfe1(f, fprime, xk, pk, gfk, | |
| old_fval, old_old_fval, | |
| **kwargs) | |
| if ret[0] is not None and extra_condition is not None: | |
| xp1 = xk + ret[0] * pk | |
| if not extra_condition(ret[0], xp1, ret[3], ret[5]): | |
| # Reject step if extra_condition fails | |
| ret = (None,) | |
| if ret[0] is None: | |
| # line search failed: try different one. | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter('ignore', LineSearchWarning) | |
| kwargs2 = {} | |
| for key in ('c1', 'c2', 'amax'): | |
| if key in kwargs: | |
| kwargs2[key] = kwargs[key] | |
| ret = line_search_wolfe2(f, fprime, xk, pk, gfk, | |
| old_fval, old_old_fval, | |
| extra_condition=extra_condition, | |
| **kwargs2) | |
| if ret[0] is None: | |
| raise _LineSearchError() | |
| return ret | |
| def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf, | |
| epsilon=_epsilon, maxiter=None, full_output=0, disp=1, | |
| retall=0, callback=None, xrtol=0, c1=1e-4, c2=0.9, | |
| hess_inv0=None): | |
| """ | |
| Minimize a function using the BFGS algorithm. | |
| Parameters | |
| ---------- | |
| f : callable ``f(x,*args)`` | |
| Objective function to be minimized. | |
| x0 : ndarray | |
| Initial guess, shape (n,) | |
| fprime : callable ``f'(x,*args)``, optional | |
| Gradient of f. | |
| args : tuple, optional | |
| Extra arguments passed to f and fprime. | |
| gtol : float, optional | |
| Terminate successfully if gradient norm is less than `gtol` | |
| norm : float, optional | |
| Order of norm (Inf is max, -Inf is min) | |
| epsilon : int or ndarray, optional | |
| If `fprime` is approximated, use this value for the step size. | |
| callback : callable, optional | |
| An optional user-supplied function to call after each | |
| iteration. Called as ``callback(xk)``, where ``xk`` is the | |
| current parameter vector. | |
| maxiter : int, optional | |
| Maximum number of iterations to perform. | |
| full_output : bool, optional | |
| If True, return ``fopt``, ``func_calls``, ``grad_calls``, and | |
| ``warnflag`` in addition to ``xopt``. | |
| disp : bool, optional | |
| Print convergence message if True. | |
| retall : bool, optional | |
| Return a list of results at each iteration if True. | |
| xrtol : float, default: 0 | |
| Relative tolerance for `x`. Terminate successfully if step | |
| size is less than ``xk * xrtol`` where ``xk`` is the current | |
| parameter vector. | |
| c1 : float, default: 1e-4 | |
| Parameter for Armijo condition rule. | |
| c2 : float, default: 0.9 | |
| Parameter for curvature condition rule. | |
| hess_inv0 : None or ndarray, optional`` | |
| Initial inverse hessian estimate, shape (n, n). If None (default) then | |
| the identity matrix is used. | |
| Returns | |
| ------- | |
| xopt : ndarray | |
| Parameters which minimize f, i.e., ``f(xopt) == fopt``. | |
| fopt : float | |
| Minimum value. | |
| gopt : ndarray | |
| Value of gradient at minimum, f'(xopt), which should be near 0. | |
| Bopt : ndarray | |
| Value of 1/f''(xopt), i.e., the inverse Hessian matrix. | |
| func_calls : int | |
| Number of function_calls made. | |
| grad_calls : int | |
| Number of gradient calls made. | |
| warnflag : integer | |
| 1 : Maximum number of iterations exceeded. | |
| 2 : Gradient and/or function calls not changing. | |
| 3 : NaN result encountered. | |
| allvecs : list | |
| The value of `xopt` at each iteration. Only returned if `retall` is | |
| True. | |
| Notes | |
| ----- | |
| Optimize the function, `f`, whose gradient is given by `fprime` | |
| using the quasi-Newton method of Broyden, Fletcher, Goldfarb, | |
| and Shanno (BFGS). | |
| Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
| See Also | |
| -------- | |
| minimize: Interface to minimization algorithms for multivariate | |
| functions. See ``method='BFGS'`` in particular. | |
| References | |
| ---------- | |
| Wright, and Nocedal 'Numerical Optimization', 1999, p. 198. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.optimize import fmin_bfgs | |
| >>> def quadratic_cost(x, Q): | |
| ... return x @ Q @ x | |
| ... | |
| >>> x0 = np.array([-3, -4]) | |
| >>> cost_weight = np.diag([1., 10.]) | |
| >>> # Note that a trailing comma is necessary for a tuple with single element | |
| >>> fmin_bfgs(quadratic_cost, x0, args=(cost_weight,)) | |
| Optimization terminated successfully. | |
| Current function value: 0.000000 | |
| Iterations: 7 # may vary | |
| Function evaluations: 24 # may vary | |
| Gradient evaluations: 8 # may vary | |
| array([ 2.85169950e-06, -4.61820139e-07]) | |
| >>> def quadratic_cost_grad(x, Q): | |
| ... return 2 * Q @ x | |
| ... | |
| >>> fmin_bfgs(quadratic_cost, x0, quadratic_cost_grad, args=(cost_weight,)) | |
| Optimization terminated successfully. | |
| Current function value: 0.000000 | |
| Iterations: 7 | |
| Function evaluations: 8 | |
| Gradient evaluations: 8 | |
| array([ 2.85916637e-06, -4.54371951e-07]) | |
| """ | |
| opts = {'gtol': gtol, | |
| 'norm': norm, | |
| 'eps': epsilon, | |
| 'disp': disp, | |
| 'maxiter': maxiter, | |
| 'return_all': retall, | |
| 'xrtol': xrtol, | |
| 'c1': c1, | |
| 'c2': c2, | |
| 'hess_inv0': hess_inv0} | |
| callback = _wrap_callback(callback) | |
| res = _minimize_bfgs(f, x0, args, fprime, callback=callback, **opts) | |
| if full_output: | |
| retlist = (res['x'], res['fun'], res['jac'], res['hess_inv'], | |
| res['nfev'], res['njev'], res['status']) | |
| if retall: | |
| retlist += (res['allvecs'], ) | |
| return retlist | |
| else: | |
| if retall: | |
| return res['x'], res['allvecs'] | |
| else: | |
| return res['x'] | |
| def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None, | |
| gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None, | |
| disp=False, return_all=False, finite_diff_rel_step=None, | |
| xrtol=0, c1=1e-4, c2=0.9, | |
| hess_inv0=None, **unknown_options): | |
| """ | |
| Minimization of scalar function of one or more variables using the | |
| BFGS algorithm. | |
| Options | |
| ------- | |
| disp : bool | |
| Set to True to print convergence messages. | |
| maxiter : int | |
| Maximum number of iterations to perform. | |
| gtol : float | |
| Terminate successfully if gradient norm is less than `gtol`. | |
| norm : float | |
| Order of norm (Inf is max, -Inf is min). | |
| eps : float or ndarray | |
| If `jac is None` the absolute step size used for numerical | |
| approximation of the jacobian via forward differences. | |
| return_all : bool, optional | |
| Set to True to return a list of the best solution at each of the | |
| iterations. | |
| finite_diff_rel_step : None or array_like, optional | |
| If `jac in ['2-point', '3-point', 'cs']` the relative step size to | |
| use for numerical approximation of the jacobian. The absolute step | |
| size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, | |
| possibly adjusted to fit into the bounds. For ``jac='3-point'`` | |
| the sign of `h` is ignored. If None (default) then step is selected | |
| automatically. | |
| xrtol : float, default: 0 | |
| Relative tolerance for `x`. Terminate successfully if step size is | |
| less than ``xk * xrtol`` where ``xk`` is the current parameter vector. | |
| c1 : float, default: 1e-4 | |
| Parameter for Armijo condition rule. | |
| c2 : float, default: 0.9 | |
| Parameter for curvature condition rule. | |
| hess_inv0 : None or ndarray, optional | |
| Initial inverse hessian estimate, shape (n, n). If None (default) then | |
| the identity matrix is used. | |
| Notes | |
| ----- | |
| Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
| If minimization doesn't complete successfully, with an error message of | |
| ``Desired error not necessarily achieved due to precision loss``, then | |
| consider setting `gtol` to a higher value. This precision loss typically | |
| occurs when the (finite difference) numerical differentiation cannot provide | |
| sufficient precision to satisfy the `gtol` termination criterion. | |
| This can happen when working in single precision and a callable jac is not | |
| provided. For single precision problems a `gtol` of 1e-3 seems to work. | |
| """ | |
| _check_unknown_options(unknown_options) | |
| _check_positive_definite(hess_inv0) | |
| retall = return_all | |
| x0 = asarray(x0).flatten() | |
| if x0.ndim == 0: | |
| x0.shape = (1,) | |
| if maxiter is None: | |
| maxiter = len(x0) * 200 | |
| sf = _prepare_scalar_function(fun, x0, jac, args=args, epsilon=eps, | |
| finite_diff_rel_step=finite_diff_rel_step) | |
| f = sf.fun | |
| myfprime = sf.grad | |
| old_fval = f(x0) | |
| gfk = myfprime(x0) | |
| k = 0 | |
| N = len(x0) | |
| I = np.eye(N, dtype=int) | |
| Hk = I if hess_inv0 is None else hess_inv0 | |
| # Sets the initial step guess to dx ~ 1 | |
| old_old_fval = old_fval + np.linalg.norm(gfk) / 2 | |
| xk = x0 | |
| if retall: | |
| allvecs = [x0] | |
| warnflag = 0 | |
| gnorm = vecnorm(gfk, ord=norm) | |
| while (gnorm > gtol) and (k < maxiter): | |
| pk = -np.dot(Hk, gfk) | |
| try: | |
| alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ | |
| _line_search_wolfe12(f, myfprime, xk, pk, gfk, | |
| old_fval, old_old_fval, amin=1e-100, | |
| amax=1e100, c1=c1, c2=c2) | |
| except _LineSearchError: | |
| # Line search failed to find a better solution. | |
| warnflag = 2 | |
| break | |
| sk = alpha_k * pk | |
| xkp1 = xk + sk | |
| if retall: | |
| allvecs.append(xkp1) | |
| xk = xkp1 | |
| if gfkp1 is None: | |
| gfkp1 = myfprime(xkp1) | |
| yk = gfkp1 - gfk | |
| gfk = gfkp1 | |
| k += 1 | |
| intermediate_result = OptimizeResult(x=xk, fun=old_fval) | |
| if _call_callback_maybe_halt(callback, intermediate_result): | |
| break | |
| gnorm = vecnorm(gfk, ord=norm) | |
| if (gnorm <= gtol): | |
| break | |
| # See Chapter 5 in P.E. Frandsen, K. Jonasson, H.B. Nielsen, | |
| # O. Tingleff: "Unconstrained Optimization", IMM, DTU. 1999. | |
| # These notes are available here: | |
| # http://www2.imm.dtu.dk/documents/ftp/publlec.html | |
| if (alpha_k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))): | |
| break | |
| if not np.isfinite(old_fval): | |
| # We correctly found +-Inf as optimal value, or something went | |
| # wrong. | |
| warnflag = 2 | |
| break | |
| rhok_inv = np.dot(yk, sk) | |
| # this was handled in numeric, let it remains for more safety | |
| # Cryptic comment above is preserved for posterity. Future reader: | |
| # consider change to condition below proposed in gh-1261/gh-17345. | |
| if rhok_inv == 0.: | |
| rhok = 1000.0 | |
| if disp: | |
| msg = "Divide-by-zero encountered: rhok assumed large" | |
| _print_success_message_or_warn(True, msg) | |
| else: | |
| rhok = 1. / rhok_inv | |
| A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok | |
| A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok | |
| Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * | |
| sk[np.newaxis, :]) | |
| fval = old_fval | |
| if warnflag == 2: | |
| msg = _status_message['pr_loss'] | |
| elif k >= maxiter: | |
| warnflag = 1 | |
| msg = _status_message['maxiter'] | |
| elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any(): | |
| warnflag = 3 | |
| msg = _status_message['nan'] | |
| else: | |
| msg = _status_message['success'] | |
| if disp: | |
| _print_success_message_or_warn(warnflag, msg) | |
| print(" Current function value: %f" % fval) | |
| print(" Iterations: %d" % k) | |
| print(" Function evaluations: %d" % sf.nfev) | |
| print(" Gradient evaluations: %d" % sf.ngev) | |
| result = OptimizeResult(fun=fval, jac=gfk, hess_inv=Hk, nfev=sf.nfev, | |
| njev=sf.ngev, status=warnflag, | |
| success=(warnflag == 0), message=msg, x=xk, | |
| nit=k) | |
| if retall: | |
| result['allvecs'] = allvecs | |
| return result | |
| def _print_success_message_or_warn(warnflag, message, warntype=None): | |
| if not warnflag: | |
| print(message) | |
| else: | |
| warnings.warn(message, warntype or OptimizeWarning, stacklevel=3) | |
| def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf, | |
| epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, | |
| callback=None, c1=1e-4, c2=0.4): | |
| """ | |
| Minimize a function using a nonlinear conjugate gradient algorithm. | |
| Parameters | |
| ---------- | |
| f : callable, ``f(x, *args)`` | |
| Objective function to be minimized. Here `x` must be a 1-D array of | |
| the variables that are to be changed in the search for a minimum, and | |
| `args` are the other (fixed) parameters of `f`. | |
| x0 : ndarray | |
| A user-supplied initial estimate of `xopt`, the optimal value of `x`. | |
| It must be a 1-D array of values. | |
| fprime : callable, ``fprime(x, *args)``, optional | |
