peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_decomp_svd.py
"""SVD decomposition functions.""" | |
import numpy | |
from numpy import zeros, r_, diag, dot, arccos, arcsin, where, clip | |
# Local imports. | |
from ._misc import LinAlgError, _datacopied | |
from .lapack import get_lapack_funcs, _compute_lwork | |
from ._decomp import _asarray_validated | |
__all__ = ['svd', 'svdvals', 'diagsvd', 'orth', 'subspace_angles', 'null_space'] | |
def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, | |
check_finite=True, lapack_driver='gesdd'): | |
""" | |
Singular Value Decomposition. | |
Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and | |
a 1-D array ``s`` of singular values (real, non-negative) such that | |
``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with | |
main diagonal ``s``. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Matrix to decompose. | |
full_matrices : bool, optional | |
If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``. | |
If False, the shapes are ``(M, K)`` and ``(K, N)``, where | |
``K = min(M, N)``. | |
compute_uv : bool, optional | |
Whether to compute also ``U`` and ``Vh`` in addition to ``s``. | |
Default is True. | |
overwrite_a : bool, optional | |
Whether to overwrite `a`; may improve performance. | |
Default is False. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
lapack_driver : {'gesdd', 'gesvd'}, optional | |
Whether to use the more efficient divide-and-conquer approach | |
(``'gesdd'``) or general rectangular approach (``'gesvd'``) | |
to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach. | |
Default is ``'gesdd'``. | |
.. versionadded:: 0.18 | |
Returns | |
------- | |
U : ndarray | |
Unitary matrix having left singular vectors as columns. | |
Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`. | |
s : ndarray | |
The singular values, sorted in non-increasing order. | |
Of shape (K,), with ``K = min(M, N)``. | |
Vh : ndarray | |
Unitary matrix having right singular vectors as rows. | |
Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`. | |
For ``compute_uv=False``, only ``s`` is returned. | |
Raises | |
------ | |
LinAlgError | |
If SVD computation does not converge. | |
See Also | |
-------- | |
svdvals : Compute singular values of a matrix. | |
diagsvd : Construct the Sigma matrix, given the vector s. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> rng = np.random.default_rng() | |
>>> m, n = 9, 6 | |
>>> a = rng.standard_normal((m, n)) + 1.j*rng.standard_normal((m, n)) | |
>>> U, s, Vh = linalg.svd(a) | |
>>> U.shape, s.shape, Vh.shape | |
((9, 9), (6,), (6, 6)) | |
Reconstruct the original matrix from the decomposition: | |
>>> sigma = np.zeros((m, n)) | |
>>> for i in range(min(m, n)): | |
... sigma[i, i] = s[i] | |
>>> a1 = np.dot(U, np.dot(sigma, Vh)) | |
>>> np.allclose(a, a1) | |
True | |
Alternatively, use ``full_matrices=False`` (notice that the shape of | |
``U`` is then ``(m, n)`` instead of ``(m, m)``): | |
>>> U, s, Vh = linalg.svd(a, full_matrices=False) | |
>>> U.shape, s.shape, Vh.shape | |
((9, 6), (6,), (6, 6)) | |
>>> S = np.diag(s) | |
>>> np.allclose(a, np.dot(U, np.dot(S, Vh))) | |
True | |
>>> s2 = linalg.svd(a, compute_uv=False) | |
>>> np.allclose(s, s2) | |
True | |
""" | |
a1 = _asarray_validated(a, check_finite=check_finite) | |
if len(a1.shape) != 2: | |
raise ValueError('expected matrix') | |
m, n = a1.shape | |
overwrite_a = overwrite_a or (_datacopied(a1, a)) | |
if not isinstance(lapack_driver, str): | |
raise TypeError('lapack_driver must be a string') | |
