peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/v1
/generics.py
import sys | |
import types | |
import typing | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
ClassVar, | |
Dict, | |
ForwardRef, | |
Generic, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Tuple, | |
Type, | |
TypeVar, | |
Union, | |
cast, | |
) | |
from weakref import WeakKeyDictionary, WeakValueDictionary | |
from typing_extensions import Annotated, Literal as ExtLiteral | |
from .class_validators import gather_all_validators | |
from .fields import DeferredType | |
from .main import BaseModel, create_model | |
from .types import JsonWrapper | |
from .typing import display_as_type, get_all_type_hints, get_args, get_origin, typing_base | |
from .utils import all_identical, lenient_issubclass | |
if sys.version_info >= (3, 10): | |
from typing import _UnionGenericAlias | |
if sys.version_info >= (3, 8): | |
from typing import Literal | |
GenericModelT = TypeVar('GenericModelT', bound='GenericModel') | |
TypeVarType = Any # since mypy doesn't allow the use of TypeVar as a type | |
CacheKey = Tuple[Type[Any], Any, Tuple[Any, ...]] | |
Parametrization = Mapping[TypeVarType, Type[Any]] | |
# weak dictionaries allow the dynamically created parametrized versions of generic models to get collected | |
# once they are no longer referenced by the caller. | |
if sys.version_info >= (3, 9): # Typing for weak dictionaries available at 3.9 | |
GenericTypesCache = WeakValueDictionary[CacheKey, Type[BaseModel]] | |
AssignedParameters = WeakKeyDictionary[Type[BaseModel], Parametrization] | |
else: | |
GenericTypesCache = WeakValueDictionary | |
AssignedParameters = WeakKeyDictionary | |
# _generic_types_cache is a Mapping from __class_getitem__ arguments to the parametrized version of generic models. | |
# This ensures multiple calls of e.g. A[B] return always the same class. | |
_generic_types_cache = GenericTypesCache() | |
# _assigned_parameters is a Mapping from parametrized version of generic models to assigned types of parametrizations | |
# as captured during construction of the class (not instances). | |
# E.g., for generic model `Model[A, B]`, when parametrized model `Model[int, str]` is created, | |
# `Model[int, str]`: {A: int, B: str}` will be stored in `_assigned_parameters`. | |
# (This information is only otherwise available after creation from the class name string). | |
_assigned_parameters = AssignedParameters() | |
class GenericModel(BaseModel): | |
__slots__ = () | |
__concrete__: ClassVar[bool] = False | |
if TYPE_CHECKING: | |
# Putting this in a TYPE_CHECKING block allows us to replace `if Generic not in cls.__bases__` with | |
# `not hasattr(cls, "__parameters__")`. This means we don't need to force non-concrete subclasses of | |
# `GenericModel` to also inherit from `Generic`, which would require changes to the use of `create_model` below. | |
__parameters__: ClassVar[Tuple[TypeVarType, ...]] | |
# Setting the return type as Type[Any] instead of Type[BaseModel] prevents PyCharm warnings | |
def __class_getitem__(cls: Type[GenericModelT], params: Union[Type[Any], Tuple[Type[Any], ...]]) -> Type[Any]: | |
"""Instantiates a new class from a generic class `cls` and type variables `params`. | |
:param params: Tuple of types the class . Given a generic class | |
`Model` with 2 type variables and a concrete model `Model[str, int]`, | |
the value `(str, int)` would be passed to `params`. | |
:return: New model class inheriting from `cls` with instantiated | |
types described by `params`. If no parameters are given, `cls` is | |
returned as is. | |
""" | |
def _cache_key(_params: Any) -> CacheKey: | |
args = get_args(_params) | |
# python returns a list for Callables, which is not hashable | |
if len(args) == 2 and isinstance(args[0], list): | |
args = (tuple(args[0]), args[1]) | |
return cls, _params, args | |
cached = _generic_types_cache.get(_cache_key(params)) | |
if cached is not None: | |
return cached | |
if cls.__concrete__ and Generic not in cls.__bases__: | |
raise TypeError('Cannot parameterize a concrete instantiation of a generic model') | |