| A function that returns the gradient of `f` at `x`. Here `x` and `args` | |
| are as described above for `f`. The returned value must be a 1-D array. | |
| Defaults to None, in which case the gradient is approximated | |
| numerically (see `epsilon`, below). | |
| args : tuple, optional | |
| Parameter values passed to `f` and `fprime`. Must be supplied whenever | |
| additional fixed parameters are needed to completely specify the | |
| functions `f` and `fprime`. | |
| gtol : float, optional | |
| Stop when the norm of the gradient is less than `gtol`. | |
| norm : float, optional | |
| Order to use for the norm of the gradient | |
| (``-np.inf`` is min, ``np.inf`` is max). | |
| epsilon : float or ndarray, optional | |
| Step size(s) to use when `fprime` is approximated numerically. Can be a | |
| scalar or a 1-D array. Defaults to ``sqrt(eps)``, with eps the | |
| floating point machine precision. Usually ``sqrt(eps)`` is about | |
| 1.5e-8. | |
| maxiter : int, optional | |
| Maximum number of iterations to perform. Default is ``200 * len(x0)``. | |
| full_output : bool, optional | |
| If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in | |
| addition to `xopt`. See the Returns section below for additional | |
| information on optional return values. | |
| disp : bool, optional | |
| If True, return a convergence message, followed by `xopt`. | |
| retall : bool, optional | |
| If True, add to the returned values the results of each iteration. | |
| callback : callable, optional | |
| An optional user-supplied function, called after each iteration. | |
| Called as ``callback(xk)``, where ``xk`` is the current value of `x0`. | |
| c1 : float, default: 1e-4 | |
| Parameter for Armijo condition rule. | |
| c2 : float, default: 0.4 | |
| Parameter for curvature condition rule. | |
| Returns | |
| ------- | |
| xopt : ndarray | |
| Parameters which minimize f, i.e., ``f(xopt) == fopt``. | |
| fopt : float, optional | |
| Minimum value found, f(xopt). Only returned if `full_output` is True. | |
| func_calls : int, optional | |
| The number of function_calls made. Only returned if `full_output` | |
| is True. | |
| grad_calls : int, optional | |
| The number of gradient calls made. Only returned if `full_output` is | |
| True. | |
| warnflag : int, optional | |
| Integer value with warning status, only returned if `full_output` is | |
| True. | |
| 0 : Success. | |
| 1 : The maximum number of iterations was exceeded. | |
| 2 : Gradient and/or function calls were not changing. May indicate | |
| that precision was lost, i.e., the routine did not converge. | |
| 3 : NaN result encountered. | |
| allvecs : list of ndarray, optional | |
| List of arrays, containing the results at each iteration. | |
| Only returned if `retall` is True. | |
| See Also | |
| -------- | |
| minimize : common interface to all `scipy.optimize` algorithms for | |
| unconstrained and constrained minimization of multivariate | |
| functions. It provides an alternative way to call | |
| ``fmin_cg``, by specifying ``method='CG'``. | |
| Notes | |
| ----- | |
| This conjugate gradient algorithm is based on that of Polak and Ribiere | |
| [1]_. | |
| Conjugate gradient methods tend to work better when: | |
| 1. `f` has a unique global minimizing point, and no local minima or | |
| other stationary points, | |
| 2. `f` is, at least locally, reasonably well approximated by a | |
| quadratic function of the variables, | |
| 3. `f` is continuous and has a continuous gradient, | |
| 4. `fprime` is not too large, e.g., has a norm less than 1000, | |
| 5. The initial guess, `x0`, is reasonably close to `f` 's global | |
| minimizing point, `xopt`. | |
| Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
| References | |
| ---------- | |
| .. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122. | |
| Examples | |
| -------- | |
| Example 1: seek the minimum value of the expression | |
| ``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values | |
| of the parameters and an initial guess ``(u, v) = (0, 0)``. | |
| >>> import numpy as np | |
| >>> args = (2, 3, 7, 8, 9, 10) # parameter values | |
| >>> def f(x, *args): | |
| ... u, v = x | |
| ... a, b, c, d, e, f = args | |
| ... return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f | |
| >>> def gradf(x, *args): | |
| ... u, v = x | |
| ... a, b, c, d, e, f = args | |
| ... gu = 2*a*u + b*v + d # u-component of the gradient | |
| ... gv = b*u + 2*c*v + e # v-component of the gradient | |
| ... return np.asarray((gu, gv)) | |
| >>> x0 = np.asarray((0, 0)) # Initial guess. | |
| >>> from scipy import optimize | |
| >>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args) | |
| Optimization terminated successfully. | |
| Current function value: 1.617021 | |
| Iterations: 4 | |
| Function evaluations: 8 | |
| Gradient evaluations: 8 | |
| >>> res1 | |
| array([-1.80851064, -0.25531915]) | |
| Example 2: solve the same problem using the `minimize` function. | |
| (This `myopts` dictionary shows all of the available options, | |
| although in practice only non-default values would be needed. | |
| The returned value will be a dictionary.) | |
| >>> opts = {'maxiter' : None, # default value. | |
| ... 'disp' : True, # non-default value. | |
| ... 'gtol' : 1e-5, # default value. | |
| ... 'norm' : np.inf, # default value. | |
| ... 'eps' : 1.4901161193847656e-08} # default value. | |
| >>> res2 = optimize.minimize(f, x0, jac=gradf, args=args, | |
| ... method='CG', options=opts) | |
| Optimization terminated successfully. | |
| Current function value: 1.617021 | |
| Iterations: 4 | |
| Function evaluations: 8 | |
| Gradient evaluations: 8 | |
| >>> res2.x # minimum found | |
| array([-1.80851064, -0.25531915]) | |
| """ | |
| opts = {'gtol': gtol, | |
| 'norm': norm, | |
| 'eps': epsilon, | |
| 'disp': disp, | |
| 'maxiter': maxiter, | |
| 'return_all': retall} | |
| callback = _wrap_callback(callback) | |
| res = _minimize_cg(f, x0, args, fprime, callback=callback, c1=c1, c2=c2, | |
| **opts) | |
| if full_output: | |
| retlist = res['x'], res['fun'], res['nfev'], res['njev'], res['status'] | |
| if retall: | |
| retlist += (res['allvecs'], ) | |
| return retlist | |
| else: | |
| if retall: | |
| return res['x'], res['allvecs'] | |
| else: | |
| return res['x'] | |
| def _minimize_cg(fun, x0, args=(), jac=None, callback=None, | |
| gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None, | |
| disp=False, return_all=False, finite_diff_rel_step=None, | |
| c1=1e-4, c2=0.4, **unknown_options): | |
| """ | |
| Minimization of scalar function of one or more variables using the | |
| conjugate gradient algorithm. | |
| Options | |
| ------- | |
| disp : bool | |
| Set to True to print convergence messages. | |
| maxiter : int | |
| Maximum number of iterations to perform. | |
| gtol : float | |
| Gradient norm must be less than `gtol` before successful | |
| termination. | |
| norm : float | |
| Order of norm (Inf is max, -Inf is min). | |
| eps : float or ndarray | |
| If `jac is None` the absolute step size used for numerical | |
| approximation of the jacobian via forward differences. | |
| return_all : bool, optional | |
| Set to True to return a list of the best solution at each of the | |
| iterations. | |
| finite_diff_rel_step : None or array_like, optional | |
| If `jac in ['2-point', '3-point', 'cs']` the relative step size to | |
| use for numerical approximation of the jacobian. The absolute step | |
| size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, | |
| possibly adjusted to fit into the bounds. For ``jac='3-point'`` | |
| the sign of `h` is ignored. If None (default) then step is selected | |
| automatically. | |
| c1 : float, default: 1e-4 | |
| Parameter for Armijo condition rule. | |
| c2 : float, default: 0.4 | |
| Parameter for curvature condition rule. | |
| Notes | |
| ----- | |
| Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
| """ | |
| _check_unknown_options(unknown_options) | |
| retall = return_all | |
| x0 = asarray(x0).flatten() | |
| if maxiter is None: | |
| maxiter = len(x0) * 200 | |
| sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps, | |
| finite_diff_rel_step=finite_diff_rel_step) | |
| f = sf.fun | |
| myfprime = sf.grad | |
| old_fval = f(x0) | |
| gfk = myfprime(x0) | |
| k = 0 | |
| xk = x0 | |
| # Sets the initial step guess to dx ~ 1 | |
| old_old_fval = old_fval + np.linalg.norm(gfk) / 2 | |
| if retall: | |
| allvecs = [xk] | |
| warnflag = 0 | |
| pk = -gfk | |
| gnorm = vecnorm(gfk, ord=norm) | |
| sigma_3 = 0.01 | |
| while (gnorm > gtol) and (k < maxiter): | |
| deltak = np.dot(gfk, gfk) | |
| cached_step = [None] | |
| def polak_ribiere_powell_step(alpha, gfkp1=None): | |
| xkp1 = xk + alpha * pk | |
| if gfkp1 is None: | |
| gfkp1 = myfprime(xkp1) | |
| yk = gfkp1 - gfk | |
| beta_k = max(0, np.dot(yk, gfkp1) / deltak) | |
| pkp1 = -gfkp1 + beta_k * pk | |
| gnorm = vecnorm(gfkp1, ord=norm) | |
| return (alpha, xkp1, pkp1, gfkp1, gnorm) | |
| def descent_condition(alpha, xkp1, fp1, gfkp1): | |
| # Polak-Ribiere+ needs an explicit check of a sufficient | |
| # descent condition, which is not guaranteed by strong Wolfe. | |
| # | |
| # See Gilbert & Nocedal, "Global convergence properties of | |
| # conjugate gradient methods for optimization", | |
| # SIAM J. Optimization 2, 21 (1992). | |
| cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1) | |
| alpha, xk, pk, gfk, gnorm = cached_step | |
| # Accept step if it leads to convergence. | |
| if gnorm <= gtol: | |
| return True | |
| # Accept step if sufficient descent condition applies. | |
| return np.dot(pk, gfk) <= -sigma_3 * np.dot(gfk, gfk) | |
| try: | |
| alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ | |
| _line_search_wolfe12(f, myfprime, xk, pk, gfk, old_fval, | |
| old_old_fval, c1=c1, c2=c2, amin=1e-100, | |
| amax=1e100, extra_condition=descent_condition) | |
| except _LineSearchError: | |
| # Line search failed to find a better solution. | |
| warnflag = 2 | |
| break | |
| # Reuse already computed results if possible | |
| if alpha_k == cached_step[0]: | |
| alpha_k, xk, pk, gfk, gnorm = cached_step | |
| else: | |
| alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1) | |
| if retall: | |
| allvecs.append(xk) | |
| k += 1 | |
| intermediate_result = OptimizeResult(x=xk, fun=old_fval) | |
| if _call_callback_maybe_halt(callback, intermediate_result): | |
| break | |
| fval = old_fval | |
| if warnflag == 2: | |
| msg = _status_message['pr_loss'] | |
| elif k >= maxiter: | |
| warnflag = 1 | |
| msg = _status_message['maxiter'] | |
| elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any(): | |
| warnflag = 3 | |
| msg = _status_message['nan'] | |
| else: | |
| msg = _status_message['success'] | |
| if disp: | |
| _print_success_message_or_warn(warnflag, msg) | |
| print(" Current function value: %f" % fval) | |
| print(" Iterations: %d" % k) | |
| print(" Function evaluations: %d" % sf.nfev) | |
| print(" Gradient evaluations: %d" % sf.ngev) | |
| result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev, | |
| njev=sf.ngev, status=warnflag, | |
| success=(warnflag == 0), message=msg, x=xk, | |
| nit=k) | |
| if retall: | |
| result['allvecs'] = allvecs | |
| return result | |
| def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5, | |
| epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, | |
| callback=None, c1=1e-4, c2=0.9): | |
| """ | |
| Unconstrained minimization of a function using the Newton-CG method. | |
| Parameters | |
| ---------- | |
| f : callable ``f(x, *args)`` | |
| Objective function to be minimized. | |
| x0 : ndarray | |
| Initial guess. | |
| fprime : callable ``f'(x, *args)`` | |
| Gradient of f. | |
| fhess_p : callable ``fhess_p(x, p, *args)``, optional | |
| Function which computes the Hessian of f times an | |
| arbitrary vector, p. | |
| fhess : callable ``fhess(x, *args)``, optional | |
| Function to compute the Hessian matrix of f. | |
| args : tuple, optional | |
| Extra arguments passed to f, fprime, fhess_p, and fhess | |
| (the same set of extra arguments is supplied to all of | |
| these functions). | |
| epsilon : float or ndarray, optional | |
| If fhess is approximated, use this value for the step size. | |
| callback : callable, optional | |
| An optional user-supplied function which is called after | |
| each iteration. Called as callback(xk), where xk is the | |
| current parameter vector. | |
| avextol : float, optional | |
| Convergence is assumed when the average relative error in | |