if lapack_driver not in ('gesdd', 'gesvd'): | |
message = f'lapack_driver must be "gesdd" or "gesvd", not "{lapack_driver}"' | |
raise ValueError(message) | |
if lapack_driver == 'gesdd' and compute_uv: | |
# XXX: revisit int32 when ILP64 lapack becomes a thing | |
max_mn, min_mn = (m, n) if m > n else (n, m) | |
if full_matrices: | |
if max_mn*max_mn > numpy.iinfo(numpy.int32).max: | |
raise ValueError(f"Indexing a matrix size {max_mn} x {max_mn} " | |
" would incur integer overflow in LAPACK.") | |
else: | |
sz = max(m * min_mn, n * min_mn) | |
if max(m * min_mn, n * min_mn) > numpy.iinfo(numpy.int32).max: | |
raise ValueError(f"Indexing a matrix of {sz} elements would " | |
"incur an in integer overflow in LAPACK.") | |
funcs = (lapack_driver, lapack_driver + '_lwork') | |
gesXd, gesXd_lwork = get_lapack_funcs(funcs, (a1,), ilp64='preferred') | |
# compute optimal lwork | |
lwork = _compute_lwork(gesXd_lwork, a1.shape[0], a1.shape[1], | |
compute_uv=compute_uv, full_matrices=full_matrices) | |
# perform decomposition | |
u, s, v, info = gesXd(a1, compute_uv=compute_uv, lwork=lwork, | |
full_matrices=full_matrices, overwrite_a=overwrite_a) | |
if info > 0: | |
raise LinAlgError("SVD did not converge") | |
if info < 0: | |
raise ValueError('illegal value in %dth argument of internal gesdd' | |
% -info) | |
if compute_uv: | |
return u, s, v | |
else: | |
return s | |
def svdvals(a, overwrite_a=False, check_finite=True): | |
""" | |
Compute singular values of a matrix. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Matrix to decompose. | |
overwrite_a : bool, optional | |
Whether to overwrite `a`; may improve performance. | |
Default is False. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
s : (min(M, N),) ndarray | |
The singular values, sorted in decreasing order. | |
Raises | |
------ | |
LinAlgError | |
If SVD computation does not converge. | |
See Also | |
-------- | |
svd : Compute the full singular value decomposition of a matrix. | |
diagsvd : Construct the Sigma matrix, given the vector s. | |
Notes | |
----- | |
``svdvals(a)`` only differs from ``svd(a, compute_uv=False)`` by its | |
handling of the edge case of empty ``a``, where it returns an | |
empty sequence: | |
>>> import numpy as np | |
>>> a = np.empty((0, 2)) | |
>>> from scipy.linalg import svdvals | |
>>> svdvals(a) | |
array([], dtype=float64) | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import svdvals | |
>>> m = np.array([[1.0, 0.0], | |
... [2.0, 3.0], | |
... [1.0, 1.0], | |
... [0.0, 2.0], | |
... [1.0, 0.0]]) | |
>>> svdvals(m) | |
array([ 4.28091555, 1.63516424]) | |
We can verify the maximum singular value of `m` by computing the maximum | |
length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane. | |
We approximate "all" the unit vectors with a large sample. Because | |
of linearity, we only need the unit vectors with angles in [0, pi]. | |
>>> t = np.linspace(0, np.pi, 2000) | |
>>> u = np.array([np.cos(t), np.sin(t)]) | |
>>> np.linalg.norm(m.dot(u), axis=0).max() | |
4.2809152422538475 | |
`p` is a projection matrix with rank 1. With exact arithmetic, | |
its singular values would be [1, 0, 0, 0]. | |
>>> v = np.array([0.1, 0.3, 0.9, 0.3]) | |
>>> p = np.outer(v, v) | |
>>> svdvals(p) | |
array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17, | |
8.15115104e-34]) | |
The singular values of an orthogonal matrix are all 1. Here, we | |
create a random orthogonal matrix by using the `rvs()` method of | |
`scipy.stats.ortho_group`. | |
>>> from scipy.stats import ortho_group | |
>>> orth = ortho_group.rvs(4) | |