if not isinstance(params, tuple): | |
params = (params,) | |
if cls is GenericModel and any(isinstance(param, TypeVar) for param in params): | |
raise TypeError('Type parameters should be placed on typing.Generic, not GenericModel') | |
if not hasattr(cls, '__parameters__'): | |
raise TypeError(f'Type {cls.__name__} must inherit from typing.Generic before being parameterized') | |
check_parameters_count(cls, params) | |
# Build map from generic typevars to passed params | |
typevars_map: Dict[TypeVarType, Type[Any]] = dict(zip(cls.__parameters__, params)) | |
if all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map: | |
return cls # if arguments are equal to parameters it's the same object | |
# Create new model with original model as parent inserting fields with DeferredType. | |
model_name = cls.__concrete_name__(params) | |
validators = gather_all_validators(cls) | |
type_hints = get_all_type_hints(cls).items() | |
instance_type_hints = {k: v for k, v in type_hints if get_origin(v) is not ClassVar} | |
fields = {k: (DeferredType(), cls.__fields__[k].field_info) for k in instance_type_hints if k in cls.__fields__} | |
model_module, called_globally = get_caller_frame_info() | |
created_model = cast( | |
Type[GenericModel], # casting ensures mypy is aware of the __concrete__ and __parameters__ attributes | |
create_model( | |
model_name, | |
__module__=model_module or cls.__module__, | |
__base__=(cls,) + tuple(cls.__parameterized_bases__(typevars_map)), | |
__config__=None, | |
__validators__=validators, | |
__cls_kwargs__=None, | |
**fields, | |
), | |
) | |
_assigned_parameters[created_model] = typevars_map | |
if called_globally: # create global reference and therefore allow pickling | |
object_by_reference = None | |
reference_name = model_name | |
reference_module_globals = sys.modules[created_model.__module__].__dict__ | |
while object_by_reference is not created_model: | |
object_by_reference = reference_module_globals.setdefault(reference_name, created_model) | |
reference_name += '_' | |
created_model.Config = cls.Config | |
# Find any typevars that are still present in the model. | |
# If none are left, the model is fully "concrete", otherwise the new | |
# class is a generic class as well taking the found typevars as | |
# parameters. | |
new_params = tuple( | |
{param: None for param in iter_contained_typevars(typevars_map.values())} | |
) # use dict as ordered set | |
created_model.__concrete__ = not new_params | |
if new_params: | |
created_model.__parameters__ = new_params | |
# Save created model in cache so we don't end up creating duplicate | |
# models that should be identical. | |
_generic_types_cache[_cache_key(params)] = created_model | |
if len(params) == 1: | |
_generic_types_cache[_cache_key(params[0])] = created_model | |
# Recursively walk class type hints and replace generic typevars | |
# with concrete types that were passed. | |
_prepare_model_fields(created_model, fields, instance_type_hints, typevars_map) | |
return created_model | |
def __concrete_name__(cls: Type[Any], params: Tuple[Type[Any], ...]) -> str: | |
"""Compute class name for child classes. | |
:param params: Tuple of types the class . Given a generic class | |
`Model` with 2 type variables and a concrete model `Model[str, int]`, | |
the value `(str, int)` would be passed to `params`. | |
:return: String representing a the new class where `params` are | |
passed to `cls` as type variables. | |
This method can be overridden to achieve a custom naming scheme for GenericModels. | |
""" | |
param_names = [display_as_type(param) for param in params] | |
params_component = ', '.join(param_names) | |
return f'{cls.__name__}[{params_component}]' | |
def __parameterized_bases__(cls, typevars_map: Parametrization) -> Iterator[Type[Any]]: | |
""" | |
Returns unbound bases of cls parameterised to given type variables | |
:param typevars_map: Dictionary of type applications for binding subclasses. | |
Given a generic class `Model` with 2 type variables [S, T] | |