| the minimizer falls below this amount. | |
| maxiter : int, optional | |
| Maximum number of iterations to perform. | |
| full_output : bool, optional | |
| If True, return the optional outputs. | |
| disp : bool, optional | |
| If True, print convergence message. | |
| retall : bool, optional | |
| If True, return a list of results at each iteration. | |
| c1 : float, default: 1e-4 | |
| Parameter for Armijo condition rule. | |
| c2 : float, default: 0.9 | |
| Parameter for curvature condition rule | |
| Returns | |
| ------- | |
| xopt : ndarray | |
| Parameters which minimize f, i.e., ``f(xopt) == fopt``. | |
| fopt : float | |
| Value of the function at xopt, i.e., ``fopt = f(xopt)``. | |
| fcalls : int | |
| Number of function calls made. | |
| gcalls : int | |
| Number of gradient calls made. | |
| hcalls : int | |
| Number of Hessian calls made. | |
| warnflag : int | |
| Warnings generated by the algorithm. | |
| 1 : Maximum number of iterations exceeded. | |
| 2 : Line search failure (precision loss). | |
| 3 : NaN result encountered. | |
| allvecs : list | |
| The result at each iteration, if retall is True (see below). | |
| See also | |
| -------- | |
| minimize: Interface to minimization algorithms for multivariate | |
| functions. See the 'Newton-CG' `method` in particular. | |
| Notes | |
| ----- | |
| Only one of `fhess_p` or `fhess` need to be given. If `fhess` | |
| is provided, then `fhess_p` will be ignored. If neither `fhess` | |
| nor `fhess_p` is provided, then the hessian product will be | |
| approximated using finite differences on `fprime`. `fhess_p` | |
| must compute the hessian times an arbitrary vector. If it is not | |
| given, finite-differences on `fprime` are used to compute | |
| it. | |
| Newton-CG methods are also called truncated Newton methods. This | |
| function differs from scipy.optimize.fmin_tnc because | |
| 1. scipy.optimize.fmin_ncg is written purely in Python using NumPy | |
| and scipy while scipy.optimize.fmin_tnc calls a C function. | |
| 2. scipy.optimize.fmin_ncg is only for unconstrained minimization | |
| while scipy.optimize.fmin_tnc is for unconstrained minimization | |
| or box constrained minimization. (Box constraints give | |
| lower and upper bounds for each variable separately.) | |
| Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
| References | |
| ---------- | |
| Wright & Nocedal, 'Numerical Optimization', 1999, p. 140. | |
| """ | |
| opts = {'xtol': avextol, | |
| 'eps': epsilon, | |
| 'maxiter': maxiter, | |
| 'disp': disp, | |
| 'return_all': retall} | |
| callback = _wrap_callback(callback) | |
| res = _minimize_newtoncg(f, x0, args, fprime, fhess, fhess_p, | |
| callback=callback, c1=c1, c2=c2, **opts) | |
| if full_output: | |
| retlist = (res['x'], res['fun'], res['nfev'], res['njev'], | |
| res['nhev'], res['status']) | |
| if retall: | |
| retlist += (res['allvecs'], ) | |
| return retlist | |
| else: | |
| if retall: | |
| return res['x'], res['allvecs'] | |
| else: | |
| return res['x'] | |
| def _minimize_newtoncg(fun, x0, args=(), jac=None, hess=None, hessp=None, | |
| callback=None, xtol=1e-5, eps=_epsilon, maxiter=None, | |
| disp=False, return_all=False, c1=1e-4, c2=0.9, | |
| **unknown_options): | |
| """ | |
| Minimization of scalar function of one or more variables using the | |
| Newton-CG algorithm. | |
| Note that the `jac` parameter (Jacobian) is required. | |
| Options | |
| ------- | |
| disp : bool | |
| Set to True to print convergence messages. | |
| xtol : float | |
| Average relative error in solution `xopt` acceptable for | |
| convergence. | |
| maxiter : int | |
| Maximum number of iterations to perform. | |
| eps : float or ndarray | |
| If `hessp` is approximated, use this value for the step size. | |
| return_all : bool, optional | |
| Set to True to return a list of the best solution at each of the | |
| iterations. | |
| c1 : float, default: 1e-4 | |
| Parameter for Armijo condition rule. | |
| c2 : float, default: 0.9 | |
| Parameter for curvature condition rule. | |
| Notes | |
| ----- | |
| Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
| """ | |
| _check_unknown_options(unknown_options) | |
| if jac is None: | |
| raise ValueError('Jacobian is required for Newton-CG method') | |
| fhess_p = hessp | |
| fhess = hess | |
| avextol = xtol | |
| epsilon = eps | |
| retall = return_all | |
| x0 = asarray(x0).flatten() | |
| # TODO: add hessp (callable or FD) to ScalarFunction? | |
| sf = _prepare_scalar_function( | |
| fun, x0, jac, args=args, epsilon=eps, hess=hess | |
| ) | |
| f = sf.fun | |
| fprime = sf.grad | |
| _h = sf.hess(x0) | |
| # Logic for hess/hessp | |
| # - If a callable(hess) is provided, then use that | |
| # - If hess is a FD_METHOD, or the output from hess(x) is a LinearOperator | |
| # then create a hessp function using those. | |
| # - If hess is None but you have callable(hessp) then use the hessp. | |
| # - If hess and hessp are None then approximate hessp using the grad/jac. | |
| if (hess in FD_METHODS or isinstance(_h, LinearOperator)): | |
| fhess = None | |
| def _hessp(x, p, *args): | |
| return sf.hess(x).dot(p) | |
| fhess_p = _hessp | |
| def terminate(warnflag, msg): | |
| if disp: | |
| _print_success_message_or_warn(warnflag, msg) | |
| print(" Current function value: %f" % old_fval) | |
| print(" Iterations: %d" % k) | |
| print(" Function evaluations: %d" % sf.nfev) | |
| print(" Gradient evaluations: %d" % sf.ngev) | |
| print(" Hessian evaluations: %d" % hcalls) | |
| fval = old_fval | |
| result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev, | |
| njev=sf.ngev, nhev=hcalls, status=warnflag, | |
| success=(warnflag == 0), message=msg, x=xk, | |
| nit=k) | |
| if retall: | |
| result['allvecs'] = allvecs | |
| return result | |
| hcalls = 0 | |
| if maxiter is None: | |
| maxiter = len(x0)*200 | |
| cg_maxiter = 20*len(x0) | |
| xtol = len(x0) * avextol | |
| # Make sure we enter the while loop. | |
| update_l1norm = np.finfo(float).max | |
| xk = np.copy(x0) | |
| if retall: | |
| allvecs = [xk] | |
| k = 0 | |
| gfk = None | |
| old_fval = f(x0) | |
| old_old_fval = None | |
| float64eps = np.finfo(np.float64).eps | |
| while update_l1norm > xtol: | |
| if k >= maxiter: | |
| msg = "Warning: " + _status_message['maxiter'] | |
| return terminate(1, msg) | |
| # Compute a search direction pk by applying the CG method to | |
| # del2 f(xk) p = - grad f(xk) starting from 0. | |
| b = -fprime(xk) | |
| maggrad = np.linalg.norm(b, ord=1) | |
| eta = min(0.5, math.sqrt(maggrad)) | |
| termcond = eta * maggrad | |
| xsupi = zeros(len(x0), dtype=x0.dtype) | |
| ri = -b | |
| psupi = -ri | |
| i = 0 | |
| dri0 = np.dot(ri, ri) | |
| if fhess is not None: # you want to compute hessian once. | |
| A = sf.hess(xk) | |
| hcalls += 1 | |
| for k2 in range(cg_maxiter): | |
| if np.add.reduce(np.abs(ri)) <= termcond: | |
| break | |
| if fhess is None: | |
| if fhess_p is None: | |
| Ap = approx_fhess_p(xk, psupi, fprime, epsilon) | |
| else: | |
| Ap = fhess_p(xk, psupi, *args) | |
| hcalls += 1 | |
| else: | |
| # hess was supplied as a callable or hessian update strategy, so | |
| # A is a dense numpy array or sparse matrix | |
| Ap = A.dot(psupi) | |
| # check curvature | |
| Ap = asarray(Ap).squeeze() # get rid of matrices... | |
| curv = np.dot(psupi, Ap) | |
| if 0 <= curv <= 3 * float64eps: | |
| break | |
| elif curv < 0: | |
| if (i > 0): | |
| break | |
| else: | |
| # fall back to steepest descent direction | |
| xsupi = dri0 / (-curv) * b | |
| break | |
| alphai = dri0 / curv | |
| xsupi += alphai * psupi | |
| ri += alphai * Ap | |
| dri1 = np.dot(ri, ri) | |
| betai = dri1 / dri0 | |
| psupi = -ri + betai * psupi | |
| i += 1 | |
| dri0 = dri1 # update np.dot(ri,ri) for next time. | |
| else: | |
| # curvature keeps increasing, bail out | |
| msg = ("Warning: CG iterations didn't converge. The Hessian is not " | |
| "positive definite.") | |
| return terminate(3, msg) | |
| pk = xsupi # search direction is solution to system. | |
| gfk = -b # gradient at xk | |
| try: | |
| alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \ | |
| _line_search_wolfe12(f, fprime, xk, pk, gfk, | |
| old_fval, old_old_fval, c1=c1, c2=c2) | |
| except _LineSearchError: | |
| # Line search failed to find a better solution. | |
| msg = "Warning: " + _status_message['pr_loss'] | |
| return terminate(2, msg) | |
| update = alphak * pk | |
| xk += update # upcast if necessary | |
| if retall: | |
| allvecs.append(xk) | |
| k += 1 | |
| intermediate_result = OptimizeResult(x=xk, fun=old_fval) | |
| if _call_callback_maybe_halt(callback, intermediate_result): | |
| return terminate(5, "") | |
| update_l1norm = np.linalg.norm(update, ord=1) | |
| else: | |
| if np.isnan(old_fval) or np.isnan(update_l1norm): | |
| return terminate(3, _status_message['nan']) | |
| msg = _status_message['success'] | |
| return terminate(0, msg) | |
| def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500, | |
| full_output=0, disp=1): | |
| """Bounded minimization for scalar functions. | |
| Parameters | |
| ---------- | |
| func : callable f(x,*args) | |
| Objective function to be minimized (must accept and return scalars). | |
| x1, x2 : float or array scalar | |
| Finite optimization bounds. | |
| args : tuple, optional | |
| Extra arguments passed to function. | |
| xtol : float, optional | |
| The convergence tolerance. | |
| maxfun : int, optional | |
| Maximum number of function evaluations allowed. | |
| full_output : bool, optional | |
| If True, return optional outputs. | |
| disp : int, optional | |
| If non-zero, print messages. | |
| 0 : no message printing. | |
| 1 : non-convergence notification messages only. | |
| 2 : print a message on convergence too. | |
| 3 : print iteration results. | |
| Returns | |
| ------- | |
| xopt : ndarray | |
| Parameters (over given interval) which minimize the | |
| objective function. | |
| fval : number | |
| (Optional output) The function value evaluated at the minimizer. | |
| ierr : int | |
| (Optional output) An error flag (0 if converged, 1 if maximum number of | |
| function calls reached). | |
| numfunc : int | |
| (Optional output) The number of function calls made. | |
| See also | |
| -------- | |
| minimize_scalar: Interface to minimization algorithms for scalar | |
| univariate functions. See the 'Bounded' `method` in particular. | |
| Notes | |
| ----- | |
| Finds a local minimizer of the scalar function `func` in the | |
| interval x1 < xopt < x2 using Brent's method. (See `brent` | |
| for auto-bracketing.) | |
| References | |
| ---------- | |
| .. [1] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods | |
| for Mathematical Computations." Prentice-Hall Series in Automatic | |
| Computation 259 (1977). | |
| .. [2] Brent, Richard P. Algorithms for Minimization Without Derivatives. | |
| Courier Corporation, 2013. | |
| Examples | |
| -------- | |
| `fminbound` finds the minimizer of the function in the given range. | |
| The following examples illustrate this. | |
| >>> from scipy import optimize | |
| >>> def f(x): | |
| ... return (x-1)**2 | |
| >>> minimizer = optimize.fminbound(f, -4, 4) | |
| >>> minimizer | |
| 1.0 | |
| >>> minimum = f(minimizer) | |
| >>> minimum | |
| 0.0 | |
| >>> res = optimize.fminbound(f, 3, 4, full_output=True) | |
| >>> minimizer, fval, ierr, numfunc = res | |
| >>> minimizer | |
| 3.000005960860986 | |
| >>> minimum = f(minimizer) | |
| >>> minimum, fval | |
| (4.000023843479476, 4.000023843479476) | |
| """ | |
| options = {'xatol': xtol, | |
| 'maxiter': maxfun, | |
| 'disp': disp} | |
| res = _minimize_scalar_bounded(func, (x1, x2), args, **options) | |
| if full_output: | |
| return res['x'], res['fun'], res['status'], res['nfev'] | |
| else: | |
| return res['x'] | |
| def _minimize_scalar_bounded(func, bounds, args=(), | |
| xatol=1e-5, maxiter=500, disp=0, | |
| **unknown_options): | |
| """ | |
| Options | |
| ------- | |
| maxiter : int | |
| Maximum number of iterations to perform. | |
| disp: int, optional | |
| If non-zero, print messages. | |
| 0 : no message printing. | |
| 1 : non-convergence notification messages only. | |
| 2 : print a message on convergence too. | |
| 3 : print iteration results. | |
| xatol : float | |
| Absolute error in solution `xopt` acceptable for convergence. | |
| """ | |
| _check_unknown_options(unknown_options) | |
| maxfun = maxiter | |
| # Test bounds are of correct form | |
| if len(bounds) != 2: | |
| raise ValueError('bounds must have two elements.') | |