>>> svdvals(orth) | |
array([ 1., 1., 1., 1.]) | |
""" | |
a = _asarray_validated(a, check_finite=check_finite) | |
if a.size: | |
return svd(a, compute_uv=0, overwrite_a=overwrite_a, | |
check_finite=False) | |
elif len(a.shape) != 2: | |
raise ValueError('expected matrix') | |
else: | |
return numpy.empty(0) | |
def diagsvd(s, M, N): | |
""" | |
Construct the sigma matrix in SVD from singular values and size M, N. | |
Parameters | |
---------- | |
s : (M,) or (N,) array_like | |
Singular values | |
M : int | |
Size of the matrix whose singular values are `s`. | |
N : int | |
Size of the matrix whose singular values are `s`. | |
Returns | |
------- | |
S : (M, N) ndarray | |
The S-matrix in the singular value decomposition | |
See Also | |
-------- | |
svd : Singular value decomposition of a matrix | |
svdvals : Compute singular values of a matrix. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import diagsvd | |
>>> vals = np.array([1, 2, 3]) # The array representing the computed svd | |
>>> diagsvd(vals, 3, 4) | |
array([[1, 0, 0, 0], | |
[0, 2, 0, 0], | |
[0, 0, 3, 0]]) | |
>>> diagsvd(vals, 4, 3) | |
array([[1, 0, 0], | |
[0, 2, 0], | |
[0, 0, 3], | |
[0, 0, 0]]) | |
""" | |
part = diag(s) | |
typ = part.dtype.char | |
MorN = len(s) | |
if MorN == M: | |
return numpy.hstack((part, zeros((M, N - M), dtype=typ))) | |
elif MorN == N: | |
return r_[part, zeros((M - N, N), dtype=typ)] | |
else: | |
raise ValueError("Length of s must be M or N.") | |
# Orthonormal decomposition | |
def orth(A, rcond=None): | |
""" | |
Construct an orthonormal basis for the range of A using SVD | |
Parameters | |
---------- | |
A : (M, N) array_like | |
Input array | |
rcond : float, optional | |
Relative condition number. Singular values ``s`` smaller than | |
``rcond * max(s)`` are considered zero. | |
Default: floating point eps * max(M,N). | |
Returns | |
------- | |
Q : (M, K) ndarray | |
Orthonormal basis for the range of A. | |
K = effective rank of A, as determined by rcond | |
See Also | |
-------- | |
svd : Singular value decomposition of a matrix | |
null_space : Matrix null space | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import orth | |
>>> A = np.array([[2, 0, 0], [0, 5, 0]]) # rank 2 array | |
>>> orth(A) | |
array([[0., 1.], | |
[1., 0.]]) | |
>>> orth(A.T) | |
array([[0., 1.], | |
[1., 0.], | |
[0., 0.]]) | |
""" | |
u, s, vh = svd(A, full_matrices=False) | |
M, N = u.shape[0], vh.shape[1] | |
if rcond is None: | |
rcond = numpy.finfo(s.dtype).eps * max(M, N) | |
tol = numpy.amax(s) * rcond | |
num = numpy.sum(s > tol, dtype=int) | |
Q = u[:, :num] | |
return Q | |
def null_space(A, rcond=None): | |
""" | |
Construct an orthonormal basis for the null space of A using SVD | |
Parameters | |
---------- | |
A : (M, N) array_like | |
Input array | |
rcond : float, optional | |
Relative condition number. Singular values ``s`` smaller than | |
``rcond * max(s)`` are considered zero. | |
Default: floating point eps * max(M,N). | |
Returns | |
------- | |
Z : (N, K) ndarray | |
Orthonormal basis for the null space of A. | |
K = dimension of effective null space, as determined by rcond | |
See Also | |
-------- | |
svd : Singular value decomposition of a matrix | |
orth : Matrix range | |
Examples | |
-------- | |
1-D null space: | |
>>> import numpy as np | |
>>> from scipy.linalg import null_space | |
>>> A = np.array([[1, 1], [1, 1]]) | |
>>> ns = null_space(A) | |
>>> ns * np.copysign(1, ns[0,0]) # Remove the sign ambiguity of the vector | |
array([[ 0.70710678], | |
[-0.70710678]]) | |
2-D null space: | |