and a concrete model `Model[str, int]`, | |
the value `{S: str, T: int}` would be passed to `typevars_map`. | |
:return: an iterator of generic sub classes, parameterised by `typevars_map` | |
and other assigned parameters of `cls` | |
e.g.: | |
``` | |
class A(GenericModel, Generic[T]): | |
... | |
class B(A[V], Generic[V]): | |
... | |
assert A[int] in B.__parameterized_bases__({V: int}) | |
``` | |
""" | |
def build_base_model( | |
base_model: Type[GenericModel], mapped_types: Parametrization | |
) -> Iterator[Type[GenericModel]]: | |
base_parameters = tuple(mapped_types[param] for param in base_model.__parameters__) | |
parameterized_base = base_model.__class_getitem__(base_parameters) | |
if parameterized_base is base_model or parameterized_base is cls: | |
# Avoid duplication in MRO | |
return | |
yield parameterized_base | |
for base_model in cls.__bases__: | |
if not issubclass(base_model, GenericModel): | |
# not a class that can be meaningfully parameterized | |
continue | |
elif not getattr(base_model, '__parameters__', None): | |
# base_model is "GenericModel" (and has no __parameters__) | |
# or | |
# base_model is already concrete, and will be included transitively via cls. | |
continue | |
elif cls in _assigned_parameters: | |
if base_model in _assigned_parameters: | |
# cls is partially parameterised but not from base_model | |
# e.g. cls = B[S], base_model = A[S] | |
# B[S][int] should subclass A[int], (and will be transitively via B[int]) | |
# but it's not viable to consistently subclass types with arbitrary construction | |
# So don't attempt to include A[S][int] | |
continue | |
else: # base_model not in _assigned_parameters: | |
# cls is partially parameterized, base_model is original generic | |
# e.g. cls = B[str, T], base_model = B[S, T] | |
# Need to determine the mapping for the base_model parameters | |
mapped_types: Parametrization = { | |
key: typevars_map.get(value, value) for key, value in _assigned_parameters[cls].items() | |
} | |
yield from build_base_model(base_model, mapped_types) | |
else: | |
# cls is base generic, so base_class has a distinct base | |
# can construct the Parameterised base model using typevars_map directly | |
yield from build_base_model(base_model, typevars_map) | |
def replace_types(type_: Any, type_map: Mapping[Any, Any]) -> Any: | |
"""Return type with all occurrences of `type_map` keys recursively replaced with their values. | |
:param type_: Any type, class or generic alias | |
:param type_map: Mapping from `TypeVar` instance to concrete types. | |
:return: New type representing the basic structure of `type_` with all | |
`typevar_map` keys recursively replaced. | |
>>> replace_types(Tuple[str, Union[List[str], float]], {str: int}) | |
Tuple[int, Union[List[int], float]] | |
""" | |
if not type_map: | |
return type_ | |
type_args = get_args(type_) | |
origin_type = get_origin(type_) | |
if origin_type is Annotated: | |
annotated_type, *annotations = type_args | |
return Annotated[replace_types(annotated_type, type_map), tuple(annotations)] | |
if (origin_type is ExtLiteral) or (sys.version_info >= (3, 8) and origin_type is Literal): | |
return type_map.get(type_, type_) | |
# Having type args is a good indicator that this is a typing module | |
# class instantiation or a generic alias of some sort. | |
if type_args: | |
resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args) | |
if all_identical(type_args, resolved_type_args): | |
# If all arguments are the same, there is no need to modify the | |
# type or create a new object at all | |
return type_ | |
if ( | |
origin_type is not None | |
and isinstance(type_, typing_base) | |
and not isinstance(origin_type, typing_base) | |
and getattr(type_, '_name', None) is not None | |
): | |
# In python < 3.9 generic aliases don't exist so any of these like `list`, | |
# `type` or `collections.abc.Callable` need to be translated. | |
# See: https://www.python.org/dev/peps/pep-0585 | |
origin_type = getattr(typing, type_._name) | |
assert origin_type is not None | |
# PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__. | |
# We also cannot use isinstance() since we have to compare types. | |
if sys.version_info >= (3, 10) and origin_type is types.UnionType: # noqa: E721 | |
return _UnionGenericAlias(origin_type, resolved_type_args) | |
return origin_type[resolved_type_args] | |
# We handle pydantic generic models separately as they don't have the same | |
# semantics as "typing" classes or generic aliases | |
if not origin_type and lenient_issubclass(type_, GenericModel) and not type_.__concrete__: | |
type_args = type_.__parameters__ | |
resolved_type_args = tuple(replace_types(t, type_map) for t in type_args) | |
if all_identical(type_args, resolved_type_args): | |
return type_ | |
return type_[resolved_type_args] | |
# Handle special case for typehints that can have lists as arguments. | |
# `typing.Callable[[int, str], int]` is an example for this. | |
if isinstance(type_, (List, list)): | |
resolved_list = list(replace_types(element, type_map) for element in type_) | |
if all_identical(type_, resolved_list): | |
return type_ | |
return resolved_list | |
# For JsonWrapperValue, need to handle its inner type to allow correct parsing | |
# of generic Json arguments like Json[T] | |
if not origin_type and lenient_issubclass(type_, JsonWrapper): | |
type_.inner_type = replace_types(type_.inner_type, type_map) | |
return type_ | |
# If all else fails, we try to resolve the type directly and otherwise just | |
# return the input with no modifications. | |
new_type = type_map.get(type_, type_) | |
# Convert string to ForwardRef | |
if isinstance(new_type, str): | |
return ForwardRef(new_type) | |
else: | |
return new_type | |
def check_parameters_count(cls: Type[GenericModel], parameters: Tuple[Any, ...]) -> None: | |
actual = len(parameters) | |
expected = len(cls.__parameters__) | |
if actual != expected: | |
description = 'many' if actual > expected else 'few' | |
raise TypeError(f'Too {description} parameters for {cls.__name__}; actual {actual}, expected {expected}') | |
DictValues: Type[Any] = {}.values().__class__ | |
def iter_contained_typevars(v: Any) -> Iterator[TypeVarType]: | |
"""Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found.""" | |
if isinstance(v, TypeVar): | |
yield v | |
elif hasattr(v, '__parameters__') and not get_origin(v) and lenient_issubclass(v, GenericModel): | |
yield from v.__parameters__ | |
elif isinstance(v, (DictValues, list)): | |
for var in v: | |
yield from iter_contained_typevars(var) | |
else: | |
args = get_args(v) | |
for arg in args: | |
yield from iter_contained_typevars(arg) | |
def get_caller_frame_info() -> Tuple[Optional[str], bool]: | |
""" | |
Used inside a function to check whether it was called globally | |
Will only work against non-compiled code, therefore used only in pydantic.generics | |
:returns Tuple[module_name, called_globally] | |
""" | |
try: | |
previous_caller_frame = sys._getframe(2) | |
except ValueError as e: | |
raise RuntimeError('This function must be used inside another function') from e | |
except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it | |
return None, False | |
frame_globals = previous_caller_frame.f_globals | |
return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals | |
def _prepare_model_fields( | |
created_model: Type[GenericModel], | |
fields: Mapping[str, Any], | |
instance_type_hints: Mapping[str, type], | |
typevars_map: Mapping[Any, type], | |
) -> None: | |
""" | |
Replace DeferredType fields with concrete type hints and prepare them. | |
""" | |
for key, field in created_model.__fields__.items(): | |
if key not in fields: | |
assert field.type_.__class__ is not DeferredType | |
# https://github.com/nedbat/coveragepy/issues/198 | |
continue # pragma: no cover | |
assert field.type_.__class__ is DeferredType, field.type_.__class__ | |
field_type_hint = instance_type_hints[key] | |
concrete_type = replace_types(field_type_hint, typevars_map) | |
field.type_ = concrete_type | |
field.outer_type_ = concrete_type | |
field.prepare() | |
created_model.__annotations__[key] = concrete_type | |