| x1, x2 = bounds | |
| if not (is_finite_scalar(x1) and is_finite_scalar(x2)): | |
| raise ValueError("Optimization bounds must be finite scalars.") | |
| if x1 > x2: | |
| raise ValueError("The lower bound exceeds the upper bound.") | |
| flag = 0 | |
| header = ' Func-count x f(x) Procedure' | |
| step = ' initial' | |
| sqrt_eps = sqrt(2.2e-16) | |
| golden_mean = 0.5 * (3.0 - sqrt(5.0)) | |
| a, b = x1, x2 | |
| fulc = a + golden_mean * (b - a) | |
| nfc, xf = fulc, fulc | |
| rat = e = 0.0 | |
| x = xf | |
| fx = func(x, *args) | |
| num = 1 | |
| fmin_data = (1, xf, fx) | |
| fu = np.inf | |
| ffulc = fnfc = fx | |
| xm = 0.5 * (a + b) | |
| tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0 | |
| tol2 = 2.0 * tol1 | |
| if disp > 2: | |
| print(" ") | |
| print(header) | |
| print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) | |
| while (np.abs(xf - xm) > (tol2 - 0.5 * (b - a))): | |
| golden = 1 | |
| # Check for parabolic fit | |
| if np.abs(e) > tol1: | |
| golden = 0 | |
| r = (xf - nfc) * (fx - ffulc) | |
| q = (xf - fulc) * (fx - fnfc) | |
| p = (xf - fulc) * q - (xf - nfc) * r | |
| q = 2.0 * (q - r) | |
| if q > 0.0: | |
| p = -p | |
| q = np.abs(q) | |
| r = e | |
| e = rat | |
| # Check for acceptability of parabola | |
| if ((np.abs(p) < np.abs(0.5*q*r)) and (p > q*(a - xf)) and | |
| (p < q * (b - xf))): | |
| rat = (p + 0.0) / q | |
| x = xf + rat | |
| step = ' parabolic' | |
| if ((x - a) < tol2) or ((b - x) < tol2): | |
| si = np.sign(xm - xf) + ((xm - xf) == 0) | |
| rat = tol1 * si | |
| else: # do a golden-section step | |
| golden = 1 | |
| if golden: # do a golden-section step | |
| if xf >= xm: | |
| e = a - xf | |
| else: | |
| e = b - xf | |
| rat = golden_mean*e | |
| step = ' golden' | |
| si = np.sign(rat) + (rat == 0) | |
| x = xf + si * np.maximum(np.abs(rat), tol1) | |
| fu = func(x, *args) | |
| num += 1 | |
| fmin_data = (num, x, fu) | |
| if disp > 2: | |
| print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) | |
| if fu <= fx: | |
| if x >= xf: | |
| a = xf | |
| else: | |
| b = xf | |
| fulc, ffulc = nfc, fnfc | |
| nfc, fnfc = xf, fx | |
| xf, fx = x, fu | |
| else: | |
| if x < xf: | |
| a = x | |
| else: | |
| b = x | |
| if (fu <= fnfc) or (nfc == xf): | |
| fulc, ffulc = nfc, fnfc | |
| nfc, fnfc = x, fu | |
| elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc): | |
| fulc, ffulc = x, fu | |
| xm = 0.5 * (a + b) | |
| tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0 | |
| tol2 = 2.0 * tol1 | |
| if num >= maxfun: | |
| flag = 1 | |
| break | |
| if np.isnan(xf) or np.isnan(fx) or np.isnan(fu): | |
| flag = 2 | |
| fval = fx | |
| if disp > 0: | |
| _endprint(x, flag, fval, maxfun, xatol, disp) | |
| result = OptimizeResult(fun=fval, status=flag, success=(flag == 0), | |
| message={0: 'Solution found.', | |
| 1: 'Maximum number of function calls ' | |
| 'reached.', | |
| 2: _status_message['nan']}.get(flag, ''), | |
| x=xf, nfev=num, nit=num) | |
| return result | |
| class Brent: | |
| #need to rethink design of __init__ | |
| def __init__(self, func, args=(), tol=1.48e-8, maxiter=500, | |
| full_output=0, disp=0): | |
| self.func = func | |
| self.args = args | |
| self.tol = tol | |
| self.maxiter = maxiter | |
| self._mintol = 1.0e-11 | |
| self._cg = 0.3819660 | |
| self.xmin = None | |
| self.fval = None | |
| self.iter = 0 | |
| self.funcalls = 0 | |
| self.disp = disp | |
| # need to rethink design of set_bracket (new options, etc.) | |
| def set_bracket(self, brack=None): | |
| self.brack = brack | |
| def get_bracket_info(self): | |
| #set up | |
| func = self.func | |
| args = self.args | |
| brack = self.brack | |
| ### BEGIN core bracket_info code ### | |
| ### carefully DOCUMENT any CHANGES in core ## | |
| if brack is None: | |
| xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) | |
| elif len(brack) == 2: | |
| xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], | |
| xb=brack[1], args=args) | |
| elif len(brack) == 3: | |
| xa, xb, xc = brack | |
| if (xa > xc): # swap so xa < xc can be assumed | |
| xc, xa = xa, xc | |
| if not ((xa < xb) and (xb < xc)): | |
| raise ValueError( | |
| "Bracketing values (xa, xb, xc) do not" | |
| " fulfill this requirement: (xa < xb) and (xb < xc)" | |
| ) | |
| fa = func(*((xa,) + args)) | |
| fb = func(*((xb,) + args)) | |
| fc = func(*((xc,) + args)) | |
| if not ((fb < fa) and (fb < fc)): | |
| raise ValueError( | |
| "Bracketing values (xa, xb, xc) do not fulfill" | |
| " this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))" | |
| ) | |
| funcalls = 3 | |
| else: | |
| raise ValueError("Bracketing interval must be " | |
| "length 2 or 3 sequence.") | |
| ### END core bracket_info code ### | |
| return xa, xb, xc, fa, fb, fc, funcalls | |
| def optimize(self): | |
| # set up for optimization | |
| func = self.func | |
| xa, xb, xc, fa, fb, fc, funcalls = self.get_bracket_info() | |
| _mintol = self._mintol | |
| _cg = self._cg | |
| ################################# | |
| #BEGIN CORE ALGORITHM | |
| ################################# | |
| x = w = v = xb | |
| fw = fv = fx = fb | |
| if (xa < xc): | |
| a = xa | |
| b = xc | |
| else: | |
| a = xc | |
| b = xa | |
| deltax = 0.0 | |
| iter = 0 | |
| if self.disp > 2: | |
| print(" ") | |
| print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}") | |
| print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}") | |
| while (iter < self.maxiter): | |
| tol1 = self.tol * np.abs(x) + _mintol | |
| tol2 = 2.0 * tol1 | |
| xmid = 0.5 * (a + b) | |
| # check for convergence | |
| if np.abs(x - xmid) < (tol2 - 0.5 * (b - a)): | |
| break | |
| # XXX In the first iteration, rat is only bound in the true case | |
| # of this conditional. This used to cause an UnboundLocalError | |
| # (gh-4140). It should be set before the if (but to what?). | |
| if (np.abs(deltax) <= tol1): | |
| if (x >= xmid): | |
| deltax = a - x # do a golden section step | |
| else: | |
| deltax = b - x | |
| rat = _cg * deltax | |
| else: # do a parabolic step | |
| tmp1 = (x - w) * (fx - fv) | |
| tmp2 = (x - v) * (fx - fw) | |
| p = (x - v) * tmp2 - (x - w) * tmp1 | |
| tmp2 = 2.0 * (tmp2 - tmp1) | |
| if (tmp2 > 0.0): | |
| p = -p | |
| tmp2 = np.abs(tmp2) | |
| dx_temp = deltax | |
| deltax = rat | |
| # check parabolic fit | |
| if ((p > tmp2 * (a - x)) and (p < tmp2 * (b - x)) and | |
| (np.abs(p) < np.abs(0.5 * tmp2 * dx_temp))): | |
| rat = p * 1.0 / tmp2 # if parabolic step is useful. | |
| u = x + rat | |
| if ((u - a) < tol2 or (b - u) < tol2): | |
| if xmid - x >= 0: | |
| rat = tol1 | |
| else: | |
| rat = -tol1 | |
| else: | |
| if (x >= xmid): | |
| deltax = a - x # if it's not do a golden section step | |
| else: | |
| deltax = b - x | |
| rat = _cg * deltax | |
| if (np.abs(rat) < tol1): # update by at least tol1 | |
| if rat >= 0: | |
| u = x + tol1 | |
| else: | |
| u = x - tol1 | |
| else: | |
| u = x + rat | |
| fu = func(*((u,) + self.args)) # calculate new output value | |
| funcalls += 1 | |
| if (fu > fx): # if it's bigger than current | |
| if (u < x): | |
| a = u | |
| else: | |
| b = u | |
| if (fu <= fw) or (w == x): | |
| v = w | |
| w = u | |
| fv = fw | |
| fw = fu | |
| elif (fu <= fv) or (v == x) or (v == w): | |
| v = u | |
| fv = fu | |
| else: | |
| if (u >= x): | |
| a = x | |
| else: | |
| b = x | |
| v = w | |
| w = x | |
| x = u | |
| fv = fw | |
| fw = fx | |
| fx = fu | |
| if self.disp > 2: | |
| print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}") | |
| iter += 1 | |
| ################################# | |
| #END CORE ALGORITHM | |
| ################################# | |
| self.xmin = x | |
| self.fval = fx | |
| self.iter = iter | |
| self.funcalls = funcalls | |
| def get_result(self, full_output=False): | |
| if full_output: | |
| return self.xmin, self.fval, self.iter, self.funcalls | |
| else: | |
| return self.xmin | |
| def brent(func, args=(), brack=None, tol=1.48e-8, full_output=0, maxiter=500): | |
| """ | |
| Given a function of one variable and a possible bracket, return | |
| a local minimizer of the function isolated to a fractional precision | |
| of tol. | |
| Parameters | |
| ---------- | |
| func : callable f(x,*args) | |
| Objective function. | |
| args : tuple, optional | |
| Additional arguments (if present). | |
| brack : tuple, optional | |
| Either a triple ``(xa, xb, xc)`` satisfying ``xa < xb < xc`` and | |
| ``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair | |
| ``(xa, xb)`` to be used as initial points for a downhill bracket search | |
| (see `scipy.optimize.bracket`). | |
| The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``. | |
| tol : float, optional | |
| Relative error in solution `xopt` acceptable for convergence. | |
| full_output : bool, optional | |
| If True, return all output args (xmin, fval, iter, | |
| funcalls). | |
| maxiter : int, optional | |
| Maximum number of iterations in solution. | |
| Returns | |
| ------- | |
| xmin : ndarray | |
| Optimum point. | |
| fval : float | |
| (Optional output) Optimum function value. | |
| iter : int | |
| (Optional output) Number of iterations. | |
| funcalls : int | |
| (Optional output) Number of objective function evaluations made. | |
| See also | |
| -------- | |
| minimize_scalar: Interface to minimization algorithms for scalar | |
| univariate functions. See the 'Brent' `method` in particular. | |
| Notes | |
| ----- | |
| Uses inverse parabolic interpolation when possible to speed up | |
| convergence of golden section method. | |
| Does not ensure that the minimum lies in the range specified by | |
| `brack`. See `scipy.optimize.fminbound`. | |
| Examples | |
| -------- | |
| We illustrate the behaviour of the function when `brack` is of | |
| size 2 and 3 respectively. In the case where `brack` is of the | |
| form ``(xa, xb)``, we can see for the given values, the output does | |
| not necessarily lie in the range ``(xa, xb)``. | |
| >>> def f(x): | |
| ... return (x-1)**2 | |
| >>> from scipy import optimize | |
| >>> minimizer = optimize.brent(f, brack=(1, 2)) | |
| >>> minimizer | |
| 1 | |
| >>> res = optimize.brent(f, brack=(-1, 0.5, 2), full_output=True) | |
| >>> xmin, fval, iter, funcalls = res | |
| >>> f(xmin), fval | |
| (0.0, 0.0) | |
| """ | |
| options = {'xtol': tol, | |
| 'maxiter': maxiter} | |
| res = _minimize_scalar_brent(func, brack, args, **options) | |
| if full_output: | |
| return res['x'], res['fun'], res['nit'], res['nfev'] | |
| else: | |
| return res['x'] | |
| def _minimize_scalar_brent(func, brack=None, args=(), xtol=1.48e-8, | |
| maxiter=500, disp=0, | |
| **unknown_options): | |
| """ | |
| Options | |
| ------- | |
| maxiter : int | |
| Maximum number of iterations to perform. | |
| xtol : float | |
| Relative error in solution `xopt` acceptable for convergence. | |
| disp: int, optional | |
| If non-zero, print messages. | |
| 0 : no message printing. | |
| 1 : non-convergence notification messages only. | |
| 2 : print a message on convergence too. | |
| 3 : print iteration results. | |
| Notes | |
| ----- | |
| Uses inverse parabolic interpolation when possible to speed up | |
| convergence of golden section method. | |
| """ | |
| _check_unknown_options(unknown_options) | |
| tol = xtol | |
| if tol < 0: | |
| raise ValueError('tolerance should be >= 0, got %r' % tol) | |
| brent = Brent(func=func, args=args, tol=tol, | |
| full_output=True, maxiter=maxiter, disp=disp) | |
| brent.set_bracket(brack) | |
| brent.optimize() | |
| x, fval, nit, nfev = brent.get_result(full_output=True) | |
| success = nit < maxiter and not (np.isnan(x) or np.isnan(fval)) | |
| if success: | |
| message = ("\nOptimization terminated successfully;\n" | |
| "The returned value satisfies the termination criteria\n" | |
| f"(using xtol = {xtol} )") | |
| else: | |
| if nit >= maxiter: | |
| message = "\nMaximum number of iterations exceeded" | |
| if np.isnan(x) or np.isnan(fval): | |
| message = f"{_status_message['nan']}" | |
| if disp: | |
| _print_success_message_or_warn(not success, message) | |
| return OptimizeResult(fun=fval, x=x, nit=nit, nfev=nfev, | |
| success=success, message=message) | |
| def golden(func, args=(), brack=None, tol=_epsilon, | |
| full_output=0, maxiter=5000): | |
| """ | |
| Return the minimizer of a function of one variable using the golden section | |
| method. | |
| Given a function of one variable and a possible bracketing interval, | |
| return a minimizer of the function isolated to a fractional precision of | |
| tol. | |
| Parameters | |