>>> from numpy.random import default_rng | |
>>> rng = default_rng() | |
>>> B = rng.random((3, 5)) | |
>>> Z = null_space(B) | |
>>> Z.shape | |
(5, 2) | |
>>> np.allclose(B.dot(Z), 0) | |
True | |
The basis vectors are orthonormal (up to rounding error): | |
>>> Z.T.dot(Z) | |
array([[ 1.00000000e+00, 6.92087741e-17], | |
[ 6.92087741e-17, 1.00000000e+00]]) | |
""" | |
u, s, vh = svd(A, full_matrices=True) | |
M, N = u.shape[0], vh.shape[1] | |
if rcond is None: | |
rcond = numpy.finfo(s.dtype).eps * max(M, N) | |
tol = numpy.amax(s) * rcond | |
num = numpy.sum(s > tol, dtype=int) | |
Q = vh[num:,:].T.conj() | |
return Q | |
def subspace_angles(A, B): | |
r""" | |
Compute the subspace angles between two matrices. | |
Parameters | |
---------- | |
A : (M, N) array_like | |
The first input array. | |
B : (M, K) array_like | |
The second input array. | |
Returns | |
------- | |
angles : ndarray, shape (min(N, K),) | |
The subspace angles between the column spaces of `A` and `B` in | |
descending order. | |
See Also | |
-------- | |
orth | |
svd | |
Notes | |
----- | |
This computes the subspace angles according to the formula | |
provided in [1]_. For equivalence with MATLAB and Octave behavior, | |
use ``angles[0]``. | |
.. versionadded:: 1.0 | |
References | |
---------- | |
.. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces | |
in an A-Based Scalar Product: Algorithms and Perturbation | |
Estimates. SIAM J. Sci. Comput. 23:2008-2040. | |
Examples | |
-------- | |
An Hadamard matrix, which has orthogonal columns, so we expect that | |
the suspace angle to be :math:`\frac{\pi}{2}`: | |
>>> import numpy as np | |
>>> from scipy.linalg import hadamard, subspace_angles | |
>>> rng = np.random.default_rng() | |
>>> H = hadamard(4) | |
>>> print(H) | |
[[ 1 1 1 1] | |
[ 1 -1 1 -1] | |
[ 1 1 -1 -1] | |
[ 1 -1 -1 1]] | |
>>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:])) | |
array([ 90., 90.]) | |
And the subspace angle of a matrix to itself should be zero: | |
>>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps | |
array([ True, True], dtype=bool) | |
The angles between non-orthogonal subspaces are in between these extremes: | |
>>> x = rng.standard_normal((4, 3)) | |
>>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]])) | |
array([ 55.832]) # random | |
""" | |
# Steps here omit the U and V calculation steps from the paper | |
# 1. Compute orthonormal bases of column-spaces | |
A = _asarray_validated(A, check_finite=True) | |
if len(A.shape) != 2: | |
raise ValueError(f'expected 2D array, got shape {A.shape}') | |
QA = orth(A) | |
del A | |
B = _asarray_validated(B, check_finite=True) | |
if len(B.shape) != 2: | |
raise ValueError(f'expected 2D array, got shape {B.shape}') | |
if len(B) != len(QA): | |
raise ValueError('A and B must have the same number of rows, got ' | |
f'{QA.shape[0]} and {B.shape[0]}') | |
QB = orth(B) | |
del B | |
# 2. Compute SVD for cosine | |
QA_H_QB = dot(QA.T.conj(), QB) | |
sigma = svdvals(QA_H_QB) | |
# 3. Compute matrix B | |
if QA.shape[1] >= QB.shape[1]: | |
B = QB - dot(QA, QA_H_QB) | |
else: | |
B = QA - dot(QB, QA_H_QB.T.conj()) | |
del QA, QB, QA_H_QB | |
# 4. Compute SVD for sine | |
mask = sigma ** 2 >= 0.5 | |
if mask.any(): | |
mu_arcsin = arcsin(clip(svdvals(B, overwrite_a=True), -1., 1.)) | |
else: | |
mu_arcsin = 0. | |
# 5. Compute the principal angles | |
# with reverse ordering of sigma because smallest sigma belongs to largest | |
# angle theta | |
theta = where(mask, mu_arcsin, arccos(clip(sigma[::-1], -1., 1.))) | |
return theta | |