| ---------- | |
| func : callable func(x,*args) | |
| Objective function to minimize. | |
| args : tuple, optional | |
| Additional arguments (if present), passed to func. | |
| brack : tuple, optional | |
| Either a triple ``(xa, xb, xc)`` where ``xa < xb < xc`` and | |
| ``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair (xa, xb) | |
| to be used as initial points for a downhill bracket search (see | |
| `scipy.optimize.bracket`). | |
| The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``. | |
| tol : float, optional | |
| x tolerance stop criterion | |
| full_output : bool, optional | |
| If True, return optional outputs. | |
| maxiter : int | |
| Maximum number of iterations to perform. | |
| Returns | |
| ------- | |
| xmin : ndarray | |
| Optimum point. | |
| fval : float | |
| (Optional output) Optimum function value. | |
| funcalls : int | |
| (Optional output) Number of objective function evaluations made. | |
| See also | |
| -------- | |
| minimize_scalar: Interface to minimization algorithms for scalar | |
| univariate functions. See the 'Golden' `method` in particular. | |
| Notes | |
| ----- | |
| Uses analog of bisection method to decrease the bracketed | |
| interval. | |
| Examples | |
| -------- | |
| We illustrate the behaviour of the function when `brack` is of | |
| size 2 and 3, respectively. In the case where `brack` is of the | |
| form (xa,xb), we can see for the given values, the output need | |
| not necessarily lie in the range ``(xa, xb)``. | |
| >>> def f(x): | |
| ... return (x-1)**2 | |
| >>> from scipy import optimize | |
| >>> minimizer = optimize.golden(f, brack=(1, 2)) | |
| >>> minimizer | |
| 1 | |
| >>> res = optimize.golden(f, brack=(-1, 0.5, 2), full_output=True) | |
| >>> xmin, fval, funcalls = res | |
| >>> f(xmin), fval | |
| (9.925165290385052e-18, 9.925165290385052e-18) | |
| """ | |
| options = {'xtol': tol, 'maxiter': maxiter} | |
| res = _minimize_scalar_golden(func, brack, args, **options) | |
| if full_output: | |
| return res['x'], res['fun'], res['nfev'] | |
| else: | |
| return res['x'] | |
| def _minimize_scalar_golden(func, brack=None, args=(), | |
| xtol=_epsilon, maxiter=5000, disp=0, | |
| **unknown_options): | |
| """ | |
| Options | |
| ------- | |
| xtol : float | |
| Relative error in solution `xopt` acceptable for convergence. | |
| maxiter : int | |
| Maximum number of iterations to perform. | |
| disp: int, optional | |
| If non-zero, print messages. | |
| 0 : no message printing. | |
| 1 : non-convergence notification messages only. | |
| 2 : print a message on convergence too. | |
| 3 : print iteration results. | |
| """ | |
| _check_unknown_options(unknown_options) | |
| tol = xtol | |
| if brack is None: | |
| xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) | |
| elif len(brack) == 2: | |
| xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], | |
| xb=brack[1], args=args) | |
| elif len(brack) == 3: | |
| xa, xb, xc = brack | |
| if (xa > xc): # swap so xa < xc can be assumed | |
| xc, xa = xa, xc | |
| if not ((xa < xb) and (xb < xc)): | |
| raise ValueError( | |
| "Bracketing values (xa, xb, xc) do not" | |
| " fulfill this requirement: (xa < xb) and (xb < xc)" | |
| ) | |
| fa = func(*((xa,) + args)) | |
| fb = func(*((xb,) + args)) | |
| fc = func(*((xc,) + args)) | |
| if not ((fb < fa) and (fb < fc)): | |
| raise ValueError( | |
| "Bracketing values (xa, xb, xc) do not fulfill" | |
| " this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))" | |
| ) | |
| funcalls = 3 | |
| else: | |
| raise ValueError("Bracketing interval must be length 2 or 3 sequence.") | |
| _gR = 0.61803399 # golden ratio conjugate: 2.0/(1.0+sqrt(5.0)) | |
| _gC = 1.0 - _gR | |
| x3 = xc | |
| x0 = xa | |
| if (np.abs(xc - xb) > np.abs(xb - xa)): | |
| x1 = xb | |
| x2 = xb + _gC * (xc - xb) | |
| else: | |
| x2 = xb | |
| x1 = xb - _gC * (xb - xa) | |
| f1 = func(*((x1,) + args)) | |
| f2 = func(*((x2,) + args)) | |
| funcalls += 2 | |
| nit = 0 | |
| if disp > 2: | |
| print(" ") | |
| print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}") | |
| for i in range(maxiter): | |
| if np.abs(x3 - x0) <= tol * (np.abs(x1) + np.abs(x2)): | |
| break | |
| if (f2 < f1): | |
| x0 = x1 | |
| x1 = x2 | |
| x2 = _gR * x1 + _gC * x3 | |
| f1 = f2 | |
| f2 = func(*((x2,) + args)) | |
| else: | |
| x3 = x2 | |
| x2 = x1 | |
| x1 = _gR * x2 + _gC * x0 | |
| f2 = f1 | |
| f1 = func(*((x1,) + args)) | |
| funcalls += 1 | |
| if disp > 2: | |
| if (f1 < f2): | |
| xmin, fval = x1, f1 | |
| else: | |
| xmin, fval = x2, f2 | |
| print(f"{funcalls:^12g} {xmin:^12.6g} {fval:^12.6g}") | |
| nit += 1 | |
| # end of iteration loop | |
| if (f1 < f2): | |
| xmin = x1 | |
| fval = f1 | |
| else: | |
| xmin = x2 | |
| fval = f2 | |
| success = nit < maxiter and not (np.isnan(fval) or np.isnan(xmin)) | |
| if success: | |
| message = ("\nOptimization terminated successfully;\n" | |
| "The returned value satisfies the termination criteria\n" | |
| f"(using xtol = {xtol} )") | |
| else: | |
| if nit >= maxiter: | |
| message = "\nMaximum number of iterations exceeded" | |
| if np.isnan(xmin) or np.isnan(fval): | |
| message = f"{_status_message['nan']}" | |
| if disp: | |
| _print_success_message_or_warn(not success, message) | |
| return OptimizeResult(fun=fval, nfev=funcalls, x=xmin, nit=nit, | |
| success=success, message=message) | |
| def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000): | |
| """ | |
| Bracket the minimum of a function. | |
| Given a function and distinct initial points, search in the | |
| downhill direction (as defined by the initial points) and return | |
| three points that bracket the minimum of the function. | |
| Parameters | |
| ---------- | |
| func : callable f(x,*args) | |
| Objective function to minimize. | |
| xa, xb : float, optional | |
| Initial points. Defaults `xa` to 0.0, and `xb` to 1.0. | |
| A local minimum need not be contained within this interval. | |
| args : tuple, optional | |
| Additional arguments (if present), passed to `func`. | |
| grow_limit : float, optional | |
| Maximum grow limit. Defaults to 110.0 | |
| maxiter : int, optional | |
| Maximum number of iterations to perform. Defaults to 1000. | |
| Returns | |
| ------- | |
| xa, xb, xc : float | |
| Final points of the bracket. | |
| fa, fb, fc : float | |
| Objective function values at the bracket points. | |
| funcalls : int | |
| Number of function evaluations made. | |
| Raises | |
| ------ | |
| BracketError | |
| If no valid bracket is found before the algorithm terminates. | |
| See notes for conditions of a valid bracket. | |
| Notes | |
| ----- | |
| The algorithm attempts to find three strictly ordered points (i.e. | |
| :math:`x_a < x_b < x_c` or :math:`x_c < x_b < x_a`) satisfying | |
| :math:`f(x_b) ≤ f(x_a)` and :math:`f(x_b) ≤ f(x_c)`, where one of the | |
| inequalities must be satistfied strictly and all :math:`x_i` must be | |
| finite. | |
| Examples | |
| -------- | |
| This function can find a downward convex region of a function: | |
| >>> import numpy as np | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.optimize import bracket | |
| >>> def f(x): | |
| ... return 10*x**2 + 3*x + 5 | |
| >>> x = np.linspace(-2, 2) | |
| >>> y = f(x) | |
| >>> init_xa, init_xb = 0.1, 1 | |
| >>> xa, xb, xc, fa, fb, fc, funcalls = bracket(f, xa=init_xa, xb=init_xb) | |
| >>> plt.axvline(x=init_xa, color="k", linestyle="--") | |
| >>> plt.axvline(x=init_xb, color="k", linestyle="--") | |
| >>> plt.plot(x, y, "-k") | |
| >>> plt.plot(xa, fa, "bx") | |
| >>> plt.plot(xb, fb, "rx") | |
| >>> plt.plot(xc, fc, "bx") | |
| >>> plt.show() | |
| Note that both initial points were to the right of the minimum, and the | |
| third point was found in the "downhill" direction: the direction | |
| in which the function appeared to be decreasing (to the left). | |
| The final points are strictly ordered, and the function value | |
| at the middle point is less than the function values at the endpoints; | |
| it follows that a minimum must lie within the bracket. | |
| """ | |
| _gold = 1.618034 # golden ratio: (1.0+sqrt(5.0))/2.0 | |
| _verysmall_num = 1e-21 | |
| # convert to numpy floats if not already | |
| xa, xb = np.asarray([xa, xb]) | |
| fa = func(*(xa,) + args) | |
| fb = func(*(xb,) + args) | |
| if (fa < fb): # Switch so fa > fb | |
| xa, xb = xb, xa | |
| fa, fb = fb, fa | |
| xc = xb + _gold * (xb - xa) | |
| fc = func(*((xc,) + args)) | |
| funcalls = 3 | |
| iter = 0 | |
| while (fc < fb): | |
| tmp1 = (xb - xa) * (fb - fc) | |
| tmp2 = (xb - xc) * (fb - fa) | |
| val = tmp2 - tmp1 | |
| if np.abs(val) < _verysmall_num: | |
| denom = 2.0 * _verysmall_num | |
| else: | |
| denom = 2.0 * val | |
| w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom | |
| wlim = xb + grow_limit * (xc - xb) | |
| msg = ("No valid bracket was found before the iteration limit was " | |
| "reached. Consider trying different initial points or " | |
| "increasing `maxiter`.") | |
| if iter > maxiter: | |
| raise RuntimeError(msg) | |
| iter += 1 | |
| if (w - xc) * (xb - w) > 0.0: | |
| fw = func(*((w,) + args)) | |
| funcalls += 1 | |
| if (fw < fc): | |
| xa = xb | |
| xb = w | |
| fa = fb | |
| fb = fw | |
| break | |
| elif (fw > fb): | |
| xc = w | |
| fc = fw | |
| break | |
| w = xc + _gold * (xc - xb) | |
| fw = func(*((w,) + args)) | |
| funcalls += 1 | |
| elif (w - wlim)*(wlim - xc) >= 0.0: | |
| w = wlim | |
| fw = func(*((w,) + args)) | |
| funcalls += 1 | |
| elif (w - wlim)*(xc - w) > 0.0: | |
| fw = func(*((w,) + args)) | |
| funcalls += 1 | |
| if (fw < fc): | |
| xb = xc | |
| xc = w | |
| w = xc + _gold * (xc - xb) | |
| fb = fc | |
| fc = fw | |
| fw = func(*((w,) + args)) | |
| funcalls += 1 | |
| else: | |
| w = xc + _gold * (xc - xb) | |
| fw = func(*((w,) + args)) | |
| funcalls += 1 | |
| xa = xb | |
| xb = xc | |
| xc = w | |
| fa = fb | |
| fb = fc | |
| fc = fw | |
| # three conditions for a valid bracket | |
| cond1 = (fb < fc and fb <= fa) or (fb < fa and fb <= fc) | |
| cond2 = (xa < xb < xc or xc < xb < xa) | |
| cond3 = np.isfinite(xa) and np.isfinite(xb) and np.isfinite(xc) | |
| msg = ("The algorithm terminated without finding a valid bracket. " | |
| "Consider trying different initial points.") | |
| if not (cond1 and cond2 and cond3): | |
| e = BracketError(msg) | |
| e.data = (xa, xb, xc, fa, fb, fc, funcalls) | |
| raise e | |
| return xa, xb, xc, fa, fb, fc, funcalls | |
| class BracketError(RuntimeError): | |
| pass | |
| def _recover_from_bracket_error(solver, fun, bracket, args, **options): | |
| # `bracket` was originally written without checking whether the resulting | |
| # bracket is valid. `brent` and `golden` built on top of it without | |
| # checking the returned bracket for validity, and their output can be | |
| # incorrect without warning/error if the original bracket is invalid. | |
| # gh-14858 noticed the problem, and the following is the desired | |
| # behavior: | |
| # - `scipy.optimize.bracket`, `scipy.optimize.brent`, and | |
| # `scipy.optimize.golden` should raise an error if the bracket is | |
| # invalid, as opposed to silently returning garbage | |
| # - `scipy.optimize.minimize_scalar` should return with `success=False` | |
| # and other information | |
| # The changes that would be required to achieve this the traditional | |
| # way (`return`ing all the required information from bracket all the way | |
| # up to `minimizer_scalar`) are extensive and invasive. (See a6aa40d.) | |
| # We can achieve the same thing by raising the error in `bracket`, but | |
| # storing the information needed by `minimize_scalar` in the error object, | |
| # and intercepting it here. | |
| try: | |
| res = solver(fun, bracket, args, **options) | |
| except BracketError as e: | |
| msg = str(e) | |
| xa, xb, xc, fa, fb, fc, funcalls = e.data | |
| xs, fs = [xa, xb, xc], [fa, fb, fc] | |
| if np.any(np.isnan([xs, fs])): | |
| x, fun = np.nan, np.nan | |
| else: | |
| imin = np.argmin(fs) | |
| x, fun = xs[imin], fs[imin] | |
| return OptimizeResult(fun=fun, nfev=funcalls, x=x, | |
| nit=0, success=False, message=msg) | |
| return res | |
| def _line_for_search(x0, alpha, lower_bound, upper_bound): | |
| """ | |
| Given a parameter vector ``x0`` with length ``n`` and a direction | |
| vector ``alpha`` with length ``n``, and lower and upper bounds on | |
| each of the ``n`` parameters, what are the bounds on a scalar | |
| ``l`` such that ``lower_bound <= x0 + alpha * l <= upper_bound``. | |
| Parameters | |
| ---------- | |
| x0 : np.array. | |
| The vector representing the current location. | |
| Note ``np.shape(x0) == (n,)``. | |
| alpha : np.array. | |
| The vector representing the direction. | |
| Note ``np.shape(alpha) == (n,)``. | |
| lower_bound : np.array. | |
| The lower bounds for each parameter in ``x0``. If the ``i``th | |
| parameter in ``x0`` is unbounded below, then ``lower_bound[i]`` | |
| should be ``-np.inf``. | |
| Note ``np.shape(lower_bound) == (n,)``. | |
| upper_bound : np.array. | |
| The upper bounds for each parameter in ``x0``. If the ``i``th | |
| parameter in ``x0`` is unbounded above, then ``upper_bound[i]`` | |
| should be ``np.inf``. | |
| Note ``np.shape(upper_bound) == (n,)``. | |
| Returns | |
| ------- | |
| res : tuple ``(lmin, lmax)`` | |
| The bounds for ``l`` such that | |
| ``lower_bound[i] <= x0[i] + alpha[i] * l <= upper_bound[i]`` | |
| for all ``i``. | |
| """ | |
| # get nonzero indices of alpha so we don't get any zero division errors. | |
| # alpha will not be all zero, since it is called from _linesearch_powell | |
| # where we have a check for this. | |
| nonzero, = alpha.nonzero() | |
| lower_bound, upper_bound = lower_bound[nonzero], upper_bound[nonzero] | |
| x0, alpha = x0[nonzero], alpha[nonzero] | |
| low = (lower_bound - x0) / alpha | |
| high = (upper_bound - x0) / alpha | |
| # positive and negative indices | |
| pos = alpha > 0 | |
| lmin_pos = np.where(pos, low, 0) | |
| lmin_neg = np.where(pos, 0, high) | |
| lmax_pos = np.where(pos, high, 0) | |
| lmax_neg = np.where(pos, 0, low) | |
| lmin = np.max(lmin_pos + lmin_neg) | |
| lmax = np.min(lmax_pos + lmax_neg) | |
| # if x0 is outside the bounds, then it is possible that there is | |
| # no way to get back in the bounds for the parameters being updated | |
| # with the current direction alpha. | |
| # when this happens, lmax < lmin. | |
| # If this is the case, then we can just return (0, 0) | |
| return (lmin, lmax) if lmax >= lmin else (0, 0) | |
| def _linesearch_powell(func, p, xi, tol=1e-3, | |
| lower_bound=None, upper_bound=None, fval=None): | |
| """Line-search algorithm using fminbound. | |
| Find the minimum of the function ``func(x0 + alpha*direc)``. | |
| lower_bound : np.array. | |
| The lower bounds for each parameter in ``x0``. If the ``i``th | |
| parameter in ``x0`` is unbounded below, then ``lower_bound[i]`` | |
| should be ``-np.inf``. | |
| Note ``np.shape(lower_bound) == (n,)``. | |
| upper_bound : np.array. | |
| The upper bounds for each parameter in ``x0``. If the ``i``th | |
| parameter in ``x0`` is unbounded above, then ``upper_bound[i]`` | |
| should be ``np.inf``. | |
| Note ``np.shape(upper_bound) == (n,)``. | |
| fval : number. | |
| ``fval`` is equal to ``func(p)``, the idea is just to avoid | |
| recomputing it so we can limit the ``fevals``. | |
| """ | |
| def myfunc(alpha): | |
| return func(p + alpha*xi) | |
| # if xi is zero, then don't optimize | |
| if not np.any(xi): | |
| return ((fval, p, xi) if fval is not None else (func(p), p, xi)) | |
| elif lower_bound is None and upper_bound is None: | |
| # non-bounded minimization | |
| res = _recover_from_bracket_error(_minimize_scalar_brent, | |
| myfunc, None, tuple(), xtol=tol) | |
| alpha_min, fret = res.x, res.fun | |
| xi = alpha_min * xi | |
| return squeeze(fret), p + xi, xi | |
| else: | |
| bound = _line_for_search(p, xi, lower_bound, upper_bound) | |
| if np.isneginf(bound[0]) and np.isposinf(bound[1]): | |
| # equivalent to unbounded | |
| return _linesearch_powell(func, p, xi, fval=fval, tol=tol) | |
| elif not np.isneginf(bound[0]) and not np.isposinf(bound[1]): | |
| # we can use a bounded scalar minimization | |
| res = _minimize_scalar_bounded(myfunc, bound, xatol=tol / 100) | |
| xi = res.x * xi | |
| return squeeze(res.fun), p + xi, xi | |
| else: | |
| # only bounded on one side. use the tangent function to convert | |
| # the infinity bound to a finite bound. The new bounded region | |
| # is a subregion of the region bounded by -np.pi/2 and np.pi/2. | |
| bound = np.arctan(bound[0]), np.arctan(bound[1]) | |
| res = _minimize_scalar_bounded( | |
| lambda x: myfunc(np.tan(x)), | |
| bound, | |
| xatol=tol / 100) | |
| xi = np.tan(res.x) * xi | |
| return squeeze(res.fun), p + xi, xi | |
| def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, | |
| maxfun=None, full_output=0, disp=1, retall=0, callback=None, | |
| direc=None): | |
| """ | |
| Minimize a function using modified Powell's method. | |
| This method only uses function values, not derivatives. | |
| Parameters | |
| ---------- | |
| func : callable f(x,*args) | |
| Objective function to be minimized. | |
| x0 : ndarray | |
| Initial guess. | |
| args : tuple, optional | |
| Extra arguments passed to func. | |
| xtol : float, optional | |
| Line-search error tolerance. | |
| ftol : float, optional | |
| Relative error in ``func(xopt)`` acceptable for convergence. | |
| maxiter : int, optional | |
| Maximum number of iterations to perform. | |
| maxfun : int, optional | |
| Maximum number of function evaluations to make. | |
| full_output : bool, optional | |
| If True, ``fopt``, ``xi``, ``direc``, ``iter``, ``funcalls``, and | |
| ``warnflag`` are returned. | |
| disp : bool, optional | |
| If True, print convergence messages. | |
| retall : bool, optional | |
| If True, return a list of the solution at each iteration. | |
| callback : callable, optional | |
| An optional user-supplied function, called after each | |
| iteration. Called as ``callback(xk)``, where ``xk`` is the | |
| current parameter vector. | |
| direc : ndarray, optional | |
| Initial fitting step and parameter order set as an (N, N) array, where N | |
| is the number of fitting parameters in `x0`. Defaults to step size 1.0 | |
| fitting all parameters simultaneously (``np.eye((N, N))``). To | |
| prevent initial consideration of values in a step or to change initial | |
| step size, set to 0 or desired step size in the Jth position in the Mth | |
| block, where J is the position in `x0` and M is the desired evaluation | |
| step, with steps being evaluated in index order. Step size and ordering | |
| will change freely as minimization proceeds. | |
| Returns | |
| ------- | |
| xopt : ndarray | |
| Parameter which minimizes `func`. | |
| fopt : number | |
| Value of function at minimum: ``fopt = func(xopt)``. | |
| direc : ndarray | |
| Current direction set. | |
| iter : int | |
| Number of iterations. | |
| funcalls : int | |
| Number of function calls made. | |
| warnflag : int | |
| Integer warning flag: | |
| 1 : Maximum number of function evaluations. | |
| 2 : Maximum number of iterations. | |
| 3 : NaN result encountered. | |
| 4 : The result is out of the provided bounds. | |
| allvecs : list | |
| List of solutions at each iteration. | |
| See also | |
| -------- | |
| minimize: Interface to unconstrained minimization algorithms for | |
| multivariate functions. See the 'Powell' method in particular. | |
| Notes | |
| ----- | |
| Uses a modification of Powell's method to find the minimum of | |
| a function of N variables. Powell's method is a conjugate | |
| direction method. | |
| The algorithm has two loops. The outer loop merely iterates over the inner | |
| loop. The inner loop minimizes over each current direction in the direction | |
| set. At the end of the inner loop, if certain conditions are met, the | |
| direction that gave the largest decrease is dropped and replaced with the | |
| difference between the current estimated x and the estimated x from the | |
| beginning of the inner-loop. | |
| The technical conditions for replacing the direction of greatest | |
| increase amount to checking that | |
| 1. No further gain can be made along the direction of greatest increase | |
| from that iteration. | |
| 2. The direction of greatest increase accounted for a large sufficient | |
| fraction of the decrease in the function value from that iteration of | |
| the inner loop. | |
| References | |
| ---------- | |
| Powell M.J.D. (1964) An efficient method for finding the minimum of a | |
| function of several variables without calculating derivatives, | |
| Computer Journal, 7 (2):155-162. | |
| Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.: | |
| Numerical Recipes (any edition), Cambridge University Press | |
| Examples | |
| -------- | |
| >>> def f(x): | |
| ... return x**2 | |
| >>> from scipy import optimize | |
| >>> minimum = optimize.fmin_powell(f, -1) | |
| Optimization terminated successfully. | |
| Current function value: 0.000000 | |
| Iterations: 2 | |
| Function evaluations: 16 | |
| >>> minimum | |
| array(0.0) | |
| """ | |
| opts = {'xtol': xtol, | |
| 'ftol': ftol, | |
| 'maxiter': maxiter, | |
| 'maxfev': maxfun, | |
| 'disp': disp, | |
| 'direc': direc, | |
| 'return_all': retall} | |
| callback = _wrap_callback(callback) | |
| res = _minimize_powell(func, x0, args, callback=callback, **opts) | |
| if full_output: | |
| retlist = (res['x'], res['fun'], res['direc'], res['nit'], | |
| res['nfev'], res['status']) | |
| if retall: | |
| retlist += (res['allvecs'], ) | |
| return retlist | |
| else: | |
| if retall: | |
| return res['x'], res['allvecs'] | |
| else: | |
| return res['x'] | |
| def _minimize_powell(func, x0, args=(), callback=None, bounds=None, | |
| xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None, | |
| disp=False, direc=None, return_all=False, | |
| **unknown_options): | |
| """ | |
| Minimization of scalar function of one or more variables using the | |
| modified Powell algorithm. | |
| Parameters | |
| ---------- | |
| fun : callable | |
| The objective function to be minimized. | |
| ``fun(x, *args) -> float`` | |
| where ``x`` is a 1-D array with shape (n,) and ``args`` | |
| is a tuple of the fixed parameters needed to completely | |
| specify the function. | |
| x0 : ndarray, shape (n,) | |
| Initial guess. Array of real elements of size (n,), | |
| where ``n`` is the number of independent variables. | |
| args : tuple, optional | |
| Extra arguments passed to the objective function and its | |
| derivatives (`fun`, `jac` and `hess` functions). | |
| method : str or callable, optional | |
| The present documentation is specific to ``method='powell'``, but other | |
| options are available. See documentation for `scipy.optimize.minimize`. | |
| bounds : sequence or `Bounds`, optional | |
| Bounds on decision variables. There are two ways to specify the bounds: | |
| 1. Instance of `Bounds` class. | |
| 2. Sequence of ``(min, max)`` pairs for each element in `x`. None | |
| is used to specify no bound. | |
| If bounds are not provided, then an unbounded line search will be used. | |
| If bounds are provided and the initial guess is within the bounds, then | |
| every function evaluation throughout the minimization procedure will be | |
| within the bounds. If bounds are provided, the initial guess is outside | |
| the bounds, and `direc` is full rank (or left to default), then some | |
| function evaluations during the first iteration may be outside the | |
| bounds, but every function evaluation after the first iteration will be | |
| within the bounds. If `direc` is not full rank, then some parameters | |
| may not be optimized and the solution is not guaranteed to be within | |
| the bounds. | |
| options : dict, optional | |
| A dictionary of solver options. All methods accept the following | |
| generic options: | |
| maxiter : int | |
| Maximum number of iterations to perform. Depending on the | |
| method each iteration may use several function evaluations. | |
| disp : bool | |
| Set to True to print convergence messages. | |
| See method-specific options for ``method='powell'`` below. | |
| callback : callable, optional | |
| Called after each iteration. The signature is: | |
| ``callback(xk)`` | |
| where ``xk`` is the current parameter vector. | |
| Returns | |
| ------- | |
| res : OptimizeResult | |
| The optimization result represented as a ``OptimizeResult`` object. | |
| Important attributes are: ``x`` the solution array, ``success`` a | |
| Boolean flag indicating if the optimizer exited successfully and | |
| ``message`` which describes the cause of the termination. See | |
| `OptimizeResult` for a description of other attributes. | |
| Options | |
| ------- | |
| disp : bool | |
| Set to True to print convergence messages. | |
| xtol : float | |
| Relative error in solution `xopt` acceptable for convergence. | |
| ftol : float | |
| Relative error in ``fun(xopt)`` acceptable for convergence. | |
| maxiter, maxfev : int | |
| Maximum allowed number of iterations and function evaluations. | |
| Will default to ``N*1000``, where ``N`` is the number of | |
| variables, if neither `maxiter` or `maxfev` is set. If both | |
| `maxiter` and `maxfev` are set, minimization will stop at the | |
| first reached. | |
| direc : ndarray | |
| Initial set of direction vectors for the Powell method. | |
| return_all : bool, optional | |
| Set to True to return a list of the best solution at each of the | |
| iterations. | |
| """ | |
| _check_unknown_options(unknown_options) | |
| maxfun = maxfev | |
| retall = return_all | |
| x = asarray(x0).flatten() | |
| if retall: | |
| allvecs = [x] | |
| N = len(x) | |
| # If neither are set, then set both to default | |
| if maxiter is None and maxfun is None: | |
| maxiter = N * 1000 | |
| maxfun = N * 1000 | |
| elif maxiter is None: | |
| # Convert remaining Nones, to np.inf, unless the other is np.inf, in | |
| # which case use the default to avoid unbounded iteration | |
| if maxfun == np.inf: | |
| maxiter = N * 1000 | |
| else: | |
| maxiter = np.inf | |
| elif maxfun is None: | |
| if maxiter == np.inf: | |
| maxfun = N * 1000 | |
| else: | |
| maxfun = np.inf | |
| # we need to use a mutable object here that we can update in the | |
| # wrapper function | |
| fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun) | |
| if direc is None: | |
| direc = eye(N, dtype=float) | |
| else: | |
| direc = asarray(direc, dtype=float) | |
| if np.linalg.matrix_rank(direc) != direc.shape[0]: | |
| warnings.warn("direc input is not full rank, some parameters may " | |
| "not be optimized", | |
| OptimizeWarning, stacklevel=3) | |
| if bounds is None: | |
| # don't make these arrays of all +/- inf. because | |
| # _linesearch_powell will do an unnecessary check of all the elements. | |
| # just keep them None, _linesearch_powell will not have to check | |
| # all the elements. | |
| lower_bound, upper_bound = None, None | |
| else: | |
| # bounds is standardized in _minimize.py. | |
| lower_bound, upper_bound = bounds.lb, bounds.ub | |
| if np.any(lower_bound > x0) or np.any(x0 > upper_bound): | |
| warnings.warn("Initial guess is not within the specified bounds", | |
| OptimizeWarning, stacklevel=3) | |
| fval = squeeze(func(x)) | |
| x1 = x.copy() | |
| iter = 0 | |
| while True: | |
| try: | |
| fx = fval | |
| bigind = 0 | |
| delta = 0.0 | |
| for i in range(N): | |
| direc1 = direc[i] | |
| fx2 = fval | |
| fval, x, direc1 = _linesearch_powell(func, x, direc1, | |
| tol=xtol * 100, | |
| lower_bound=lower_bound, | |
| upper_bound=upper_bound, | |
| fval=fval) | |
| if (fx2 - fval) > delta: | |
| delta = fx2 - fval | |
| bigind = i | |
| iter += 1 | |
| if retall: | |
| allvecs.append(x) | |
| intermediate_result = OptimizeResult(x=x, fun=fval) | |
| if _call_callback_maybe_halt(callback, intermediate_result): | |
| break | |
| bnd = ftol * (np.abs(fx) + np.abs(fval)) + 1e-20 | |
| if 2.0 * (fx - fval) <= bnd: | |
| break | |
| if fcalls[0] >= maxfun: | |
| break | |
| if iter >= maxiter: | |
| break | |
| if np.isnan(fx) and np.isnan(fval): | |
| # Ended up in a nan-region: bail out | |
| break | |
| # Construct the extrapolated point | |
| direc1 = x - x1 | |
| x1 = x.copy() | |
| # make sure that we don't go outside the bounds when extrapolating | |
| if lower_bound is None and upper_bound is None: | |
| lmax = 1 | |
| else: | |
| _, lmax = _line_for_search(x, direc1, lower_bound, upper_bound) | |
| x2 = x + min(lmax, 1) * direc1 | |
| fx2 = squeeze(func(x2)) | |
| if (fx > fx2): | |
| t = 2.0*(fx + fx2 - 2.0*fval) | |
| temp = (fx - fval - delta) | |
| t *= temp*temp | |
| temp = fx - fx2 | |
| t -= delta*temp*temp | |
| if t < 0.0: | |
| fval, x, direc1 = _linesearch_powell( | |
| func, x, direc1, | |
| tol=xtol * 100, | |
| lower_bound=lower_bound, | |
| upper_bound=upper_bound, | |
| fval=fval | |
| ) | |
| if np.any(direc1): | |
| direc[bigind] = direc[-1] | |
| direc[-1] = direc1 | |
| except _MaxFuncCallError: | |
| break | |
| warnflag = 0 | |
| msg = _status_message['success'] | |
| # out of bounds is more urgent than exceeding function evals or iters, | |
| # but I don't want to cause inconsistencies by changing the | |
| # established warning flags for maxfev and maxiter, so the out of bounds | |
| # warning flag becomes 3, but is checked for first. | |
| if bounds and (np.any(lower_bound > x) or np.any(x > upper_bound)): | |
| warnflag = 4 | |
| msg = _status_message['out_of_bounds'] | |
| elif fcalls[0] >= maxfun: | |
| warnflag = 1 | |
| msg = _status_message['maxfev'] | |
| elif iter >= maxiter: | |
| warnflag = 2 | |
| msg = _status_message['maxiter'] | |
| elif np.isnan(fval) or np.isnan(x).any(): | |
| warnflag = 3 | |
| msg = _status_message['nan'] | |
| if disp: | |
| _print_success_message_or_warn(warnflag, msg, RuntimeWarning) | |
| print(" Current function value: %f" % fval) | |
| print(" Iterations: %d" % iter) | |
| print(" Function evaluations: %d" % fcalls[0]) | |
| result = OptimizeResult(fun=fval, direc=direc, nit=iter, nfev=fcalls[0], | |
| status=warnflag, success=(warnflag == 0), | |
| message=msg, x=x) | |
| if retall: | |
| result['allvecs'] = allvecs | |
| return result | |
| def _endprint(x, flag, fval, maxfun, xtol, disp): | |
| if flag == 0: | |
| if disp > 1: | |
| print("\nOptimization terminated successfully;\n" | |
| "The returned value satisfies the termination criteria\n" | |
| "(using xtol = ", xtol, ")") | |
| return | |
| if flag == 1: | |
| msg = ("\nMaximum number of function evaluations exceeded --- " | |
| "increase maxfun argument.\n") | |
| elif flag == 2: | |
| msg = "\n{}".format(_status_message['nan']) | |
| _print_success_message_or_warn(flag, msg) | |
| return | |
| def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin, | |
| disp=False, workers=1): | |
| """Minimize a function over a given range by brute force. | |
| Uses the "brute force" method, i.e., computes the function's value | |
| at each point of a multidimensional grid of points, to find the global | |
| minimum of the function. | |
| The function is evaluated everywhere in the range with the datatype of the | |
| first call to the function, as enforced by the ``vectorize`` NumPy | |
| function. The value and type of the function evaluation returned when | |
| ``full_output=True`` are affected in addition by the ``finish`` argument | |
| (see Notes). | |
| The brute force approach is inefficient because the number of grid points | |
| increases exponentially - the number of grid points to evaluate is | |
| ``Ns ** len(x)``. Consequently, even with coarse grid spacing, even | |
| moderately sized problems can take a long time to run, and/or run into | |
| memory limitations. | |
| Parameters | |
| ---------- | |
| func : callable | |
| The objective function to be minimized. Must be in the | |
| form ``f(x, *args)``, where ``x`` is the argument in | |
| the form of a 1-D array and ``args`` is a tuple of any | |
| additional fixed parameters needed to completely specify | |
| the function. | |
| ranges : tuple | |
| Each component of the `ranges` tuple must be either a | |
| "slice object" or a range tuple of the form ``(low, high)``. | |
| The program uses these to create the grid of points on which | |
| the objective function will be computed. See `Note 2` for | |
| more detail. | |
| args : tuple, optional | |
| Any additional fixed parameters needed to completely specify | |
| the function. | |
| Ns : int, optional | |
| Number of grid points along the axes, if not otherwise | |
| specified. See `Note2`. | |
| full_output : bool, optional | |
| If True, return the evaluation grid and the objective function's | |
| values on it. | |
| finish : callable, optional | |
| An optimization function that is called with the result of brute force | |
| minimization as initial guess. `finish` should take `func` and | |
| the initial guess as positional arguments, and take `args` as | |
| keyword arguments. It may additionally take `full_output` | |
| and/or `disp` as keyword arguments. Use None if no "polishing" | |
| function is to be used. See Notes for more details. | |
| disp : bool, optional | |
| Set to True to print convergence messages from the `finish` callable. | |
| workers : int or map-like callable, optional | |
| If `workers` is an int the grid is subdivided into `workers` | |
| sections and evaluated in parallel (uses | |
| `multiprocessing.Pool <multiprocessing>`). | |
| Supply `-1` to use all cores available to the Process. | |
| Alternatively supply a map-like callable, such as | |
| `multiprocessing.Pool.map` for evaluating the grid in parallel. | |
| This evaluation is carried out as ``workers(func, iterable)``. | |
| Requires that `func` be pickleable. | |
| .. versionadded:: 1.3.0 | |
| Returns | |
| ------- | |
| x0 : ndarray | |
| A 1-D array containing the coordinates of a point at which the | |
| objective function had its minimum value. (See `Note 1` for | |
| which point is returned.) | |
| fval : float | |
| Function value at the point `x0`. (Returned when `full_output` is | |
| True.) | |
| grid : tuple | |
| Representation of the evaluation grid. It has the same | |
| length as `x0`. (Returned when `full_output` is True.) | |
| Jout : ndarray | |
| Function values at each point of the evaluation | |
| grid, i.e., ``Jout = func(*grid)``. (Returned | |
| when `full_output` is True.) | |
| See Also | |
| -------- | |
| basinhopping, differential_evolution | |
| Notes | |
| ----- | |
| *Note 1*: The program finds the gridpoint at which the lowest value | |
| of the objective function occurs. If `finish` is None, that is the | |
| point returned. When the global minimum occurs within (or not very far | |
| outside) the grid's boundaries, and the grid is fine enough, that | |
| point will be in the neighborhood of the global minimum. | |
| However, users often employ some other optimization program to | |
| "polish" the gridpoint values, i.e., to seek a more precise | |
| (local) minimum near `brute's` best gridpoint. | |
| The `brute` function's `finish` option provides a convenient way to do | |
| that. Any polishing program used must take `brute's` output as its | |
| initial guess as a positional argument, and take `brute's` input values | |
| for `args` as keyword arguments, otherwise an error will be raised. | |
| It may additionally take `full_output` and/or `disp` as keyword arguments. | |
| `brute` assumes that the `finish` function returns either an | |
| `OptimizeResult` object or a tuple in the form: | |
| ``(xmin, Jmin, ... , statuscode)``, where ``xmin`` is the minimizing | |
| value of the argument, ``Jmin`` is the minimum value of the objective | |
| function, "..." may be some other returned values (which are not used | |
| by `brute`), and ``statuscode`` is the status code of the `finish` program. | |
| Note that when `finish` is not None, the values returned are those | |
| of the `finish` program, *not* the gridpoint ones. Consequently, | |
| while `brute` confines its search to the input grid points, | |
| the `finish` program's results usually will not coincide with any | |
| gridpoint, and may fall outside the grid's boundary. Thus, if a | |
| minimum only needs to be found over the provided grid points, make | |
| sure to pass in `finish=None`. | |
| *Note 2*: The grid of points is a `numpy.mgrid` object. | |
| For `brute` the `ranges` and `Ns` inputs have the following effect. | |
| Each component of the `ranges` tuple can be either a slice object or a | |
| two-tuple giving a range of values, such as (0, 5). If the component is a | |
| slice object, `brute` uses it directly. If the component is a two-tuple | |
| range, `brute` internally converts it to a slice object that interpolates | |
| `Ns` points from its low-value to its high-value, inclusive. | |
| Examples | |
| -------- | |
| We illustrate the use of `brute` to seek the global minimum of a function | |
| of two variables that is given as the sum of a positive-definite | |
| quadratic and two deep "Gaussian-shaped" craters. Specifically, define | |
| the objective function `f` as the sum of three other functions, | |
| ``f = f1 + f2 + f3``. We suppose each of these has a signature | |
| ``(z, *params)``, where ``z = (x, y)``, and ``params`` and the functions | |
| are as defined below. | |
| >>> import numpy as np | |
| >>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5) | |
| >>> def f1(z, *params): | |
| ... x, y = z | |
| ... a, b, c, d, e, f, g, h, i, j, k, l, scale = params | |
| ... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f) | |
| >>> def f2(z, *params): | |
| ... x, y = z | |
| ... a, b, c, d, e, f, g, h, i, j, k, l, scale = params | |
| ... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale)) | |
| >>> def f3(z, *params): | |
| ... x, y = z | |
| ... a, b, c, d, e, f, g, h, i, j, k, l, scale = params | |
| ... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale)) | |
| >>> def f(z, *params): | |
| ... return f1(z, *params) + f2(z, *params) + f3(z, *params) | |
| Thus, the objective function may have local minima near the minimum | |
| of each of the three functions of which it is composed. To | |
| use `fmin` to polish its gridpoint result, we may then continue as | |
| follows: | |
| >>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25)) | |
| >>> from scipy import optimize | |
| >>> resbrute = optimize.brute(f, rranges, args=params, full_output=True, | |
| ... finish=optimize.fmin) | |
| >>> resbrute[0] # global minimum | |
| array([-1.05665192, 1.80834843]) | |
| >>> resbrute[1] # function value at global minimum | |
| -3.4085818767 | |
| Note that if `finish` had been set to None, we would have gotten the | |
| gridpoint [-1.0 1.75] where the rounded function value is -2.892. | |
| """ | |
| N = len(ranges) | |
| if N > 40: | |
| raise ValueError("Brute Force not possible with more " | |
| "than 40 variables.") | |
| lrange = list(ranges) | |
| for k in range(N): | |
| if not isinstance(lrange[k], slice): | |
| if len(lrange[k]) < 3: | |
| lrange[k] = tuple(lrange[k]) + (complex(Ns),) | |
| lrange[k] = slice(*lrange[k]) | |
| if (N == 1): | |
| lrange = lrange[0] | |
| grid = np.mgrid[lrange] | |
| # obtain an array of parameters that is iterable by a map-like callable | |
| inpt_shape = grid.shape | |
| if (N > 1): | |
| grid = np.reshape(grid, (inpt_shape[0], np.prod(inpt_shape[1:]))).T | |
| if not np.iterable(args): | |
| args = (args,) | |
| wrapped_func = _Brute_Wrapper(func, args) | |
| # iterate over input arrays, possibly in parallel | |
| with MapWrapper(pool=workers) as mapper: | |
| Jout = np.array(list(mapper(wrapped_func, grid))) | |
| if (N == 1): | |
| grid = (grid,) | |
| Jout = np.squeeze(Jout) | |
| elif (N > 1): | |
| Jout = np.reshape(Jout, inpt_shape[1:]) | |
| grid = np.reshape(grid.T, inpt_shape) | |
| Nshape = shape(Jout) | |
| indx = argmin(Jout.ravel(), axis=-1) | |
| Nindx = np.empty(N, int) | |
| xmin = np.empty(N, float) | |
| for k in range(N - 1, -1, -1): | |
| thisN = Nshape[k] | |
| Nindx[k] = indx % Nshape[k] | |
| indx = indx // thisN | |
| for k in range(N): | |
| xmin[k] = grid[k][tuple(Nindx)] | |
| Jmin = Jout[tuple(Nindx)] | |
| if (N == 1): | |
| grid = grid[0] | |
| xmin = xmin[0] | |
| if callable(finish): | |
| # set up kwargs for `finish` function | |
| finish_args = _getfullargspec(finish).args | |
| finish_kwargs = dict() | |
| if 'full_output' in finish_args: | |
| finish_kwargs['full_output'] = 1 | |
| if 'disp' in finish_args: | |
| finish_kwargs['disp'] = disp | |
| elif 'options' in finish_args: | |
| # pass 'disp' as `options` | |
| # (e.g., if `finish` is `minimize`) | |
| finish_kwargs['options'] = {'disp': disp} | |
| # run minimizer | |
| res = finish(func, xmin, args=args, **finish_kwargs) | |
| if isinstance(res, OptimizeResult): | |
| xmin = res.x | |
| Jmin = res.fun | |
| success = res.success | |
| else: | |
| xmin = res[0] | |
| Jmin = res[1] | |
| success = res[-1] == 0 | |
| if not success: | |
| if disp: | |
| warnings.warn("Either final optimization did not succeed or `finish` " | |
| "does not return `statuscode` as its last argument.", | |
| RuntimeWarning, stacklevel=2) | |
| if full_output: | |
| return xmin, Jmin, grid, Jout | |
| else: | |
| return xmin | |
| class _Brute_Wrapper: | |
| """ | |
| Object to wrap user cost function for optimize.brute, allowing picklability | |
| """ | |
| def __init__(self, f, args): | |
| self.f = f | |
| self.args = [] if args is None else args | |
| def __call__(self, x): | |
| # flatten needed for one dimensional case. | |
| return self.f(np.asarray(x).flatten(), *self.args) | |
| def show_options(solver=None, method=None, disp=True): | |
| """ | |
| Show documentation for additional options of optimization solvers. | |
| These are method-specific options that can be supplied through the | |
| ``options`` dict. | |
| Parameters | |
| ---------- | |
| solver : str | |
| Type of optimization solver. One of 'minimize', 'minimize_scalar', | |
| 'root', 'root_scalar', 'linprog', or 'quadratic_assignment'. | |
| method : str, optional | |
| If not given, shows all methods of the specified solver. Otherwise, | |
| show only the options for the specified method. Valid values | |
| corresponds to methods' names of respective solver (e.g., 'BFGS' for | |
| 'minimize'). | |
| disp : bool, optional | |
| Whether to print the result rather than returning it. | |
| Returns | |
| ------- | |
| text | |
| Either None (for disp=True) or the text string (disp=False) | |
| Notes | |
| ----- | |
| The solver-specific methods are: | |
| `scipy.optimize.minimize` | |
| - :ref:`Nelder-Mead <optimize.minimize-neldermead>` | |
| - :ref:`Powell <optimize.minimize-powell>` | |
| - :ref:`CG <optimize.minimize-cg>` | |
| - :ref:`BFGS <optimize.minimize-bfgs>` | |
| - :ref:`Newton-CG <optimize.minimize-newtoncg>` | |
| - :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` | |
| - :ref:`TNC <optimize.minimize-tnc>` | |
| - :ref:`COBYLA <optimize.minimize-cobyla>` | |
| - :ref:`SLSQP <optimize.minimize-slsqp>` | |
| - :ref:`dogleg <optimize.minimize-dogleg>` | |
| - :ref:`trust-ncg <optimize.minimize-trustncg>` | |
| `scipy.optimize.root` | |
| - :ref:`hybr <optimize.root-hybr>` | |
| - :ref:`lm <optimize.root-lm>` | |
| - :ref:`broyden1 <optimize.root-broyden1>` | |
| - :ref:`broyden2 <optimize.root-broyden2>` | |
| - :ref:`anderson <optimize.root-anderson>` | |
| - :ref:`linearmixing <optimize.root-linearmixing>` | |
| - :ref:`diagbroyden <optimize.root-diagbroyden>` | |
| - :ref:`excitingmixing <optimize.root-excitingmixing>` | |
| - :ref:`krylov <optimize.root-krylov>` | |
| - :ref:`df-sane <optimize.root-dfsane>` | |
| `scipy.optimize.minimize_scalar` | |
| - :ref:`brent <optimize.minimize_scalar-brent>` | |
| - :ref:`golden <optimize.minimize_scalar-golden>` | |
| - :ref:`bounded <optimize.minimize_scalar-bounded>` | |
| `scipy.optimize.root_scalar` | |
| - :ref:`bisect <optimize.root_scalar-bisect>` | |
| - :ref:`brentq <optimize.root_scalar-brentq>` | |
| - :ref:`brenth <optimize.root_scalar-brenth>` | |
| - :ref:`ridder <optimize.root_scalar-ridder>` | |
| - :ref:`toms748 <optimize.root_scalar-toms748>` | |
| - :ref:`newton <optimize.root_scalar-newton>` | |
| - :ref:`secant <optimize.root_scalar-secant>` | |
| - :ref:`halley <optimize.root_scalar-halley>` | |
| `scipy.optimize.linprog` | |
| - :ref:`simplex <optimize.linprog-simplex>` | |
| - :ref:`interior-point <optimize.linprog-interior-point>` | |
| - :ref:`revised simplex <optimize.linprog-revised_simplex>` | |
| - :ref:`highs <optimize.linprog-highs>` | |
| - :ref:`highs-ds <optimize.linprog-highs-ds>` | |
| - :ref:`highs-ipm <optimize.linprog-highs-ipm>` | |
| `scipy.optimize.quadratic_assignment` | |
| - :ref:`faq <optimize.qap-faq>` | |
| - :ref:`2opt <optimize.qap-2opt>` | |
| Examples | |
| -------- | |
| We can print documentations of a solver in stdout: | |
| >>> from scipy.optimize import show_options | |
| >>> show_options(solver="minimize") | |
| ... | |
| Specifying a method is possible: | |
| >>> show_options(solver="minimize", method="Nelder-Mead") | |
| ... | |
| We can also get the documentations as a string: | |
| >>> show_options(solver="minimize", method="Nelder-Mead", disp=False) | |
| Minimization of scalar function of one or more variables using the ... | |
| """ | |
| import textwrap | |
| doc_routines = { | |
| 'minimize': ( | |
| ('bfgs', 'scipy.optimize._optimize._minimize_bfgs'), | |
| ('cg', 'scipy.optimize._optimize._minimize_cg'), | |
| ('cobyla', 'scipy.optimize._cobyla_py._minimize_cobyla'), | |
| ('dogleg', 'scipy.optimize._trustregion_dogleg._minimize_dogleg'), | |
| ('l-bfgs-b', 'scipy.optimize._lbfgsb_py._minimize_lbfgsb'), | |
| ('nelder-mead', 'scipy.optimize._optimize._minimize_neldermead'), | |
| ('newton-cg', 'scipy.optimize._optimize._minimize_newtoncg'), | |
| ('powell', 'scipy.optimize._optimize._minimize_powell'), | |
| ('slsqp', 'scipy.optimize._slsqp_py._minimize_slsqp'), | |
| ('tnc', 'scipy.optimize._tnc._minimize_tnc'), | |
| ('trust-ncg', | |
| 'scipy.optimize._trustregion_ncg._minimize_trust_ncg'), | |
| ('trust-constr', | |
| 'scipy.optimize._trustregion_constr.' | |
| '_minimize_trustregion_constr'), | |
| ('trust-exact', | |
| 'scipy.optimize._trustregion_exact._minimize_trustregion_exact'), | |
| ('trust-krylov', | |
| 'scipy.optimize._trustregion_krylov._minimize_trust_krylov'), | |
| ), | |
| 'root': ( | |
| ('hybr', 'scipy.optimize._minpack_py._root_hybr'), | |
| ('lm', 'scipy.optimize._root._root_leastsq'), | |
| ('broyden1', 'scipy.optimize._root._root_broyden1_doc'), | |
| ('broyden2', 'scipy.optimize._root._root_broyden2_doc'), | |
| ('anderson', 'scipy.optimize._root._root_anderson_doc'), | |
| ('diagbroyden', 'scipy.optimize._root._root_diagbroyden_doc'), | |
| ('excitingmixing', 'scipy.optimize._root._root_excitingmixing_doc'), | |
| ('linearmixing', 'scipy.optimize._root._root_linearmixing_doc'), | |
| ('krylov', 'scipy.optimize._root._root_krylov_doc'), | |
| ('df-sane', 'scipy.optimize._spectral._root_df_sane'), | |
| ), | |
| 'root_scalar': ( | |
| ('bisect', 'scipy.optimize._root_scalar._root_scalar_bisect_doc'), | |
| ('brentq', 'scipy.optimize._root_scalar._root_scalar_brentq_doc'), | |
| ('brenth', 'scipy.optimize._root_scalar._root_scalar_brenth_doc'), | |
| ('ridder', 'scipy.optimize._root_scalar._root_scalar_ridder_doc'), | |
| ('toms748', 'scipy.optimize._root_scalar._root_scalar_toms748_doc'), | |
| ('secant', 'scipy.optimize._root_scalar._root_scalar_secant_doc'), | |
| ('newton', 'scipy.optimize._root_scalar._root_scalar_newton_doc'), | |
| ('halley', 'scipy.optimize._root_scalar._root_scalar_halley_doc'), | |
| ), | |
| 'linprog': ( | |
| ('simplex', 'scipy.optimize._linprog._linprog_simplex_doc'), | |
| ('interior-point', 'scipy.optimize._linprog._linprog_ip_doc'), | |
| ('revised simplex', 'scipy.optimize._linprog._linprog_rs_doc'), | |
| ('highs-ipm', 'scipy.optimize._linprog._linprog_highs_ipm_doc'), | |
| ('highs-ds', 'scipy.optimize._linprog._linprog_highs_ds_doc'), | |
| ('highs', 'scipy.optimize._linprog._linprog_highs_doc'), | |
| ), | |
| 'quadratic_assignment': ( | |
| ('faq', 'scipy.optimize._qap._quadratic_assignment_faq'), | |
| ('2opt', 'scipy.optimize._qap._quadratic_assignment_2opt'), | |
| ), | |
| 'minimize_scalar': ( | |
| ('brent', 'scipy.optimize._optimize._minimize_scalar_brent'), | |
| ('bounded', 'scipy.optimize._optimize._minimize_scalar_bounded'), | |
| ('golden', 'scipy.optimize._optimize._minimize_scalar_golden'), | |
| ), | |
| } | |
| if solver is None: | |
| text = ["\n\n\n========\n", "minimize\n", "========\n"] | |
| text.append(show_options('minimize', disp=False)) | |
| text.extend(["\n\n===============\n", "minimize_scalar\n", | |
| "===============\n"]) | |
| text.append(show_options('minimize_scalar', disp=False)) | |
| text.extend(["\n\n\n====\n", "root\n", | |
| "====\n"]) | |
| text.append(show_options('root', disp=False)) | |
| text.extend(['\n\n\n=======\n', 'linprog\n', | |
| '=======\n']) | |
| text.append(show_options('linprog', disp=False)) | |
| text = "".join(text) | |
| else: | |
| solver = solver.lower() | |
| if solver not in doc_routines: | |
| raise ValueError(f'Unknown solver {solver!r}') | |
| if method is None: | |
| text = [] | |
| for name, _ in doc_routines[solver]: | |
| text.extend(["\n\n" + name, "\n" + "="*len(name) + "\n\n"]) | |
| text.append(show_options(solver, name, disp=False)) | |
| text = "".join(text) | |
| else: | |
| method = method.lower() | |
| methods = dict(doc_routines[solver]) | |
| if method not in methods: | |
| raise ValueError(f"Unknown method {method!r}") | |
| name = methods[method] | |
| # Import function object | |
| parts = name.split('.') | |
| mod_name = ".".join(parts[:-1]) | |
| __import__(mod_name) | |
| obj = getattr(sys.modules[mod_name], parts[-1]) | |
| # Get doc | |
| doc = obj.__doc__ | |
| if doc is not None: | |
| text = textwrap.dedent(doc).strip() | |
| else: | |
| text = "" | |
| if disp: | |
| print(text) | |
| return | |
| else: | |
| return text | |